Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 1664 | | Number of Logic Elements/Cells | 16640 | | Total RAM Bits | 212992 | | Number of I/O | 488 | | Number of Gates | 1052000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 672-BBGA | | Supplier Device Package | 672-FBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k400efi672-1x | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### Normal Mode The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II software Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers. #### Arithmetic Mode The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used. #### Counter Mode The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs. Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other. Row Interconnect MegaLAB Interconnect Column Interconnect Interconnect Figure 11. Driving the FastTrack Interconnect APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect. # Input/Output Clock Mode The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode. Figure 21. ESB in Input/Output Clock Mode Note (1) Notes to Figure 21: - (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. - (2) APEX 20KE devices have four dedicated clocks. # Single-Port Mode The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22. For more information on APEX 20KE devices and CAM, see *Application Note 119 (Implementing High-Speed Search Applications with APEX CAM).* # **Driving Signals to the ESB** ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic. Figure 24. ESB Control Signal Generation Note to Figure 24: (1) APEX 20KE devices have four dedicated clocks. An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device. # Implementing Logic in ROM In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate. # **Programmable Speed/Power Control** APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo BitTM option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current. Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power. # I/O Structure The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently. The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Figure 26. APEX 20KE Bidirectional I/O Registers Notes (1), (2) Row, Column, FastRow, 4 Dedicated or Local Interconnect Clock Inputs Notes to Figure 26: - (1) This programmable delay has four settings: off and three levels of delay. - (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect. Figure 27. Row IOE Connection to the Interconnect APEX 20KE devices also support the MultiVolt I/O interface feature. The APEX 20KE VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KE device is 5.0-V tolerant with the addition of a resistor. Table 13 summarizes APEX 20KE MultiVolt I/O support. | Table 13. A | Table 13. APEX 20KE MultiVolt I/O Support Note (1) | | | | | | | | | | |-----------------------|--|-----------|-----------|-----|-----|----------|--------------|-----|--|--| | V _{CCIO} (V) | | Input Sig | ınals (V) | | | Output S | ignals (V) | | | | | | 1.8 | 2.5 | 3.3 | 5.0 | 1.8 | 2.5 | 3.3 | 5.0 | | | | 1.8 | ✓ | ✓ | ✓ | | ✓ | | | | | | | 2.5 | ✓ | ✓ | ✓ | | | ✓ | | | | | | 3.3 | ✓ | ✓ | \ | (2) | | | √ (3) | | | | #### Notes to Table 13: - The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case. - (2) An APEX 20KE device can be made 5.0-V tolerant with the addition of an external resistor. You also need a PCI clamp and series resistor. - (3) When $V_{CCIO} = 3.3 \text{ V}$, an APEX 20KE device can drive a 2.5-V device with 3.3-V tolerant inputs. # ClockLock & ClockBoost Features APEX 20K devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20K devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20K device's high-speed clock to provide significant improvements in system