

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1664
Number of Logic Elements/Cells	16640
Total RAM Bits	212992
Number of I/O	488
Number of Gates	1052000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k400efc672-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5. APEX 20K F	ineLine BGA Pack	age Options & I/C	O Count Note	s (1), (2)	
Device	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin
EP20K30E	93	128			
EP20K60E	93	196			
EP20K100		252			
EP20K100E	93	246			
EP20K160E			316		
EP20K200			382		
EP20K200E			376	376	
EP20K300E				408	
EP20K400				502 <i>(3)</i>	
EP20K400E				488 (3)	
EP20K600E				508 (3)	588
EP20K1000E				508 (3)	708
EP20K1500E					808

Notes to Tables 4 and 5:

- (1) I/O counts include dedicated input and clock pins.
- (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages.
- (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information.

Table 6. APEX 20	Table 6. APEX 20K QFP, BGA & PGA Package Sizes										
Feature	144-Pin TQFP	208-Pin QFP	240-Pin QFP	356-Pin BGA	652-Pin BGA	655-Pin PGA					
Pitch (mm)	0.50	0.50	0.50	1.27	1.27	_					
Area (mm ²)	484	924	1,218	1,225	2,025	3,906					
$\begin{array}{c} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.4 × 30.4	34.9 × 34.9	35 × 35	45 × 45	62.5 × 62.5					

Table 7. APEX 20K FineLin	Table 7. APEX 20K FineLine BGA Package Sizes							
Feature	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin			
Pitch (mm)	1.00	1.00	1.00	1.00	1.00			
Area (mm ²)	169	361	529	729	1,089			
$Length \times Width (mm \times mm)$	13 × 13	19×19	23 × 23	27 × 27	33 × 33			

Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs.

If both the rising and falling edges of a clock are used in a LAB, both LAB-wide clock signals are used.

The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

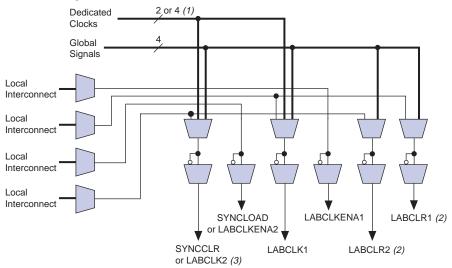
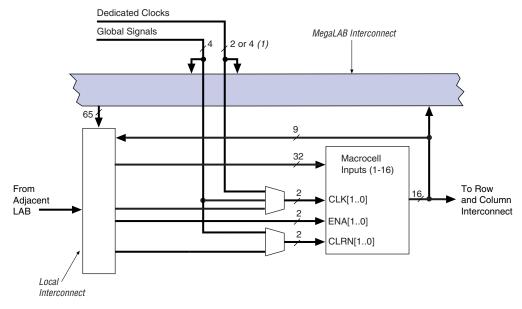



Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- (1) APEX 20KE devices have four dedicated clocks.
- (2) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB.
- (3) The SYNCCLR signal can be generated by the local interconnect or global signals.

Figure 13. Product-Term Logic in ESB

Note to Figure 13:

(1) APEX 20KE devices have four dedicated clocks.

Macrocells

APEX 20K macrocells can be configured individually for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register.

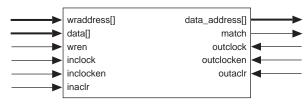
Combinatorial logic is implemented in the product terms. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as parallel expanders to be used to increase the logic available to another macrocell. One product term can be inverted; the Quartus II software uses this feature to perform DeMorgan's inversion for more efficient implementation of wide OR functions. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Figure 14 shows the APEX 20K macrocell.

The programmable register also supports an asynchronous clear function. Within the ESB, two asynchronous clears are generated from global signals and the local interconnect. Each macrocell can either choose between the two asynchronous clear signals or choose to not be cleared. Either of the two clear signals can be inverted within the ESB. Figure 15 shows the ESB control logic when implementing product-terms.

Dedicated Clocks Global Signals Local Interconnect Local Interconnect Local Interconnect Local Interconnect CLR1 CLKENA2 CLK1 CLKENA1 CLR₂

Figure 15. ESB Product-Term Mode Control Logic

Note to Figure 15:


(1) APEX 20KE devices have four dedicated clocks.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 32 product terms to feed the macrocell OR logic directly, with two product terms provided by the macrocell and 30 parallel expanders provided by the neighboring macrocells in the ESB.

