E·XFL

Intel - EP20K400EFC672-1N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

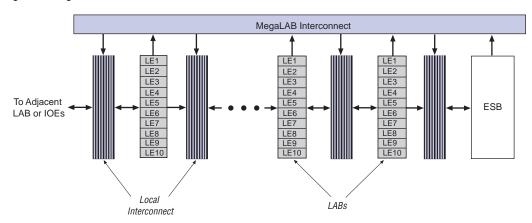
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	1664
Number of Logic Elements/Cells	16640
Total RAM Bits	212992
Number of I/O	488
Number of Gates	1052000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k400efc672-1n

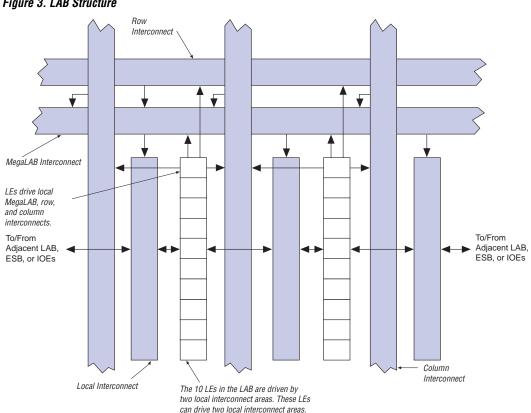
Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

APEX 20K devices provide two dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals. These signals use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20K devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry. APEX 20KE devices provide two additional dedicated clock pins, for a total of four dedicated clock pins.

MegaLAB Structure

APEX 20K devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. The EP20K30E device has 10 LABs, EP20K60E through EP20K600E devices have 16 LABs, and the EP20K1000E and EP20K1500E devices have 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack Interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.



Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20K LAB.

APEX 20K devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas. This feature minimizes use of the MegaLAB and FastTrack interconnect, providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect.

Each LE has two outputs that drive the local, MegaLAB, or FastTrack Interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output.

The APEX 20K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure.

Carry Chain

The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higherorder bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20K architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as library of parameterized modules (LPM) and DesignWare functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II software Compiler creates carry chains longer than ten LEs by linking LABs together automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB[™] structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure.

Figure 6 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack Interconnect routing structures.

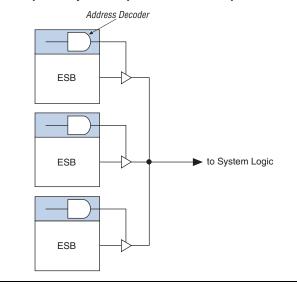
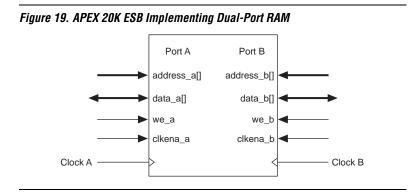
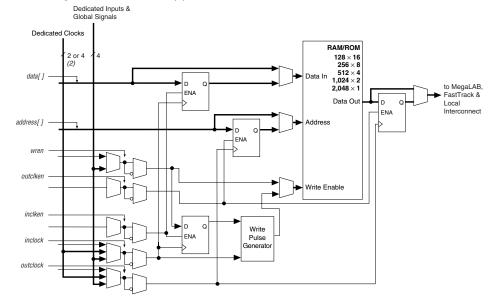




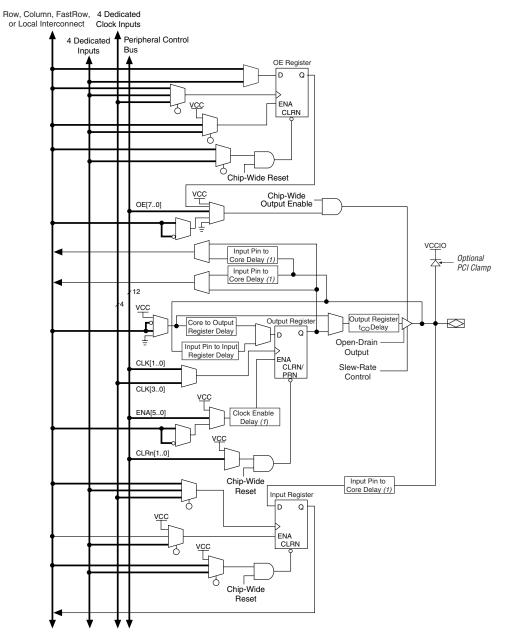
Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

Figure 22. ESB in Single-Port Mode Note (1)

Notes to Figure 22:

All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.
APEX 20KE devices have four dedicated clocks.


