

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1664
Number of Logic Elements/Cells	16640
Total RAM Bits	212992
Number of I/O	488
Number of Gates	1052000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k400efc672-2xb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Flexible clock management circuitry with up to four phase-locked loops (PLLs)
 - Built-in low-skew clock tree
 - Up to eight global clock signals
 - ClockLock[®] feature reducing clock delay and skew
 - ClockBoost[®] feature providing clock multiplication and division
 - ClockShift™ programmable clock phase and delay shifting

Powerful I/O features

- Compliant with peripheral component interconnect Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V operation at 33 or 66 MHz and 32 or 64 bits
- Support for high-speed external memories, including DDR SDRAM and ZBT SRAM (ZBT is a trademark of Integrated Device Technology, Inc.)
- Bidirectional I/O performance ($t_{CO} + t_{SU}$) up to 250 MHz
- LVDS performance up to 840 Mbits per channel
- Direct connection from I/O pins to local interconnect providing fast t_{CO} and t_{SU} times for complex logic
- MultiVolt I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
- Programmable clamp to V_{CCIO}
- Individual tri-state output enable control for each pin
- Programmable output slew-rate control to reduce switching noise
- Support for advanced I/O standards, including low-voltage differential signaling (LVDS), LVPECL, PCI-X, AGP, CTT, stubseries terminated logic (SSTL-3 and SSTL-2), Gunning transceiver logic plus (GTL+), and high-speed terminated logic (HSTL Class I)
- Pull-up on I/O pins before and during configuration

Advanced interconnect structure

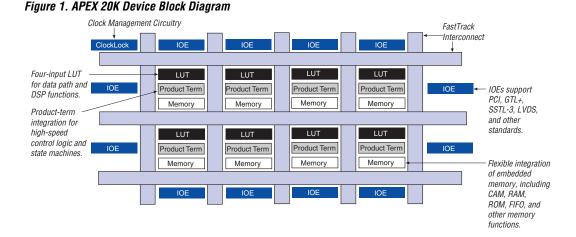
- Four-level hierarchical FastTrack[®] Interconnect structure providing fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect

Advanced packaging options

- Available in a variety of packages with 144 to 1,020 pins (see Tables 4 through 7)
- FineLine BGA® packages maximize board space efficiency

Advanced software support

 Software design support and automatic place-and-route provided by the Altera® Quartus® II development system for


Feature	APEX 20K Devices	APEX 20KE Devices
MultiCore system integration	Full support	Full support
SignalTap logic analysis	Full support	Full support
32/64-Bit, 33-MHz PCI	Full compliance in -1, -2 speed grades	Full compliance in -1, -2 speed grades
32/64-Bit, 66-MHz PCI	-	Full compliance in -1 speed grade
MultiVolt I/O	2.5-V or 3.3-V V _{CCIO} V _{CCIO} selected for device Certain devices are 5.0-V tolerant	1.8-V, 2.5-V, or 3.3-V V _{CCIO} V _{CCIO} selected block-by-block 5.0-V tolerant with use of external resistor
ClockLock support	Clock delay reduction 2× and 4× clock multiplication	Clock delay reduction $m/(n \times v)$ or $m/(n \times k)$ clock multiplication Drive ClockLock output off-chip External clock feedback ClockShift LVDS support Up to four PLLs ClockShift, clock phase adjustment
Dedicated clock and input pins	Six	Eight
I/O standard support	2.5-V, 3.3-V, 5.0-V I/O 3.3-V PCI Low-voltage complementary metal-oxide semiconductor (LVCMOS) Low-voltage transistor-to-transistor logic (LVTTL)	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O 2.5-V I/O 3.3-V PCI and PCI-X 3.3-V Advanced Graphics Port (AGP) Center tap terminated (CTT) GTL+ LVCMOS LVTTL True-LVDS and LVPECL data pins (in EP20K300E and larger devices) LVDS and LVPECL signaling (in all BGA and FineLine BGA devices) LVDS and LVPECL data pins up to 156 Mbps (in -1 speed grade devices) HSTL Class I PCI-X SSTL-2 Class I and II SSTL-3 Class I and II
Memory support	Dual-port RAM FIFO RAM ROM	CAM Dual-port RAM FIFO RAM ROM

Functional Description

APEX 20K devices incorporate LUT-based logic, product-term-based logic, and memory into one device. Signal interconnections within APEX 20K devices (as well as to and from device pins) are provided by the FastTrack[®] Interconnect—a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect. Each IOE contains a bidirectional I/O buffer and a register that can be used as either an input or output register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI compliance; JTAG BST support; slew-rate control; and tri-state buffers. APEX 20KE devices offer enhanced I/O support, including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V AGP I/O standards.

