Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 1664 | | Number of Logic Elements/Cells | 16640 | | Total RAM Bits | 212992 | | Number of I/O | - | | Number of Gates | 1052000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 208-BFQFP Exposed Pad | | Supplier Device Package | 208-RQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k400erc208-1 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. Additiona | al APEX 20K De | vice Features | Note (1) | | | | |-----------------------|----------------|---------------|-----------|-----------|------------|------------| | Feature | EP20K300E | EP20K400 | EP20K400E | EP20K600E | EP20K1000E | EP20K1500E | | Maximum system gates | 728,000 | 1,052,000 | 1,052,000 | 1,537,000 | 1,772,000 | 2,392,000 | | Typical gates | 300,000 | 400,000 | 400,000 | 600,000 | 1,000,000 | 1,500,000 | | LEs | 11,520 | 16,640 | 16,640 | 24,320 | 38,400 | 51,840 | | ESBs | 72 | 104 | 104 | 152 | 160 | 216 | | Maximum
RAM bits | 147,456 | 212,992 | 212,992 | 311,296 | 327,680 | 442,368 | | Maximum macrocells | 1,152 | 1,664 | 1,664 | 2,432 | 2,560 | 3,456 | | Maximum user I/O pins | 408 | 502 | 488 | 588 | 708 | 808 | ### Note to Tables 1 and 2: (1) The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates. ## Additional Features - Designed for low-power operation - 1.8-V and 2.5-V supply voltage (see Table 3) - MultiVoltTM I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3) - ESB offering programmable power-saving mode | Feature | Device | | | | | |---|----------------------------------|--|--|--|--| | | EP20K100
EP20K200
EP20K400 | EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E | | | | | Internal supply voltage (V _{CCINT}) | 2.5 V | 1.8 V | | | | | MultiVolt I/O interface voltage levels (V _{CCIO}) | 2.5 V, 3.3 V, 5.0 V | 1.8 V, 2.5 V, 3.3 V, 5.0 V (1) | | | | Note to Table 3: (1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor. | Feature | APEX 20K Devices | APEX 20KE Devices | |--------------------------------|---|--| | MultiCore system integration | Full support | Full support | | SignalTap logic analysis | Full support | Full support | | 32/64-Bit, 33-MHz PCI | Full compliance in -1, -2 speed grades | Full compliance in -1, -2 speed grades | | 32/64-Bit, 66-MHz PCI | - | Full compliance in -1 speed grade | | MultiVolt I/O | 2.5-V or 3.3-V V _{CCIO}
V _{CCIO} selected for device
Certain devices are 5.0-V tolerant | 1.8-V, 2.5-V, or 3.3-V V _{CCIO} V _{CCIO} selected block-by-block 5.0-V tolerant with use of external resistor | | ClockLock support | Clock delay reduction
2× and 4× clock multiplication | Clock delay reduction $m/(n \times v)$ or $m/(n \times k)$ clock multiplication Drive ClockLock output off-chip External clock feedback ClockShift LVDS support Up to four PLLs ClockShift, clock phase adjustment | | Dedicated clock and input pins | Six | Eight | | I/O standard support | 2.5-V, 3.3-V, 5.0-V I/O 3.3-V PCI Low-voltage complementary metal-oxide semiconductor (LVCMOS) Low-voltage transistor-to-transistor logic (LVTTL) | 1.8-V, 2.5-V, 3.3-V, 5.0-V I/O 2.5-V I/O 3.3-V PCI and PCI-X 3.3-V Advanced Graphics Port (AGP) Center tap terminated (CTT) GTL+ LVCMOS LVTTL True-LVDS and LVPECL data pins (in EP20K300E and larger devices) LVDS and LVPECL signaling (in all BGA and FineLine BGA devices) LVDS and LVPECL data pins up to 156 Mbps (in -1 speed grade devices) HSTL Class I PCI-X SSTL-2 Class I and II SSTL-3 Class I and II | | Memory support | Dual-port RAM
FIFO
RAM
ROM | CAM Dual-port RAM FIFO RAM ROM | # Functional Description APEX 20K devices incorporate LUT-based logic, product-term-based logic, and memory into one device. Signal interconnections within APEX 20K devices (as well as to and from device pins) are provided by the FastTrack[®] Interconnect—a series of fast, continuous row and column channels that run the entire length and width of the device. Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect. Each IOE contains a bidirectional I/O buffer and a register that can be used as either an input or output register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI compliance; JTAG BST support; slew-rate control; and tri-state buffers. APEX 20KE devices offer enhanced I/O support, including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V AGP I/O standards. The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs ensures that the APEX 20K device can implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. The abundance of ESBs ensures that designers can create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20K device. Altera Corporation 9 Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions. Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs. If both the rising and falling edges of a clock are used in a LAB, both LAB-wide clock signals are used. The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit. Figure 4. LAB Control Signal Generation #### Notes to Figure 4: - (1) APEX 20KE devices have four dedicated clocks. - (2) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB. - (3) The SYNCCLR signal can be generated by the local interconnect or global signals. Figure 6. APEX 20K Carry Chain Figure 18. Deep Memory Block Implemented with Multiple ESBs The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19. Figure 19. APEX 20K ESB Implementing Dual-Port RAM For more information on APEX 20KE devices and CAM, see *Application Note 119 (Implementing High-Speed Search Applications with APEX CAM).