Content-Addressable Memory

In APEX 20KE devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it.

CAM is used for high-speed search operations. When searching for data within a RAM block, the search is performed serially. Thus, finding a particular data word can take many cycles. CAM searches all addresses in parallel and outputs the address storing a particular word. When a match is found, a match flag is set high. Figure 23 shows the CAM block diagram.

Figure 26. APEX 20KE Bidirectional I/O Registers N

Notes to Figure 26:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Notes to Table 16:

- (1) To implement the ClockLock and ClockBoost circuitry with the Quartus II software, designers must specify the input frequency. The Quartus II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The *f_{CLKDEV}* parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{IITTER} specification is measured under long-term observation.

Tables 17 and 18 summarize the ClockLock and ClockBoost parameters for APEX 20KE devices.

Table 17. AP	Table 17. APEX 20KE ClockLock & ClockBoost Parameters Note (1)									
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit				
t _R	Input rise time				5	ns				
t _F	Input fall time				5	ns				
t _{INDUTY}	Input duty cycle		40		60	%				
t _{INJITTER}	Input jitter peak-to-peak				2% of input period	peak-to- peak				
	Jitter on ClockLock or ClockBoost- generated clock				0.35% of output period	RMS				
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		45		55	%				
t _{LOCK} (2) _, (3)	Time required for ClockLock or ClockBoost to acquire lock				40	μs				

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(4), (5)	2.375 (2.375)	2.625 (2.625)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(4), (5)	3.00 (3.00)	3.60 (3.60)	V
	Supply voltage for output buffers, 2.5-V operation	(4), (5)	2.375 (2.375)	2.625 (2.625)	V
VI	Input voltage	(3), (6)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
TJ	Junction temperature	For commercial use	0	85	°C
		For industrial use	-40	100	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		1.7, 0.5 × V _{CCIO} (9)		5.75	V
V _{IL}	Low-level input voltage		-0.5		$0.8, 0.3 \times V_{CCIO}$	V
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>	2.4			V
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>	V _{CCIO} -0.2			V
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (10)	$0.9 \times V_{CCIO}$			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(10)</i>	2.1			V
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V <i>(10)</i>	2.0			V
		I _{OH} = –2 mA DC, V _{CCIO} = 2.30 V <i>(10)</i>	1.7			V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level LVTTL, CMOS, or 3.3-V PCI input voltage		1.7, 0.5 × V _{CCIO} (10)		4.1	V
V _{IL}	Low-level LVTTL, CMOS, or 3.3-V PCI input voltage		-0.5		0.8, 0.3 × V _{CCIO} (10)	V
V _{OH}	3.3-V high-level LVTTL output voltage	I _{OH} = -12 mA DC, V _{CCIO} = 3.00 V <i>(11)</i>	2.4			۷
	3.3-V high-level LVCMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(11)</i>	V _{CCIO} – 0.2			V
	3.3-V high-level PCI output voltage	I _{OH} = -0.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (<i>11</i>)	$0.9 imes V_{CCIO}$			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V (11)	2.1			V
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V <i>(11)</i>	2.0			۷
		I _{OH} = -2 mA DC, V _{CCIO} = 2.30 V <i>(11)</i>	1.7			v
V _{OL}	3.3-V low-level LVTTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V <i>(12)</i>			0.4	V
	3.3-V low-level LVCMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (<i>12</i>)			0.2	V
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (<i>12</i>)			$0.1 \times V_{CCIO}$	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.7	V
l _l	Input pin leakage current	V _I = 4.1 to -0.5 V (13)	-10		10	μA
I _{OZ}	Tri-stated I/O pin leakage current	V _O = 4.1 to -0.5 V (13)	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -1 speed grade		10		mA
		V ₁ = ground, no load, no toggling inputs, -2, -3 speed grades		5		mA
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (14)	20		50	kΩ
	before and during configuration	V _{CCIO} = 2.375 V (14)	30		80	kΩ
		V _{CCIO} = 1.71 V (14)	60		150	kΩ