The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs ensures that the APEX 20K device can implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. The abundance of ESBs ensures that designers can create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20K device.

Altera Corporation 9

Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other.

Row Interconnect

MegaLAB Interconnect

Column Interconnect

Interconnect

Figure 11. Driving the FastTrack Interconnect

APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect.

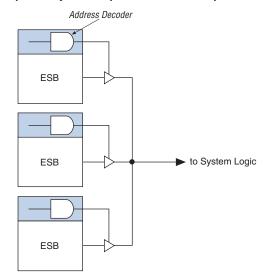


Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

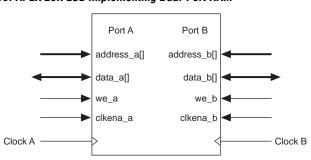


Figure 19. APEX 20K ESB Implementing Dual-Port RAM

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

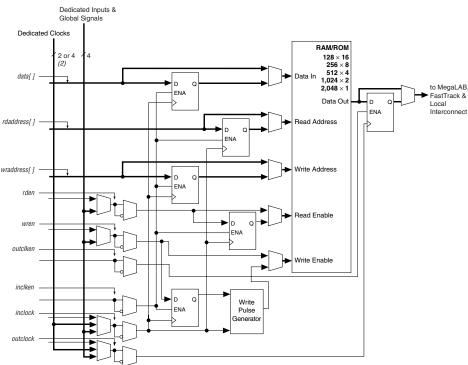
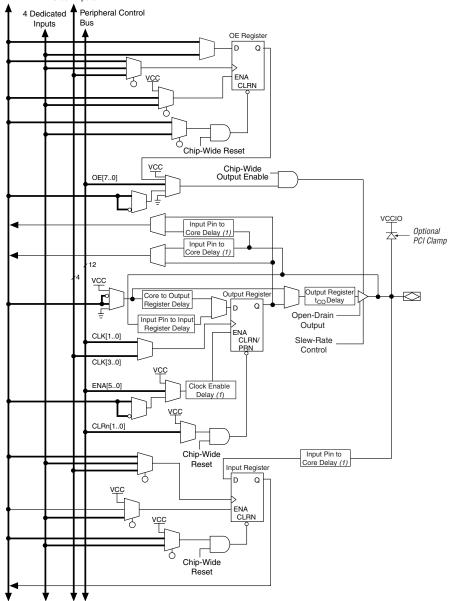


Figure 21. ESB in Input/Output Clock Mode Note (1)

Notes to Figure 21:


- (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.
- (2) APEX 20KE devices have four dedicated clocks.

Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Figure 26. APEX 20KE Bidirectional I/O Registers Notes (1), (2)

Row, Column, FastRow, 4 Dedicated or Local Interconnect Clock Inputs

Notes to Figure 26:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used.

Table 14. Multiplication Factor Combinations				
Clock 1	Clock 2			
×1	×1			
×1,×2	×2			
×1, ×2, ×4	×4			

APEX 20KE ClockLock Feature

APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KE PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM.

Clock Multiplication

The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$, where m and k range from 2 to 160, and n and v range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2)							
Symbol	Parameter	Min	Max	Unit			
t _{SKEW}	Skew delay between related ClockLock/ClockBoost-generated clocks		500	ps			
t _{JITTER}	Jitter on ClockLock/ClockBoost-generated clock (5)		200	ps			
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps			

Notes to Table 15:

- (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz.
- (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time.
- (4) The jitter specification is measured under long-term observation.
- (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps.

Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices.

