Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 1664 | | Number of Logic Elements/Cells | 16640 | | Total RAM Bits | 212992 | | Number of I/O | 488 | | Number of Gates | 1052000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 672-BBGA | | Supplier Device Package | 672-FBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k400efc672-2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required. APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy. After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications. APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations. The Quartus II software provides NativeLink interfaces to other industry-standard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture. Figure 6. APEX 20K Carry Chain # LE Operating Modes The APEX 20K LE can operate in one of the following three modes: - Normal mode - Arithmetic mode - Counter mode Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes. The programmable register also supports an asynchronous clear function. Within the ESB, two asynchronous clears are generated from global signals and the local interconnect. Each macrocell can either choose between the two asynchronous clear signals or choose to not be cleared. Either of the two clear signals can be inverted within the ESB. Figure 15 shows the ESB control logic when implementing product-terms. Dedicated Clocks Global Signals Local Interconnect Local Interconnect Local Interconnect Local Interconnect CLR1 CLKENA2 CLK1 CLKENA1 CLR₂ Figure 15. ESB Product-Term Mode Control Logic Note to Figure 15: (1) APEX 20KE devices have four dedicated clocks. # Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 32 product terms to feed the macrocell OR logic directly, with two product terms provided by the macrocell and 30 parallel expanders provided by the neighboring macrocells in the ESB. The Quartus II software Compiler can allocate up to 15 sets of up to two parallel expanders per set to the macrocells automatically. Each set of two parallel expanders incurs a small, incremental timing delay. Figure 16 shows the APEX 20K parallel expanders. Figure 25. APEX 20K Bidirectional I/O Registers Note (1) Note to Figure 25: (1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. # Clock Phase & Delay Adjustment The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period. # LVDS Support Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing. # Lock Signals The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins. # ClockLock & ClockBoost Timing Parameters For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications. For more information on ClockLock and ClockBoost circuitry, see *Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices*. | Symbol | Parameter | I/O Standard | -1X Speed Grade | | -2X Speed Grade | | Units | |-------------------------|---|-------------------|-----------------|-----|-----------------|-----|-------| | | | | Min | Max | Min | Max | | | f _{VCO} (4) | Voltage controlled oscillator operating range | | 200 | 500 | 200 | 500 | MHz | | f _{CLOCK0} | Clock0 PLL output frequency for internal use | | 1.5 | 335 | 1.5 | 200 | MHz | | f _{CLOCK1} | Clock1 PLL output frequency for internal use | | 20 | 335 | 20 | 200 | MHz | | f _{CLOCK0_EXT} | Output clock frequency for | 3.3-V LVTTL | 1.5 | 245 | 1.5 | 226 | MHz | | | external clock0 output | 2.5-V LVTTL | 1.5 | 234 | 1.5 | 221 | MHz | | | | 1.8-V LVTTL | 1.5 | 223 | 1.5 | 216 | MHz | | | | GTL+ | 1.5 | 205 | 1.5 | 193 | MHz | | | | SSTL-2 Class | 1.5 | 158 | 1.5 | 157 | MHz | | | | SSTL-2 Class | 1.5 | 142 | 1.5 | 142 | MHz | | | | SSTL-3 Class | 1.5 | 166 | 1.5 | 162 | MHz | | | | SSTL-3 Class | 1.5 | 149 | 1.5 | 146 | MHz | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | | f _{CLOCK1_EXT} | Output clock frequency for | 3.3-V LVTTL | 20 | 245 | 20 | 226 | MHz | | | external clock1 output | 2.5-V LVTTL | 20 | 234 | 20 | 221 | MHz | | | | 1.8-V LVTTL | 20 | 223 | 20 | 216 | MHz | | | | GTL+ | 20 | 205 | 20 | 193 | MHz | | | | SSTL-2 Class