P

For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).*

Table 30.	Table 30. APEX 20KE Device Capacitance Note (15)										
Symbol	Parameter	Conditions	Min	Max	Unit						
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF						
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF						
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF						

Notes to Tables 27 through 30:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

Vin	Max. Duty Cycle
4.0V	100% (DC)
4.1	90%

- 4.2 50%
- 4.3 30%
- 4.4 17%
- 4.5 10%
- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (7) Typical values are for $T_A = 25^\circ$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60.
- (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V.
- (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL.
- (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (13) This value is specified for normal device operation. The value may vary during power-up.
- (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (15) Capacitance is sample-tested only.

Figure 33 shows the relationship between $\rm V_{CCIO}$ and $\rm V_{CCINT}$ for 3.3-V PCI compliance on APEX 20K devices.

Symbol	Parameter	Conditions
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at LAB adjacent Input Register	
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at LAB adjacent Input Register	
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE output register	C1 = 10 pF
t _{XZBIDIR}	Synchronous Output Enable Register to output buffer disable delay	C1 = 10 pF
t _{ZXBIDIR}	Synchronous Output Enable Register output buffer enable delay	C1 = 10 pF
^t INSUBIDIRPLL	Setup time for bidirectional pins with PLL clock at LAB adjacent Input Register	
t _{INHBIDIRPLL}	Hold time for bidirectional pins with PLL clock at LAB adjacent Input Register	
^t OUTCOBIDIRPLL	Clock-to-output delay for bidirectional pins with PLL clock at IOE output register	C1 = 10 pF
t _{XZBIDIRPLL}	Synchronous Output Enable Register to output buffer disable delay with PLL	C1 = 10 pF
t _{ZXBIDIRPLL}	Synchronous Output Enable Register output buffer enable delay with PLL	C1 = 10 pF

Note to Tables 38 and 39:

Г

(1) These timing parameters are sample-tested only.

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Units
					_		-
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.1		0.3		0.6		ns
t _H	0.5		0.8		0.9		ns
t _{CO}		0.1		0.4		0.6	ns
t _{LUT}		1.0		1.2		1.4	ns
t _{ESBRC}		1.7		2.1		2.4	ns
t _{ESBWC}		5.7		6.9		8.1	ns
t _{ESBWESU}	3.3		3.9		4.6		ns
t _{ESBDATASU}	2.2		2.7		3.1		ns
t _{ESBDATAH}	0.6		0.8		0.9		ns
t _{ESBADDRSU}	2.4		2.9		3.3		ns
t _{ESBDATACO1}		1.3		1.6		1.8	ns
t _{ESBDATACO2}		2.5		3.1		3.6	ns
t _{ESBDD}		2.5		3.3		3.6	ns
t _{PD}		2.5		3.1		3.6	ns
t _{PTERMSU}	1.7		2.1		2.4		ns
t _{PTERMCO}		1.0		1.2		1.4	ns
t _{F1-4}		0.4		0.5		0.6	ns
t _{F5-20}		2.6		2.8		2.9	ns
t _{F20+}		3.7		3.8		3.9	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns
t _{CLRP}	0.5		0.6		0.8		ns
t _{PREP}	0.5		0.5		0.5		ns
t _{ESBCH}	2.0		2.5		3.0		ns
t _{ESBCL}	2.0		2.5		3.0		ns
t _{ESBWP}	1.5		1.9		2.2		ns
t _{ESBRP}	1.0		1.2		1.4		ns

Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

Symbol	-1			-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		2.03		2.86		4.24	ns
t _{ESBSRC}		2.58		3.49		5.02	ns
t _{ESBAWC}		3.88		5.45		8.08	ns
t _{ESBSWC}		4.08		5.35		7.48	ns
t _{ESBWASU}	1.77		2.49		3.68		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.95		2.74		4.05		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.96		2.75		4.07		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.80		2.73		4.28		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.07		0.48		1.17		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.30		0.80		1.64		ns
t _{ESBRADDRSU}	0.37		0.90		1.78		ns
t _{ESBDATACO1}		1.11		1.32		1.67	ns
t _{ESBDATACO2}		2.65		3.73		5.53	ns
t _{ESBDD}		3.88		5.45		8.08	ns
t _{PD}		1.91		2.69		3.98	ns
t _{PTERMSU}	1.04		1.71		2.82		ns
t _{PTERMCO}		1.13		1.34		1.69	ns