Symbol	Parameter	Min	Max	Unit	
f _{OUT}	Output frequency	25	170	MHz	
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	170	MHz	
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	80	MHz	
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	34	MHz	
t _{OUTDUTY}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%	
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1)		25,000 (2)	PPM	
t _R	Input rise time		5	ns	
t _F	Input fall time		5	ns	
t _{LOCK}	Time required for ClockLock/ ClockBoost to acquire lock (3)		10	μѕ	
t _{SKEW}	Skew delay between related ClockLock/ ClockBoost-generated clock	500	500	ps	
t _{JITTER}	Jitter on ClockLock/ ClockBoost-generated clock (4)		200	ps	
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps	

Notes to Table 16:

- (1) To implement the ClockLock and ClockBoost circuitry with the Quartus II software, designers must specify the input frequency. The Quartus II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{IITTER} specification is measured under long-term observation.

Tables 17 and 18 summarize the ClockLock and ClockBoost parameters for APEX 20KE devices.

Table 17. APEX 20KE ClockLock & ClockBoost Parameters Note (1)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
t _R	Input rise time				5	ns		
t _F	Input fall time				5	ns		
t _{INDUTY}	Input duty cycle		40		60	%		
t _{INJITTER}	Input jitter peak-to-peak				2% of input period	peak-to- peak		
t _{OUTJITTER}	Jitter on ClockLock or ClockBoost- generated clock				0.35% of output period	RMS		
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		45		55	%		
t _{LOCK} (2), (3)	Time required for ClockLock or ClockBoost to acquire lock				40	μs		

Table 18.	Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1)									
Symbol	Parameter	I/O Standard	-1X Spe	ed Grade	-2X Speed Grade		Units			
			Min	Max	Min	Max				
f _{IN}	Input clock frequency	3.3-V LVTTL	1.5	290	1.5	257	MHz			
		2.5-V LVTTL	1.5	281	1.5	250	MHz			
		1.8-V LVTTL	1.5	272	1.5	243	MHz			
		GTL+	1.5	303	1.5	261	MHz			
		SSTL-2 Class	1.5	291	1.5	253	MHz			
		SSTL-2 Class	1.5	291	1.5	253	MHz			
		SSTL-3 Class	1.5	300	1.5	260	MHz			
		SSTL-3 Class	1.5	300	1.5	260	MHz			
		LVDS	1.5	420	1.5	350	MHz			

Notes to Tables 17 and 18:

- All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications
 are not met, creating an erroneous clock within the device.
- (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz δ f_{VCO} δ 840 MHz for LVDS mode.

SignalTap Embedded Logic Analyzer

APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured.

The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices.

Table 20. APEX 20K Boundary-Scan Register Length						
Device	Boundary-Scan Register Length					
EP20K30E	420					
EP20K60E	624					
EP20K100	786					
EP20K100E	774					
EP20K160E	984					
EP20K200	1,176					
EP20K200E	1,164					
EP20K300E	1,266					
EP20K400	1,536					
EP20K400E	1,506					
EP20K600E	1,806					
EP20K1000E	2,190					
EP20K1500E	1 (1)					

Note to Table 20:

(1) This device does not support JTAG boundary scan testing.

Symbol	-1		-	-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{CH}	0.55		0.78		1.15		ns
t _{CL}	0.55		0.78		1.15		ns
t _{CLRP}	0.22		0.31		0.46		ns
t _{PREP}	0.22		0.31		0.46		ns
t _{ESBCH}	0.55		0.78		1.15		ns
t _{ESBCL}	0.55		0.78		1.15		ns
t _{ESBWP}	1.43		2.01		2.97		ns
t _{ESBRP}	1.15		1.62		2.39		ns

Symbol	-1		-	-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.02		2.13		2.24		ns
t _{INH}	0.00		0.00		0.00		ns
t _{outco}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{INSUPLL}	2.11		2.23		=		ns
t _{INHPLL}	0.00		0.00		=		ns
t _{OUTCOPLL}	0.50	2.60	0.50	2.88	-	-	ns

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	1.85		1.77		1.54		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{XZBIDIR}		7.48		8.46		9.83	ns
t _{ZXBIDIR}		7.48		8.46		9.83	ns
t _{INSUBIDIRPLL}	4.12		4.24		=		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
t _{OUTCOBIDIRPLL}	0.50	2.60	0.50	2.88	-	-	ns
t _{XZBIDIRPLL}		5.21		5.99		-	ns
t _{ZXBIDIRPLL}		5.21		5.99		-	ns

Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices.