The Quartus II software Compiler can allocate up to 15 sets of up to two parallel expanders per set to the macrocells automatically. Each set of two parallel expanders incurs a small, incremental timing delay. Figure 16 shows the APEX 20K parallel expanders.

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.

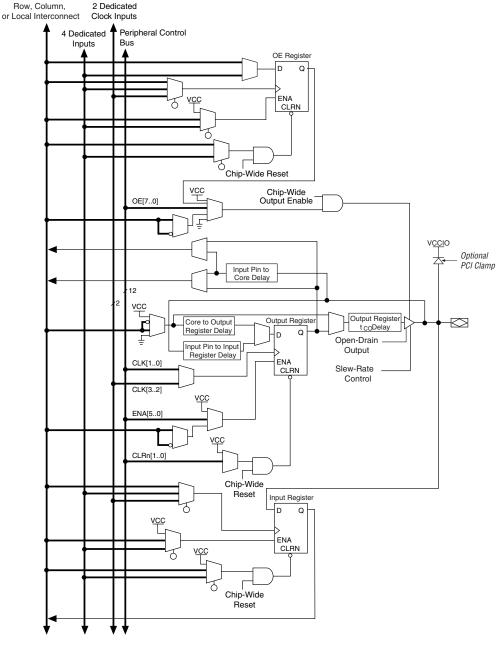


Figure 25. APEX 20K Bidirectional I/O Registers Note (1)

Note to Figure 25:

(1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Advanced I/O Standard Support

APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II.

For more information on I/O standards supported by APEX 20KE devices, see *Application Note 117 (Using Selectable I/O Standards in Altera Devices)*.

The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support.

Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks.

Symbol	Parameter	I/O Standard	-1X Spe	ed Grade	-2X Spee	d Grade	Units
			Min	Max	Min	Max	
f _{VCO} (4)	Voltage controlled oscillator operating range		200	500	200	500	MHz
f _{CLOCK0}	Clock0 PLL output frequency for internal use		1.5	335	1.5	200	MHz
f _{CLOCK1}	Clock1 PLL output frequency for internal use		20	335	20	200	MHz
f _{CLOCK0_EXT}	Output clock frequency for	3.3-V LVTTL	1.5	245	1.5	226	MHz
	external clock0 output	2.5-V LVTTL	1.5	234	1.5	221	MHz
		1.8-V LVTTL	1.5	223	1.5	216	MHz
		GTL+	1.5	205	1.5	193	MHz
		SSTL-2 Class	1.5	158	1.5	157	MHz
		SSTL-2 Class	1.5	142	1.5	142	MHz
		SSTL-3 Class	1.5	166	1.5	162	MHz
		SSTL-3 Class	1.5	149	1.5	146	MHz
		LVDS	1.5	420	1.5	350	MHz
f _{CLOCK1_EXT}	Output clock frequency for	3.3-V LVTTL	20	245	20	226	MHz
	external clock1 output	2.5-V LVTTL	20	234	20	221	MHz
		1.8-V LVTTL	20	223	20	216	MHz
		GTL+	20	205	20	193	MHz
		SSTL-2 Class I	20	158	20	157	MHz
		SSTL-2 Class	20	142	20	142	MHz
		SSTL-3 Class	20	166	20	162	MHz
		SSTL-3 Class	20	149	20	146	MHz
		LVDS	20	420	20	350	MHz