Table 51. EP20K30E f_{MAX} Routing Delays

Symbol	-	-1		-2		-3		
	Min	Max	Min	Max	Min	Max		
t _{F1-4}		0.24		0.27		0.31	ns	
t _{F5-20}		1.03		1.14		1.30	ns	
t _{F20+}		1.42		1.54		1.77	ns	

Symbol	-1		-2		-	Unit	
	Min	Max	Min	Max	Min	Max	
t _{insubidir}	2.77		2.91		3.11		ns
t _{inhbidir}	0.00		0.00		0.00		ns
toutcobidir	2.00	4.84	2.00	5.31	2.00	5.81	ns
t _{XZBIDIR}		6.47		7.44		8.65	ns
t _{ZXBIDIR}		6.47		7.44		8.65	ns
t _{insubidirpll}	3.44		3.24		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	3.37	0.50	3.69	-	-	ns
t _{xzbidirpll}		5.00		5.82		-	ns
t _{zxbidirpll}		5.00		5.82		-	ns

Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices.

Table 61. EP2	OK100E f _{max} i	LE Timing Mic	roparameters	8			
Symbol	-1		-2		-;	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.25		0.25		0.25		ns
t _H	0.25		0.25		0.25		ns
t _{CO}		0.28		0.28		0.34	ns
t _{LUT}		0.80		0.95		1.13	ns

Symbol	-	1	-	2	-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.19		0.26		0.35		ns
t _{PREP}	0.19		0.26		0.35		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.25		1.71		2.28		ns
t _{ESBRP}	1.01		1.38		1.84		ns

Symbol		I	-	2	-3		Unit	
	Min	Мах	Min	Max	Min	Max		
t _{INSU}	2.31		2.44		2.57		ns	
t _{INH}	0.00		0.00		0.00		ns	
t _{outco}	2.00	5.29	2.00	5.82	2.00	6.24	ns	
t _{insupll}	1.76		1.85		-		ns	
t _{INHPLL}	0.00		0.00		-		ns	
toutcopll	0.50	2.65	0.50	2.95	-	-	ns	

Symbol	-1		-2		-	Unit	
	Min	Max	Min	Max	Min	Max	1
t _{insubidir}	2.77		2.85		3.11		ns
t _{inhbidir}	0.00		0.00		0.00		ns
toutcobidir	2.00	5.29	2.00	5.82	2.00	6.24	ns
t _{xzbidir}		7.59		8.30		9.09	ns
t _{ZXBIDIR}		7.59		8.30		9.09	ns
t _{insubidirpll}	2.50		2.76		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	2.65	0.50	2.95	-	-	ns
t _{XZBIDIRPLL}		5.00		5.43		-	ns
t _{ZXBIDIRPLL}		5.00		5.43		-	ns

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.67		2.39		3.11	ns
t _{ESBSRC}		2.27		3.07		3.86	ns
t _{ESBAWC}		3.19		4.56		5.93	ns
t _{ESBSWC}		3.51		4.62		5.72	ns
t _{ESBWASU}	1.46		2.08		2.70		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.60		2.29		2.97		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.61		2.30		2.99		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.49		2.30		3.11		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.01		0.35		0.71		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.19		0.62		1.06		ns
t _{ESBRADDRSU}	0.25		0.71		1.17		ns
t _{ESBDATACO1}		1.01		1.19		1.37	ns
t _{ESBDATACO2}		2.18		3.12		4.05	ns
t _{ESBDD}		3.19		4.56		5.93	ns
t _{PD}		1.57		2.25		2.92	ns
t _{PTERMSU}	0.85		1.43		2.01		ns
t _{PTERMCO}		1.03		1.21		1.39	ns

Table 93. EP2	OK600E f _{max}	Routing Delay	'S				
Symbol	-1 Spee	ed Grade	-2 Spe	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Мах	
t _{F1-4}		0.22		0.25		0.26	ns
t _{F5-20}		1.26		1.39		1.52	ns
t _{F20+}		3.51		3.88		4.26	ns