performance and band-width. Devices with an X-suffix on the ordering code include the ClockLock circuit. The ClockLock and ClockBoost features in APEX 20K devices are enabled through the Quartus II software. External devices are not required to use these features. | Symbol | Parameter | I/O Standard | -1X Speed Grade | | -2X Speed Grade | | Units | |-------------------------|---|-------------------|-----------------|-----|-----------------|-----|-------| | | | | Min | Max | Min | Max | | | f _{VCO} (4) | Voltage controlled oscillator operating range | | 200 | 500 | 200 | 500 | MHz | | f _{CLOCK0} | Clock0 PLL output frequency for internal use | | 1.5 | 335 | 1.5 | 200 | MHz | | f _{CLOCK1} | Clock1 PLL output frequency for internal use | | 20 | 335 | 20 | 200 | MHz | | f _{CLOCK0_EXT} | Output clock frequency for | 3.3-V LVTTL | 1.5 | 245 | 1.5 | 226 | MHz | | | external clock0 output | 2.5-V LVTTL | 1.5 | 234 | 1.5 | 221 | MHz | | | | 1.8-V LVTTL | 1.5 | 223 | 1.5 | 216 | MHz | | | | GTL+ | 1.5 | 205 | 1.5 | 193 | MHz | | | | SSTL-2 Class | 1.5 | 158 | 1.5 | 157 | MHz | | | | SSTL-2 Class | 1.5 | 142 | 1.5 | 142 | MHz | | | | SSTL-3 Class | 1.5 | 166 | 1.5 | 162 | MHz | | | | SSTL-3 Class | 1.5 | 149 | 1.5 | 146 | MHz | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | | f _{CLOCK1_EXT} | Output clock frequency for | 3.3-V LVTTL | 20 | 245 | 20 | 226 | MHz | | | external clock1 output | 2.5-V LVTTL | 20 | 234 | 20 | 221 | MHz | | | | 1.8-V LVTTL | 20 | 223 | 20 | 216 | MHz | | | | GTL+ | 20 | 205 | 20 | 193 | MHz | | | | SSTL-2 Class
I | 20 | 158 | 20 | 157 | MHz | | | | SSTL-2 Class | 20 | 142 | 20 | 142 | MHz | | | | SSTL-3 Class | 20 | 166 | 20 | 162 | MHz | | | | SSTL-3 Class | 20 | 149 | 20 | 146 | MHz | | | | LVDS | 20 | 420 | 20 | 350 | MHz | | | | Pevice Recommended Operating Conditio | 1 | ,
B# | | |--------------------|---|---------------------------------------|------------------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (4), (5) | 2.375
(2.375) | 2.625
(2.625) | ٧ | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (4), (5) | 3.00 (3.00) | 3.60 (3.60) | ٧ | | | Supply voltage for output buffers, 2.5-V operation | (4), (5) | 2.375
(2.375) | 2.625
(2.625) | V | | V _I | Input voltage | (3), (6) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _J | Junction temperature | For commercial use | 0 | 85 | °C | | | | For industrial use | -40 | 100 | °C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------|--------------------------------------|--|----------------------------------|-----|----------------------------------|------| | V _{IH} | High-level input voltage | | 1.7, 0.5 × V _{CCIO} (9) | | 5.75 | ٧ | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8, 0.3 × V _{CCIO} (9) | ٧ | | V _{OH} | 3.3-V high-level TTL output voltage | I _{OH} = -8 mA DC,
V _{CCIO} = 3.00 V (10) | 2.4 | | | ٧ | | | 3.3-V high-level CMOS output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 3.00 V (10) | V _{CCIO} - 0.2 | | | ٧ | | | 3.3-V high-level PCI output voltage | $I_{OH} = -0.5 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$
(10) | 0.9 × V _{CCIO} | | | V | | | 2.5-V high-level output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 2.30 V (10) | 2.1 | | | ٧ | | | | I _{OH} = -1 mA DC,
V _{CCIO} = 2.30 V (10) | 2.0 | | | ٧ | | | | I _{OH} = -2 mA DC,
V _{CCIO} = 2.30 V (10) | 1.7 | | | ٧ | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------|---|--|-----------------------------------|-----|-----------------------------------|------| | V _{IH} | High-level LVTTL, CMOS, or 3.3-V
PCI input voltage | | 1.7, 0.5 × V _{CCIO} (10) | | 4.1 | V | | V _{IL} | Low-level LVTTL, CMOS, or 3.3-V
PCI input voltage | | -0.5 | | 0.8, 0.3 × V _{CCIO} (10) | V | | V _{OH} | 3.3-V high-level LVTTL output voltage | I _{OH} = -12 mA DC,