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level LVTTL, CMOS, or 3.3-V PCI input voltage		1.7, 0.5 × V _{CCIO} (10)		4.1	V
V _{IL}	Low-level LVTTL, CMOS, or 3.3-V PCI input voltage		-0.5		0.8, 0.3 × V _{CCIO} (10)	V
V _{OH}	3.3-V high-level LVTTL output voltage	I _{OH} = -12 mA DC, V _{CCIO} = 3.00 V (11)	2.4			V
	3.3-V high-level LVCMOS output voltage	$I_{OH} = -0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V } (11)$	V _{CCIO} - 0.2			V
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (11)	0.9 × V _{CCIO}			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V (11)	2.1			V
		$I_{OH} = -1 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V } (11)$	2.0			V
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V } (11)$	1.7			V
V _{OL}	3.3-V low-level LVTTL output voltage	I_{OL} = 12 mA DC, V_{CCIO} = 3.00 V (12)			0.4	V
	3.3-V low-level LVCMOS output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V } (12)$			0.2	V
	3.3-V low-level PCI output voltage	$I_{OL} = 1.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (12)			0.1 × V _{CCIO}	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (12)			0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (12)			0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (12)			0.7	V
I _I	Input pin leakage current	V _I = 4.1 to -0.5 V (13)	-10		10	μΑ
I _{OZ}	Tri-stated I/O pin leakage current	$V_0 = 4.1 \text{ to } -0.5 \text{ V } (13)$	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	$V_{I} =$ ground, no load, no toggling inputs, -1 speed grade		10		mA
		V _I = ground, no load, no toggling inputs, -2, -3 speed grades		5		mA
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (14)	20		50	kΩ
	before and during configuration	V _{CCIO} = 2.375 V (14)	30		80	kΩ
		V _{CCIO} = 1.71 V (14)	60		150	kΩ

For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).*

Table 30.	APEX 20KE Device C	apacitance Note (15)			
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF

Notes to Tables 27 through 30:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10%

- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60.
- (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V.
- (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL.
- (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (13) This value is specified for normal device operation. The value may vary during power-up.
- (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (15) Capacitance is sample-tested only.

Figure 33 shows the relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance on APEX 20K devices.

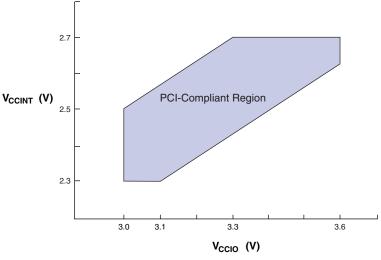


Figure 33. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance

Figure 34 shows the typical output drive characteristics of APEX 20K devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compatible with the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). 5-V tolerant APEX 20K devices in the -1 speed grade are 5-V PCI compliant over all operating conditions.

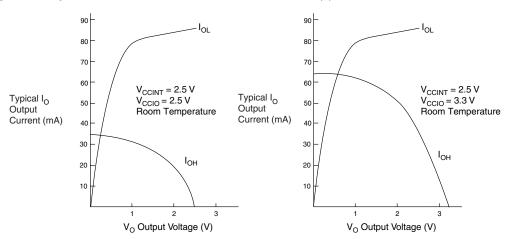


Figure 34. Output Drive Characteristics of APEX 20K Device Note (1)

Note to Figure 34:

(1) These are transient (AC) currents.

Table 43. EP20K100 External Timing Parameters								
Symbol	-1 Spe	ed Grade	-2 Spe	ed Grade	-3 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSU} (1)	2.3		2.8		3.2		ns	
t _{INH} (1)	0.0		0.0		0.0		ns	
t _{OUTCO} (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns	
t _{INSU} (2)	1.1		1.2		-		ns	
t _{INH} (2)	0.0		0.0		-		ns	
t _{OUTCO} (2)	0.5	2.7	0.5	3.1	_	4.8	ns	

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	2.3		2.8		3.2		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
toutcobidir (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns
t _{INSUBIDIR} (2)	1.0		1.2		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
toutcobidir (2)	0.5	2.7	0.5	3.1	-	-	ns
t _{XZBIDIR} (2)		4.3		5.0		_	ns
t _{ZXBIDIR} (2)		4.3		5.0		_	ns

Table 45. EP20K200 External Timing Parameters								
Symbol	-1 Spec	ed Grade	-2 Spe	ed Grade	-3 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSU} (1)	1.9		2.3		2.6		ns	
t _{INH} (1)	0.0		0.0		0.0		ns	
t _{OUTCO} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns	
t _{INSU} (2)	1.1		1.2		-		ns	
t _{INH} (2)	0.0		0.0		-		ns	
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	-	_	ns	

Symbol	-	1	-	2	-3	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	0.55		0.78		1.15		ns
t _{CL}	0.55		0.78		1.15		ns
t _{CLRP}	0.22		0.31		0.46		ns
t _{PREP}	0.22		0.31		0.46		ns
t _{ESBCH}	0.55		0.78		1.15		ns
t _{ESBCL}	0.55		0.78		1.15		ns
t _{ESBWP}	1.43		2.01		2.97		ns
t _{ESBRP}	1.15		1.62		2.39		ns