Table 55. EP20K60E f _{MAX} LE Timing Microparameters									
Symbol	-1		,	-2	-3		Unit		
	Min	Max	Min	Max	Min	Max			
t _{SU}	0.17		0.15		0.16		ns		
t _H	0.32		0.33		0.39		ns		
t _{CO}		0.29		0.40		0.60	ns		
t _{LUT}		0.77		1.07		1.59	ns		

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	1
t _{INSUBIDIR}	2.86		3.24		3.54		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	5.07	2.00	5.59	2.00	6.13	ns
t _{XZBIDIR}		7.43		8.23		8.58	ns
t _{ZXBIDIR}		7.43		8.23		8.58	ns
t _{INSUBIDIRPLL}	4.93		5.48		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
toutcobidirpll	0.50	3.00	0.50	3.35	-	-	ns
t _{XZBIDIRPLL}		5.36		5.99		-	ns
t _{ZXBIDIRPLL}		5.36		5.99		-	ns

Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

Table 73. EP20K200E f _{MAX} LE Timing Microparameters							
Symbol	-1		-2		-3	Unit	
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.23		0.24		0.26		ns
t _H	0.23		0.24		0.26		ns
t _{CO}		0.26		0.31		0.36	ns
t _{LUT}		0.70		0.90		1.14	ns

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	1
t _{INSUBIDIR}	3.22		3.33		3.51		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
toutcobidir	2.00	5.75	2.00	6.33	2.00	6.90	ns
t _{XZBIDIR}		6.31		7.09		7.76	ns
tzxbidir		6.31		7.09		7.76	ns
t _{INSUBIDIRPL} L	3.25		3.26				ns
t _{INHBIDIRPLL}	0.00		0.00				ns
toutcobidirpll	0.50	2.25	0.50	2.99			ns
txzbidirpll		2.81		3.80			ns
t _{ZXBIDIRPLL}		2.81		3.80			ns

Tables 103 through 108 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1500E APEX 20KE devices.

Table 103. EP20K1500E f _{MAX} LE Timing Microparameters							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.25		0.25		0.25		ns
t _H	0.25		0.25		0.25		ns
t _{CO}		0.28		0.32		0.33	ns
t _{LUT}		0.80		0.95		1.13	ns

Symbol	-1 Speed Grade		-2 Speed	-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.28		1.51		1.65		ns
t _{ESBRP}	1.11		1.29		1.41		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	1
t _{INSU}	3.09		3.30		3.58		ns
t _{INH}	0.00		0.00		0.00		ns
t _{OUTCO}	2.00	6.18	2.00	6.81	2.00	7.36	ns
t _{INSUPLL}	1.94		2.08		-		ns
t _{INHPLL}	0.00		0.00		-		ns
toutcople	0.50	2.67	0.50	2.99	-	-	ns

Table 110. Selectable I/O Standard Output Delays								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Min	
LVCMOS		0.00		0.00		0.00	ns	
LVTTL		0.00		0.00		0.00	ns	
2.5 V		0.00		0.09		0.10	ns	
1.8 V		2.49		2.98		3.03	ns	
PCI		-0.03		0.17		0.16	ns	
GTL+		0.75		0.75		0.76	ns	
SSTL-3 Class I		1.39		1.51		1.50	ns	
SSTL-3 Class II		1.11		1.23		1.23	ns	
SSTL-2 Class I		1.35		1.48		1.47	ns	
SSTL-2 Class II		1.00		1.12		1.12	ns	
LVDS		-0.48		-0.48		-0.48	ns	
CTT		0.00		0.00		0.00	ns	
AGP		0.00		0.00		0.00	ns	

Power Consumption

To estimate device power consumption, use the interactive power calculator on the Altera web site at http://www.altera.com.

Configuration & Operation

The APEX 20K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

Before and during device configuration, all I/O pins are pulled to $V_{\mbox{\scriptsize CCIO}}$ by a built-in weak pull-up resistor.

SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up.

Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 111. Data Sources for Configuration					
Configuration Scheme	Data Source				
Configuration device	EPC1, EPC2, EPC16 configuration devices				
Passive serial (PS)	MasterBlaster or ByteBlasterMV download cable or serial data source				
Passive parallel asynchronous (PPA)	Parallel data source				
Passive parallel synchronous (PPS)	Parallel data source				
JTAG	MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File				

For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information

Version 4.1

APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes:

- t_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104.
- Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.