I | 20 | 158 | 20 | 157 | MHz | | | | SSTL-2 Class | 20 | 142 | 20 | 142 | MHz | | | | SSTL-3 Class | 20 | 166 | 20 | 162 | MHz | | | | SSTL-3 Class | 20 | 149 | 20 | 146 | MHz | | | | LVDS | 20 | 420 | 20 | 350 | MHz | | Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1) | | | | | | | | | | |--|-----------------------|--------------|-----------------|-----|-----------------|-----|-------|--|--| | Symbol | Parameter | I/O Standard | -1X Speed Grade | | -2X Speed Grade | | Units | | | | | | | Min | Max | Min | Max | | | | | f _{IN} | Input clock frequency | 3.3-V LVTTL | 1.5 | 290 | 1.5 | 257 | MHz | | | | | | 2.5-V LVTTL | 1.5 | 281 | 1.5 | 250 | MHz | | | | | | 1.8-V LVTTL | 1.5 | 272 | 1.5 | 243 | MHz | | | | | | GTL+ | 1.5 | 303 | 1.5 | 261 | MHz | | | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | | | #### Notes to Tables 17 and 18: - All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first. - (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK ENA pin goes high in user mode. - (4) The PLL VCO operating range is 200 MHz δ f_{VCO} δ 840 MHz for LVDS mode. # SignalTap Embedded Logic Analyzer APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured. | Table 2 | 8. APEX 20KE Device Recommende | d Operating Conditions | | | | |--------------------|---|------------------------|------------------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 1.71 (1.71) | 1.89 (1.89) | V | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.375
(2.375) | 2.625
(2.625) | V | | | Supply voltage for output buffers, 1.8-V operation | (3), (4) | 1.71 (1.71) | 1.89 (1.89) | V | | VI | Input voltage | (5), (6) | -0.5 | 4.0 | ٧ | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _J | Junction temperature | For commercial use | 0 | 85 | °C | | | | For industrial use | -40 | 100 | °C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------|---|--|-----------------------------------|-----|-----------------------------------|------| | V _{IH} | High-level LVTTL, CMOS, or 3.3-V
PCI input voltage | | 1.7, 0.5 × V _{CCIO} (10) | | 4.1 | V | | V _{IL} | Low-level LVTTL, CMOS, or 3.3-V
PCI input voltage | | -0.5 | | 0.8, 0.3 × V _{CCIO} (10) | V | | V _{OH} | 3.3-V high-level LVTTL output voltage | I _{OH} = -12 mA DC,
V _{CCIO} = 3.00 V (11) | 2.4 | | | V | | | 3.3-V high-level LVCMOS output voltage | $I_{OH} = -0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (11)$ | V _{CCIO} - 0.2 | | | V | | | 3.3-V high-level PCI output voltage | $I_{OH} = -0.5 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$
(11) | 0.9 × V _{CCIO} | | | V | | | 2.5-V high-level output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 2.30 V (11) | 2.1 | | | V | | | | $I_{OH} = -1 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (11)$ | 2.0 | | | V | | | | $I_{OH} = -2 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (11)$ | 1.7 | | | V | | V _{OL} | 3.3-V low-level LVTTL output voltage | I_{OL} = 12 mA DC,
V_{CCIO} = 3.00 V (12) | | | 0.4 | V | | | 3.3-V low-level LVCMOS output voltage | $I_{OL} = 0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (12)$ | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | I_{OL} = 1.5 mA DC,
V_{CCIO} = 3.00 to 3.60 V
(12) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.2 | V | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.4 | V | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.7 | V | | I _I | Input pin leakage current | V _I = 4.1 to -0.5 V (13) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_0 = 4.1 \text{ to } -0.5 \text{ V } (13)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby)