Symbol		1	-	-2	-3	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.02		2.13		2.24		ns
t _{INH}	0.00		0.00		0.00		ns
t _{outco}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{INSUPLL}	2.11		2.23		=		ns
t _{INHPLL}	0.00		0.00		=		ns
t _{OUTCOPLL}	0.50	2.60	0.50	2.88	-	-	ns

Symbol	-1		-	2	-	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	1.85		1.77		1.54		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
toutcobidir	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{XZBIDIR}		7.48		8.46		9.83	ns
t _{ZXBIDIR}		7.48		8.46		9.83	ns
t _{INSUBIDIRPLL}	4.12		4.24		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
t _{OUTCOBIDIRPLL}	0.50	2.60	0.50	2.88	-	-	ns
t _{XZBIDIRPLL}		5.21		5.99		-	ns
tzxbidirpll		5.21		5.99		-	ns

Table 57. EP2	OK60E f _{MAX} R	outing Delays					
Symbol	-	1		-2		3	Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.24		0.26		0.30	ns
t _{F5-20}		1.45		1.58		1.79	ns
t _{F20+}		1.96		2.14		2.45	ns

Symbol	-1		-	-2		-3		
	Min	Max	Min	Max	Min	Max		
t _{CH}	2.00		2.50		2.75		ns	
t _{CL}	2.00		2.50		2.75		ns	
t _{CLRP}	0.20		0.28		0.41		ns	
t _{PREP}	0.20		0.28		0.41		ns	
t _{ESBCH}	2.00		2.50		2.75		ns	
t _{ESBCL}	2.00		2.50		2.75		ns	
t _{ESBWP}	1.29		1.80		2.66		ns	
t _{ESBRP}	1.04		1.45		2.14		ns	

Symbol	-	-1		-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.03		2.12		2.23		ns
t _{INH}	0.00		0.00		0.00		ns
t _{OUTCO}	2.00	4.84	2.00	5.31	2.00	5.81	ns
t _{INSUPLL}	1.12		1.15		-		ns
t _{INHPLL}	0.00		0.00		-		ns
toutcople	0.50	3.37	0.50	3.69	-	-	ns

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.77		2.91		3.11		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
toutcobidir	2.00	4.84	2.00	5.31	2.00	5.81	ns
t _{XZBIDIR}		6.47		7.44		8.65	ns
t _{ZXBIDIR}		6.47		7.44		8.65	ns
t _{INSUBIDIRPLL}	3.44		3.24		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
t _{OUTCOBIDIRPLL}	0.50	3.37	0.50	3.69	-	-	ns
txzbidirpll		5.00		5.82		-	ns
t _{ZXBIDIRPLL}		5.00		5.82		-	ns

Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices.

Table 61. EP2	OK100E f _{MAX}	LE Timing Mic	croparameters	3			
Symbol	ymbol -1		I -2		-2 -3		Unit
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.25		0.25		0.25		ns
t _H	0.25		0.25		0.25		ns
t _{CO}		0.28		0.28		0.34	ns
t _{LUT}		0.80		0.95		1.13	ns

Symbol	-	1	-	2	-;	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.65		2.02		2.11	ns
t _{ESBSRC}		2.21		2.70		3.11	ns
t _{ESBAWC}		3.04		3.79		4.42	ns
t _{ESBSWC}		2.81		3.56		4.10	ns
t _{ESBWASU}	0.54		0.66		0.73		ns
t _{ESBWAH}	0.36		0.45		0.47		ns
t _{ESBWDSU}	0.68		0.81		0.94		ns
t _{ESBWDH}	0.36		0.45		0.47		ns
t _{ESBRASU}	1.58		1.87		2.06		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.41		1.71		2.00		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.02		-0.03		0.09		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.14		0.17		0.35		ns
t _{ESBRADDRSU}	0.21		0.27		0.43		ns
t _{ESBDATACO1}		1.04		1.30		1.46	ns
t _{ESBDATACO2}		2.15		2.70		3.16	ns
t _{ESBDD}		2.69		3.35		3.97	ns
t _{PD}		1.55		1.93	_	2.29	ns
t _{PTERMSU}	1.01		1.23		1.52		ns
t _{PTERMCO}		1.06		1.32		1.04	ns