V _{CCIO} = 3.00 V (11) | 2.4 | | | V | | | 3.3-V high-level LVCMOS output voltage | $I_{OH} = -0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (11)$ | V _{CCIO} - 0.2 | | | V | | | 3.3-V high-level PCI output voltage | $I_{OH} = -0.5 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$
(11) | 0.9 × V _{CCIO} | | | V | | | 2.5-V high-level output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 2.30 V (11) | 2.1 | | | V | | | | $I_{OH} = -1 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (11)$ | 2.0 | | | V | | | | $I_{OH} = -2 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (11)$ | 1.7 | | | V | | V _{OL} | 3.3-V low-level LVTTL output voltage | I_{OL} = 12 mA DC,
V_{CCIO} = 3.00 V (12) | | | 0.4 | V | | | 3.3-V low-level LVCMOS output voltage | $I_{OL} = 0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (12)$ | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | I_{OL} = 1.5 mA DC,
V_{CCIO} = 3.00 to 3.60 V
(12) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.2 | V | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.4 | V | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.7 | V | | I _I | Input pin leakage current | V _I = 4.1 to -0.5 V (13) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_0 = 4.1 \text{ to } -0.5 \text{ V } (13)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby)
(All ESBs in power-down mode) | $V_{I} =$ ground, no load, no toggling inputs, -1 speed grade | | 10 | | mA | | | | V _I = ground, no load, no
toggling inputs,
-2, -3 speed grades | | 5 | | mA | | R _{CONF} | Value of I/O pin pull-up resistor | V _{CCIO} = 3.0 V (14) | 20 | | 50 | kΩ | | | before and during configuration | V _{CCIO} = 2.375 V (14) | 30 | | 80 | kΩ | | | | V _{CCIO} = 1.71 V (14) | 60 | | 150 | kΩ | All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum driver strength. Figure 36 shows the f_{MAX} timing model for APEX 20K devices. Figure 37 shows the f_{MAX} timing model for APEX 20KE devices. These parameters can be used to estimate f_{MAX} for multiple levels of logic. Quartus II software timing analysis should be used for more accurate timing information. Figure 37. APEX 20KE f_{MAX} Timing Model | Table 36. APEX 20KE Routing Timing Microparameters Note (1) | | | | | | | |---|--|--|--|--|--|--| | Symbol | Symbol Parameter | | | | | | | t _{F1-4} | Fanout delay using Local Interconnect | | | | | | | t _{F5-20} | Fanout delay estimate using MegaLab Interconnect | | | | | | | t _{F20+} | Fanout delay estimate using FastTrack Interconnect | | | | | | #### Note to Table 36: (1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. | Table 37. APEX 20KE Functional Timing Microparameters | | | | | | |---|--|--|--|--|--| | Symbol | Parameter | | | | | | TCH | Minimum clock high time from clock pin | | | | | | TCL | Minimum clock low time from clock pin | | | | | | TCLRP | LE clear Pulse Width | | | | | | TPREP | LE preset pulse width | | | | | | TESBCH | Clock high time for ESB | | | | | | TESBCL | Clock low time for ESB | | | | | | TESBWP | Write pulse width | | | | | | TESBRP | Read pulse width | | | | | Tables 38 and 39 describe the APEX 20KE external timing parameters. | Table 38. APEX 20KE External Timing Parameters Note (1) | | | | | | |---|--|------------|--|--|--| | Symbol | Clock Parameter | Conditions | | | | | t _{INSU} | Setup time with global clock at IOE input register | | | | | | t _{INH} | Hold time with global clock at IOE input register | | | | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE output register | C1 = 10 pF | | | | | t _{INSUPLL} | Setup time with PLL clock at IOE input register | | | | | | t _{INHPLL} | Hold time with PLL clock at IOE input register | | | | | | t _{OUTCOPLL} | Clock-to-output delay with PLL clock at IOE output register | C1 = 10 pF | | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |-----------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.1 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | t _{OUTCOBIDIR} (2) | 0.5 | 2.7 | 0.5 | 3.1 | - | _ | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 47. EP20K400 External Timing Parameters | | | | | | | | | |---|----------------|-----|----------------|-----|----------------|-----|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{OUTCO} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | | t _{INSU} (2) | 0.4 | | 1.0 | | - | | ns | | | t _{INH} (2) | 0.0 | | 0.0 | | _ | | ns | | | t _{OUTCO} (2) | 0.5 | 3.1 | 0.5 | 4.1 | _ | _ | ns | | | Table 48. EP20K400 External Bidirections | I Timina | Parameters 1 4 1 | |--|----------|------------------| |--|----------|------------------| | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spe | ed Grade | Unit | |-----------------------------|---------|---------|---------|---------|--------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | t _{XZBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{ZXBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{INSUBIDIR} (2) | 0.5 | | 1.0 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir (2) | 0.5 | 3.1 | 0.5 | 4.1 | - | - | ns | | t _{XZBIDIR} (2) | | 6.2 | | 7.6 | | - | ns | | t _{ZXBIDIR} (2) | | 6.2 | | 7.6 | | _ | ns | #### Notes to Tables 43 through 48: - (1) This parameter is measured without using ClockLock or ClockBoost circuits. - (2) This parameter is measured using ClockLock or ClockBoost circuits. Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices. | Table 49. EP20K30E f _{MAX} LE Timing Microparameters | | | | | | | | | | | |---|------|------|------|------|------|------|----|--|--|--| | Symbol | - | 1 | - | 2 | -; | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{SU} | 0.01 | | 0.02 | | 0.02 | | ns | | | | | t _H | 0.11 | | 0.16 | | 0.23 | | ns | | | | | t _{CO} | | 0.32 | | 0.45 | | 0.67 | ns | | | | | t _{LUT} | | 0.85 | | 1.20 | | 1.77 | ns | | | | | Symbol | - | 1 | | -2 | ; | 3 | Unit | |-------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.83 | | 2.57 | | 3.79 | ns | | t _{ESBSRC} | | 2.46 | | 3.26 | | 4.61 | ns | | t _{ESBAWC} | | 3.50 | | 4.90 | | 7.23 | ns | | t _{ESBSWC} | | 3.77 | | 4.90 | | 6.79 | ns | | t _{ESBWASU} | 1.59 | | 2.23 | | 3.29 | | ns | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWDSU} | 1.75 | | 2.46 | | 3.62 | | ns | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBRASU} | 1.76 | | 2.47 | | 3.64 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWESU} | 1.68 | | 2.49 | | 3.87 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.08 | | 0.43 | | 1.04 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.29 | | 0.72 | | 1.46 | | ns | | t _{ESBRADDRSU} | 0.36 | | 0.81 | | 1.58 | | ns | | t _{ESBDATACO1} | | 1.06 | | 1.24 | | 1.55 | ns | | t _{ESBDATACO2} | | 2.39 | | 3.35 | | 4.94 | ns | | t _{ESBDD} | | 3.50 | | 4.90 | | 7.23 | ns | | t _{PD} | | 1.72 | | 2.41 | | 3.56 | ns | | t _{PTERMSU} | 0.99 | | 1.56 | | 2.55 | | ns | | t _{PTERMCO} | | 1.07 | | 1.26 | | 1.08 | ns | | Symbol | - | -1 | | 2 | -3 | 3 | Unit | | |--------------------|------|-----|------|-----|------|-----|------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{CH} | 2.00 | | 2.00 | | 2.00 | | ns | | | t _{CL} | 2.00 | | 2.00 | | 2.00 | | ns | | | t _{CLRP} | 0.20 | | 0.20 | | 0.20 | | ns | | | t _{PREP} | 0.20 | | 0.20 | | 0.20 | | ns | | | t _{ESBCH} | 2.00 | | 2.00 | | 2.00 | | ns | | | t _{ESBCL} | 2.00 | | 2.00 | | 2.00 | | ns | | | t _{ESBWP} | 1.29 | | 1.53 | | 1.66 | | ns | | | t _{ESBRP} | 1.11 | | 