(All ESBs in power-down mode) | $V_{I} =$ ground, no load, no toggling inputs, -1 speed grade | | 10 | | mA | | | | V _I = ground, no load, no
toggling inputs,
-2, -3 speed grades | | 5 | | mA | | R _{CONF} | Value of I/O pin pull-up resistor | V _{CCIO} = 3.0 V (14) | 20 | | 50 | kΩ | | | before and during configuration | V _{CCIO} = 2.375 V (14) | 30 | | 80 | kΩ | | | | V _{CCIO} = 1.71 V (14) | 60 | | 150 | kΩ | For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).* | Table 30. APEX 20KE Device Capacitance Note (15) | | | | | | | | |--|--|-------------------------------------|-----|-----|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | #### Notes to Tables 27 through 30: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle. Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10% - (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V. - (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60. - (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V. - (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL. - (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (13) This value is specified for normal device operation. The value may vary during power-up. - (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}. - (15) Capacitance is sample-tested only. Figure 33 shows the relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance on APEX 20K devices. All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum driver strength. Figure 36 shows the f_{MAX} timing model for APEX 20K devices. Figure 37 shows the f_{MAX} timing model for APEX 20KE devices. These parameters can be used to estimate f_{MAX} for multiple levels of logic. Quartus II software timing analysis should be used for more accurate timing information. Figures 38 and 39 show the asynchronous and synchronous timing waveforms, respectively, for the ESB macroparameters in Table 31. Figure 38. ESB Asynchronous Timing Waveforms ### **ESB Asynchronous Write** | Table 36. APEX 20KE Routing Timing Microparameters Note (1) | | | | | | | | |---|--|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | | t _{F1-4} | Fanout delay using Local Interconnect | | | | | | | | t _{F5-20} | Fanout delay estimate using MegaLab Interconnect | | | | | | | | t _{F20+} | Fanout delay estimate using FastTrack Interconnect | | | | | | | ### Note to Table 36: (1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. | Table 37. APEX 20KE Functional Timing Microparameters | | | | | | | |---|--|--|--|--|--|--| | Symbol Parameter | | | | | | | | TCH | Minimum clock high time from clock pin | | | | | | | TCL | Minimum clock low time from clock pin | | | | | | | TCLRP | LE clear Pulse Width | | | | | | | TPREP | LE preset pulse width | | | | | | | TESBCH | Clock high time for ESB | | | | | | | TESBCL | Clock low time for ESB | | | | | | | TESBWP | Write pulse width | | | | | | | TESBRP | Read pulse width | | | | | | Tables 38 and 39 describe the APEX 20KE external timing parameters. | Table 38. APEX 20KE External Timing Parameters Note (1) | | | | | | | |---|--|------------|--|--|--|--| | Symbol | Conditions | | | | | | | t _{INSU} | Setup time with global clock at IOE input register | | | | | | | t _{INH} | Hold time with global clock at IOE input register | | | | | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE output register | C1 = 10 pF | | | | | | t _{INSUPLL} | Setup time with PLL clock at IOE input register | | | | | | | t _{INHPLL} | Hold time with PLL clock at IOE input register | | | | | | | t _{OUTCOPLL} | Clock-to-output delay with PLL clock at IOE output register | C1 = 10 pF | | | | | | Table 57. EP20K60E