Table 69. EP2	Table 69. EP20K160E f _{MAX} Routing Delays											
Symbol	-	1		-2	-;	3	Unit					
	Min	Max	Min	Max	Min	Max						
t _{F1-4}		0.25		0.26		0.28	ns					
t _{F5-20}		1.00		1.18		1.35	ns					
t _{F20+}		1.95		2.19		2.30	ns					

Symbol	-1		-2		-3	Unit	
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.34		1.43		1.55		ns
t _{CL}	1.34		1.43		1.55		ns
t _{CLRP}	0.18		0.19		0.21		ns
t _{PREP}	0.18		0.19		0.21		ns
t _{ESBCH}	1.34		1.43		1.55		ns
t _{ESBCL}	1.34		1.43		1.55		ns
t _{ESBWP}	1.15		1.45		1.73		ns
t _{ESBRP}	0.93		1.15		1.38		ns

Symbol	-1		-	-2		3	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.23		2.34		2.47		ns
t _{INH}	0.00		0.00		0.00		ns
t _{OUTCO}	2.00	5.07	2.00	5.59	2.00	6.13	ns
t _{INSUPLL}	2.12		2.07		=		ns
t _{INHPLL}	0.00		0.00		=		ns
toutcople	0.50	3.00	0.50	3.35	=	-	ns

Table 99. EP2	OK1000E f _{MAX}	Routing Dela	ys				
Symbol	-1 Spee	d Grade	-2 Spec	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.27		0.27		0.27	ns
t _{F5-20}		1.45		1.63		1.75	ns
t _{F20+}		4.15		4.33		4.97	ns

Table 100. EP	20K1000E Mii	nimum Pulse	Width Timing	Parameters				
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{CH}	1.25		1.43		1.67		ns	
t _{CL}	1.25		1.43		1.67		ns	
t _{CLRP}	0.20		0.20		0.20		ns	
t _{PREP}	0.20		0.20		0.20		ns	
t _{ESBCH}	1.25		1.43		1.67		ns	
t _{ESBCL}	1.25		1.43		1.67		ns	
t _{ESBWP}	1.28		1.51		1.65		ns	
t _{ESBRP}	1.11		1.29		1.41		ns	

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.70		2.84		2.97		ns
t _{INH}	0.00		0.00		0.00		ns
t _{OUTCO}	2.00	5.75	2.00	6.33	2.00	6.90	ns
t _{INSUPLL}	1.64		2.09		=		ns
t _{INHPLL}	0.00		0.00		=		ns
toutcople	0.50	2.25	0.50	2.99	-	-	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	3.47		3.68		3.99		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
toutcobidir	2.00	6.18	2.00	6.81	2.00	7.36	ns
t _{XZBIDIR}		6.91		7.62		8.38	ns
t _{ZXBIDIR}		6.91		7.62		8.38	ns
t _{INSUBIDIRPLL}	3.05		3.26				ns
t _{INHBIDIRPLL}	0.00		0.00				ns
toutcobidirpll	0.50	2.67	0.50	2.99			ns
t _{XZBIDIRPLL}		3.41		3.80			ns
tzxbidirpll		3.41		3.80			ns

Tables 109 and 110 show selectable I/O standard input and output delays for APEX 20KE devices. If you select an I/O standard input or output delay other than LVCMOS, add or subtract the selected speed grade to or from the LVCMOS value.

Table 109. Selectable I/O Standard Input Delays								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Min	
LVCMOS		0.00		0.00		0.00	ns	
LVTTL		0.00		0.00		0.00	ns	
2.5 V		0.00		0.04		0.05	ns	
1.8 V		-0.11		0.03		0.04	ns	
PCI		0.01		0.09		0.10	ns	
GTL+		-0.24		-0.23		-0.19	ns	
SSTL-3 Class I		-0.32		-0.21		-0.47	ns	
SSTL-3 Class II		-0.08		0.03		-0.23	ns	
SSTL-2 Class I		-0.17		-0.06		-0.32	ns	
SSTL-2 Class II		-0.16		-0.05		-0.31	ns	
LVDS		-0.12		-0.12		-0.12	ns	
CTT		0.00		0.00		0.00	ns	
AGP		0.00		0.00		0.00	ns	

Version 4.1

APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes:

- t_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104.
- Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.