1.29 | | 1.41 | | ns | | | Symbol | -1 | | - | -2 | -3 | } | Unit | | |-----------------------|------|------|------|------|------|------|------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} | 2.23 | | 2.32 | | 2.43 | | ns | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | t _{outco} | 2.00 | 4.86 | 2.00 | 5.35 | 2.00 | 5.84 | ns | | | t _{INSUPLL} | 1.58 | | 1.66 | | - | | ns | | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | | t _{OUTCOPLL} | 0.50 | 2.96 | 0.50 | 3.29 | - | - | ns | | | Symbol | -1 | | - | 2 | - | 3 | Unit | |----------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.74 | | 2.96 | | 3.19 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 4.86 | 2.00 | 5.35 | 2.00 | 5.84 | ns | | t _{XZBIDIR} | | 5.00 | | 5.48 | | 5.89 | ns | | t _{ZXBIDIR} | | 5.00 | | 5.48 | | 5.89 | ns | | t _{INSUBIDIRPLL} | 4.64 | | 5.03 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | t _{OUTCOBIDIRPLL} | 0.50 | 2.96 | 0.50 | 3.29 | - | - | ns | | t _{XZBIDIRPLL} | | 3.10 | | 3.42 | | - | ns | | tzxbidirpll | | 3.10 | | 3.42 | | - | ns | | Symbol | -1 | | - | 2 | - | 3 | Unit | |---------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 2.86 | | 3.24 | | 3.54 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 5.07 | 2.00 | 5.59 | 2.00 | 6.13 | ns | | t _{XZBIDIR} | | 7.43 | | 8.23 | | 8.58 | ns | | t _{ZXBIDIR} | | 7.43 | | 8.23 | | 8.58 | ns | | t _{INSUBIDIRPLL} | 4.93 | | 5.48 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 3.00 | 0.50 | 3.35 | - | - | ns | | t _{XZBIDIRPLL} | | 5.36 | | 5.99 | | - | ns | | t _{ZXBIDIRPLL} | | 5.36 | | 5.99 | | - | ns | Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices. | Table 73. EP20K200E f _{MAX} LE Timing Microparameters | | | | | | | | | | | |--|------|------|------|------|------|------|------|--|--|--| | Symbol | - | 1 | | -2 | -: | 3 | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{SU} | 0.23 | | 0.24 | | 0.26 | | ns | | | | | t _H | 0.23 | | 0.24 | | 0.26 | | ns | | | | | t_{CO} | | 0.26 | | 0.31 | | 0.36 | ns | | | | | t _{LUT} | | 0.70 | | 0.90 | | 1.14 | ns | | | | | Symbol | -1 Spee | d Grade | -2 Spec | ed Grade | -3 Spee | d Grade | Unit | |-------------------------|---------|---------|---------|----------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.78 | | 2.02 | | 1.95 | ns | | t _{ESBSRC} | | 2.52 | | 2.91 | | 3.14 | ns | | t _{ESBAWC} | | 3.52 | | 4.11 | | 4.40 | ns | | t _{ESBSWC} | | 3.23 | | 3.84 | | 4.16 | ns | | t _{ESBWASU} | 0.62 | | 0.67 | | 0.61 | | ns | | t _{ESBWAH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBWDSU} | 0.77 | | 0.79 | | 0.81 | | ns | | t _{ESBWDH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBRASU} | 1.74 | | 1.92 | | 1.85 | | ns | | t _{ESBRAH} | 0.00 | | 0.01 | | 0.23 | | ns | | t _{ESBWESU} | 2.07 | | 2.28 | | 2.41 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.25 | | 0.27 | | 0.29 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.11 | | 0.04 | | 0.11 | | ns | | t _{ESBRADDRSU} | 0.14 | | 0.11 | | 0.16 | | ns | | t _{ESBDATACO1} | | 1.29 | | 1.50 | | 1.63 | ns | | t _{ESBDATACO2} | | 2.55 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.12 | | 3.57 | | 3.85 | ns | | t _{PD} | | 1.84 | | 2.13 | | 2.32 | ns | | t _{PTERMSU} | 1.08 | | 1.19 | | 1.32 | _ | ns | | t _{PTERMCO} | | 1.31 | | 1.53 | | 1.66 | ns | | Table 105. EP20K1500E f _{MAX} Routing Delays | | | | | | | | | | | |---|---------|---------|--------|----------------------------|-----|------|------|--|--|--| | Symbol | -1 Spee | d Grade | -2 Spe | Speed Grade -3 Speed Grade | | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.28 | | 0.28 | | 0.28 | ns | | | | | t _{F5-20} | | 1.36 | | 1.50 | | 1.62 | ns | | | | | t _{F20+} | | 4.43 | | 4.48 | | 5.07 | ns | | | |