f _{MAX} Routing Delays | | | | | | | | | | | |--|-----|------|-----|------|-----|------|----|--|--|--| | Symbol | -1 | | -2 | | -1 | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.24 | | 0.26 | | 0.30 | ns | | | | | t _{F5-20} | | 1.45 | | 1.58 | | 1.79 | ns | | | | | t _{F20+} | | 1.96 | | 2.14 | | 2.45 | ns | | | | | Symbol | -1 | | -2 | | -3 | | Unit | |--------------------|------|-----|------|-----|------|-----|------| | | Min | Max | Min | Max | Min | Max | 7 | | t _{CH} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{CL} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{CLRP} | 0.20 | | 0.28 | | 0.41 | | ns | | t _{PREP} | 0.20 | | 0.28 | | 0.41 | | ns | | t _{ESBCH} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{ESBCL} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{ESBWP} | 1.29 | | 1.80 | | 2.66 | | ns | | t _{ESBRP} | 1.04 | | 1.45 | | 2.14 | | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |----------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.03 | | 2.12 | | 2.23 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 4.84 | 2.00 | 5.31 | 2.00 | 5.81 | ns | | t _{INSUPLL} | 1.12 | | 1.15 | | - | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | toutcople | 0.50 | 3.37 | 0.50 | 3.69 | - | - | ns | | Symbol | -1 | | - | 2 | - | 3 | Unit | | |----------------------------|------|------|------|------|------|------|------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{INSUBIDIR} | 2.77 | | 2.91 | | 3.11 | | ns | | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | | t _{OUTCOBIDIR} | 2.00 | 4.84 | 2.00 | 5.31 | 2.00 | 5.81 | ns | | | t _{XZBIDIR} | | 6.47 | | 7.44 | | 8.65 | ns | | | t _{ZXBIDIR} | | 6.47 | | 7.44 | | 8.65 | ns | | | t _{INSUBIDIRPLL} | 3.44 | | 3.24 | | - | | ns | | | tinhbidirpll | 0.00 | | 0.00 | | - | | ns | | | ^t OUTCOBIDIRPLL | 0.50 | 3.37 | 0.50 | 3.69 | - | - | ns | | | t _{XZBIDIRPLL} | | 5.00 | | 5.82 | | - | ns | | | tzxbidirpll | | 5.00 | | 5.82 | | - | ns | | Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices. | Table 61. EP20K100E f _{MAX} LE Timing Microparameters | | | | | | | | | |--|------|------|------|------|------|------|------|--| | Symbol | - | 1 | - | 2 | -1 | 3 | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{SU} | 0.25 | | 0.25 | | 0.25 | | ns | | | t _H | 0.25 | | 0.25 | | 0.25 | | ns | | | t _{CO} | | 0.28 | | 0.28 | | 0.34 | ns | | | t _{LUT} | | 0.80 | | 0.95 | | 1.13 | ns | | | Symbol | - | 1 | - | 2 | -; | -3 | | |-------------------------|-------|------|-------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.65 | | 2.02 | | 2.11 | ns | | t _{ESBSRC} | | 2.21 | | 2.70 | | 3.11 | ns | | t _{ESBAWC} | | 3.04 | | 3.79 | | 4.42 | ns | | t _{ESBSWC} | | 2.81 | | 3.56 | | 4.10 | ns | | t _{ESBWASU} | 0.54 | | 0.66 | | 0.73 | | ns | | t _{ESBWAH} | 0.36 | | 0.45 | | 0.47 | | ns | | t _{ESBWDSU} | 0.68 | | 0.81 | | 0.94 | | ns | | t _{ESBWDH} | 0.36 | | 0.45 | | 0.47 | | ns | | t _{ESBRASU} | 1.58 | | 1.87 | | 2.06 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.01 | | ns | | t _{ESBWESU} | 1.41 | | 1.71 | | 2.00 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.02 | | -0.03 | | 0.09 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.14 | | 0.17 | | 0.35 | | ns | | t _{ESBRADDRSU} | 0.21 | | 0.27 | | 0.43 | | ns | | t _{ESBDATACO1} | | 1.04 | | 1.30 | | 1.46 | ns | | t _{ESBDATACO2} | | 2.15 | | 2.70 | | 3.16 | ns | | t _{ESBDD} | | 2.69 | | 3.35 | | 3.97 | ns | | t _{PD} | | 1.55 | | 1.93 | _ | 2.29 | ns | | t _{PTERMSU} | 1.01 | | 1.23 | | 1.52 | | ns | | t _{PTERMCO} | | 1.06 | | 1.32 | | 1.04 | ns | | Table 76. EP20K200E Minimum Pulse Width Timing Parameters | | | | | | | | |---|------|-----|------|-----|------|-----|------| | Symbol | | 1 | - | 2 | -: | 