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.78		2.02		1.95	ns
t _{ESBSRC}		2.52		2.91		3.14	ns
t _{ESBAWC}		3.52		4.11		4.40	ns
t _{ESBSWC}		3.23		3.84		4.16	ns
t _{ESBWASU}	0.62		0.67		0.61		ns
t _{ESBWAH}	0.41		0.55		0.55		ns
t _{ESBWDSU}	0.77		0.79		0.81		ns
t _{ESBWDH}	0.41		0.55		0.55		ns
t _{ESBRASU}	1.74		1.92		1.85		ns
t _{ESBRAH}	0.00		0.01		0.23		ns
t _{ESBWESU}	2.07		2.28		2.41		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.25		0.27		0.29		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.11		0.04		0.11		ns
t _{ESBRADDRSU}	0.14		0.11		0.16		ns
t _{ESBDATACO1}		1.29		1.50		1.63	ns
t _{ESBDATACO2}		2.55		2.99		3.22	ns
t _{ESBDD}		3.12		3.57		3.85	ns
t _{PD}		1.84		2.13		2.32	ns
t _{PTERMSU}	1.08		1.19		1.32		ns
t _{PTERMCO}		1.31		1.53		1.66	ns

Г

٦

APEX 20K Programmable Logic Device Family Data Sheet

Table 99. EP2	OK1000E f _{MAX}	Routing Dela	ys				
Symbol	-1 Spee	d Grade	-2 Spe	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.27		0.27		0.27	ns
t _{F5-20}		1.45		1.63		1.75	ns
t _{F20+}		4.15		4.33		4.97	ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	1
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.28		1.51		1.65		ns
t _{ESBRP}	1.11		1.29		1.41		ns

Table 101. EF	20K1000E Ext	ernal Timing	Parameters				
Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.70		2.84		2.97		ns
t _{INH}	0.00		0.00		0.00		ns
t _{outco}	2.00	5.75	2.00	6.33	2.00	6.90	ns
t _{INSUPLL}	1.64		2.09		-		ns
t _{INHPLL}	0.00		0.00		-		ns
t _{outcopll}	0.50	2.25	0.50	2.99	-	-	ns

Table 108. EP20K15	00E External	Bidirectional	Timing Para	meters			
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Мах	Min	Max	Min	Max	
t _{insubidir}	3.47		3.68		3.99		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	6.18	2.00	6.81	2.00	7.36	ns
t _{XZBIDIR}		6.91		7.62		8.38	ns
t _{ZXBIDIR}		6.91		7.62		8.38	ns
t _{insubidirpll}	3.05		3.26				ns
t _{inhbidirpll}	0.00		0.00				ns
t _{outcobidirpll}	0.50	2.67	0.50	2.99			ns
t _{xzbidirpll}		3.41		3.80			ns
t _{ZXBIDIRPLL}		3.41		3.80			ns

Tables 109 and 110 show selectable I/O standard input and output delays for APEX 20KE devices. If you select an I/O standard input or output delay other than LVCMOS, add or subtract the selected speed grade to or from the LVCMOS value.

Table 109. Selectab	le I/O Standa	ard Input Dela	ays				
Symbol	-1 Spee	ed Grade	-2 Spe	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	Min
LVCMOS		0.00		0.00		0.00	ns
LVTTL		0.00		0.00		0.00	ns
2.5 V		0.00		0.04		0.05	ns
1.8 V		-0.11		0.03		0.04	ns
PCI		0.01		0.09		0.10	ns
GTL+		-0.24		-0.23		-0.19	ns
SSTL-3 Class I		-0.32		-0.21		-0.47	ns
SSTL-3 Class II		-0.08		0.03		-0.23	ns
SSTL-2 Class I		-0.17		-0.06		-0.32	ns
SSTL-2 Class II		-0.16		-0.05		-0.31	ns
LVDS		-0.12		-0.12		-0.12	ns
CTT		0.00		0.00		0.00	ns
AGP		0.00		0.00		0.00	ns

Г

Version 4.1

APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes:

- *t*_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104.
- Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.