3 | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.36 | | 2.44 | | 2.65 | | ns | | t _{CL} | 1.36 | | 2.44 | | 2.65 | | ns | | t _{CLRP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{PREP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{ESBCH} | 1.36 | | 2.44 | | 2.65 | | ns | | t _{ESBCL} | 1.36 | | 2.44 | | 2.65 | | ns | | t _{ESBWP} | 1.18 | | 1.48 | | 1.76 | | ns | | t _{ESBRP} | 0.95 | | 1.17 | | 1.41 | | ns | | Symbol | - | 1 | - | 2 | -3 | 3 | Unit | |-----------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.24 | | 2.35 | | 2.47 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{outco} | 2.00 | 5.12 | 2.00 | 5.62 | 2.00 | 6.11 | ns | | t _{INSUPLL} | 2.13 | | 2.07 | | - | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | t _{OUTCOPLL} | 0.50 | 3.01 | 0.50 | 3.36 | - | - | ns | | Symbol | -1 | | - | 2 | - | 3 | Unit | |---------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.81 | | 3.19 | | 3.54 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 5.12 | 2.00 | 5.62 | 2.00 | 6.11 | ns | | t _{XZBIDIR} | | 7.51 | | 8.32 | | 8.67 | ns | | tzxbidir | | 7.51 | | 8.32 | | 8.67 | ns | | t _{INSUBIDIRPLL} | 3.30 | | 3.64 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 3.01 | 0.50 | 3.36 | - | - | ns | | t _{XZBIDIRPLL} | | 5.40 | | 6.05 | | - | ns | | tzxbidirpll | | 5.40 | | 6.05 | | - | ns | Tables 79 through 84 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K300E APEX 20KE devices. | Table 79. EP20K300E f _{MAX} LE Timing Microparameters | | | | | | | | | | |--|------|------|------|------|------|------|------|--|--| | Symbol | - | 1 | | -2 | -; | 3 | Unit | | | | N | Min | Max | Min | Max | Min | Max | | | | | t _{SU} | 0.16 | | 0.17 | | 0.18 | | ns | | | | t _H | 0.31 | | 0.33 | | 0.38 | | ns | | | | t _{CO} | | 0.28 | | 0.38 | | 0.51 | ns | | | | t _{LUT} | | 0.79 | | 1.07 | | 1.43 | ns | | | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | -3 Speed Grade | | |--------------------|----------------|-----|---------|---------|---------|----------------|----| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{CL} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{CLRP} | 0.18 | | 0.26 | | 0.34 | | ns | | t _{PREP} | 0.18 | | 0.26 | | 0.34 | | ns | | t _{ESBCH} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{ESBCL} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{ESBWP} | 1.17 | | 1.68 | | 2.18 | | ns | | t _{ESBRP} | 0.95 | | 1.35 | | 1.76 | | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | -3 Speed Grade l | | | |----------------------|----------------|------|---------|---------|---------|------------------|----|--| | | Min | Max | Min | Max | Min | Max |] | | | t _{INSU} | 2.74 | | 2.74 | | 2.87 | | ns | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | t _{OUTCO} | 2.00 | 5.51 | 2.00 | 6.06 | 2.00 | 6.61 | ns | | | t _{INSUPLL} | 1.86 | | 1.96 | | - | | ns | | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | | toutcople | 0.50 | 2.62 | 0.50 | 2.91 | - | - | ns | | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | d Grade | Unit | | |---------------------------|----------------|------|---------|---------|---------|---------|------|--| | | Min | Max | Min | Max | Min | Max | 1 | | | t _{INSUBIDIR} | 0.64 | | 0.98 | | 1.08 | | ns | | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | | toutcobidir | 2.00 | 5.51 | 2.00 | 6.06 | 2.00 | 6.61 | ns | | | t _{XZBIDIR} | | 6.10 | | 6.74 | | 7.10 | ns | | | t _{ZXBIDIR} | | 6.10 | | 6.74 | | 7.10 | ns | | | t _{INSUBIDIRPLL} | 2.26 | | 2.68 | | - | | ns | | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | | toutcobidirpll | 0.50 | 2.62 | 0.50 | 2.91 | - | - | ns | | | ^t xzbidirpll | | 3.21 | | 3.59 | | - | ns | | | tzxbidirpll | | 3.21 | | 3.59 | | - | ns | |