* ### **Driving Signals to the ESB** ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic. Figure 24. ESB Control Signal Generation Note to Figure 24: (1) APEX 20KE devices have four dedicated clocks. An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device. Figure 25. APEX 20K Bidirectional I/O Registers Note (1) Note to Figure 25: (1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. Figure 26. APEX 20KE Bidirectional I/O Registers Notes (1), (2) Row, Column, FastRow, 4 Dedicated or Local Interconnect Clock Inputs Notes to Figure 26: - (1) This programmable delay has four settings: off and three levels of delay. - (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. ### Clock Phase & Delay Adjustment The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period. ### LVDS Support Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing. ### Lock Signals The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins. ### ClockLock & ClockBoost Timing Parameters For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications. For more information on ClockLock and ClockBoost circuitry, see *Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices*. | Table 18. | Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1) | | | | | | | | | |-----------------|--|--|-----|---------|-------|-----|-----|--|--| | Symbol | Parameter | I/O Standard -1X Speed Grade -2X Speed G | | d Grade | Units | | | | | | | | | Min | Max | Min | Max | | | | | f _{IN} | Input clock frequency | 3.3-V LVTTL | 1.5 | 290 | 1.5 | 257 | MHz | | | | | | 2.5-V LVTTL | 1.5 | 281 | 1.5 | 250 | MHz | | | | | | 1.8-V LVTTL | 1.5 | 272 | 1.5 | 243 | MHz | | | | | | GTL+ | 1.5 | 303 | 1.5 | 261 | MHz | | | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | | | #### Notes to Tables 17 and 18: - All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first. - (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK ENA pin goes high in user mode. - (4) The PLL VCO operating range is 200 MHz δ f_{VCO} δ 840 MHz for LVDS mode. ### SignalTap Embedded Logic Analyzer APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured. For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).* | Table 30. APEX 20KE Device Capacitance Note (15) | | | | | | | | |--|--|-------------------------------------|-----|-----|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | #### Notes to Tables 27 through 30: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle. Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10% - (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V. - (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60. - (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V. - (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL. - (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (13) This value is specified for normal device operation. The value may vary during power-up. - (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}. - (15) Capacitance is sample-tested only. Figure 33 shows the relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance on APEX 20K devices. Figure 40. Synchronous Bidirectional Pin External Timing ### Notes to Figure 40: - (1) The output enable and input registers are LE registers in the LAB adjacent to a bidirectional row pin. The output enable register is set with "Output Enable Routing= Signal-Pin" option in the Quartus II software. - (2) The LAB adjacent input register is set with "Decrease Input Delay to Internal Cells=Off". This maintains a zero hold time for lab adjacent registers while giving a fast, position independent setup time. A faster setup time with zero hold time is possible by setting "Decrease Input Delay to Internal Cells=ON" and moving the input register farther away from the bidirectional pin. The exact position where zero hold occurs with the minimum setup time, varies with device density and speed grade. Table 31 describes the f_{MAX} timing parameters shown in Figure 36 on page 68. | Table 31. APEX 20K f _{MAX} Timing Parameters (Part 1 of 2) | | | | | | | |---|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | t _{SU} | LE register setup time before clock | | | | | | | t _H | LE register hold time after clock | | | | | | | t _{CO} | LE register clock-to-output delay | | | | | | | t _{LUT} | LUT delay for data-in | | | | | | | t _{ESBRC} | ESB Asynchronous read cycle time | | | | | | | t _{ESBWC} | ESB Asynchronous write cycle time | | | | | | | t _{ESBWESU} | ESB WE setup time before clock when using input register | | | | | | | t _{ESBDATASU} | ESB data setup time before clock when using input register | | | | | | | t _{ESBDATAH} | ESB data hold time after clock when using input register | | | | | | | t _{ESBADDRSU} | ESB address setup time before clock when using input registers | | | | | | | t _{ESBDATACO1} | ESB clock-to-output delay when using output registers | | | | | | | Symbol | Parameter | Conditions | |----------------------------|---|------------| | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at LAB adjacent Input Register | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at LAB adjacent Input Register | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE output register | C1 = 10 pF | | t _{XZBIDIR} | Synchronous Output Enable Register to output buffer disable delay | C1 = 10 pF | | t _{ZXBIDIR} | Synchronous Output Enable Register output buffer enable delay | C1 = 10 pF | | t _{INSUBIDIRPLL} | Setup time for bidirectional pins with PLL clock at LAB adjacent Input Register | | | t _{INHBIDIRPLL} | Hold time for bidirectional pins with PLL clock at LAB adjacent Input Register | | | [†] OUTCOBIDIRPLL | Clock-to-output delay for bidirectional pins with PLL clock at IOE output register | C1 = 10 pF | | t _{XZBIDIRPLL} | Synchronous Output Enable Register to output buffer disable delay with PLL | C1 = 10 pF | | t _{ZXBIDIRPLL} | Synchronous Output Enable Register output buffer enable delay with PLL | C1 = 10 pF | Note to Tables 38 and 39: ⁽¹⁾ These timing parameters are sample-tested only. | Table 43. EP20K100 External Timing Parameters | | | | | | | | | |---|--------|----------------|-----|----------------|-----|----------------|----|--| | Symbol | -1 Spe | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} (1) | 2.3 | | 2.8 | | 3.2 | | ns | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{OUTCO} (1) | 2.0 | 4.5 | 2.0 | 4.9 | 2.0 | 6.6 | ns | | | t _{INSU} (2) | 1.1 | | 1.2 | | - | | ns | | | t _{INH} (2) | 0.0 | | 0.0 | | - | | ns | | | t _{OUTCO} (2) | 0.5 | 2.7 | 0.5 | 3.1 | _ | 4.8 | ns | | | Symbol | -1 Spee | ed Grade | -2 Spee | -2 Speed Grade | | d Grade | Unit | |----------------------------|---------|----------|---------|----------------|-----|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 2.3 | | 2.8 | | 3.2 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | toutcobidir
(1) | 2.0 | 4.5 | 2.0 | 4.9 | 2.0 | 6.6 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.0 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir
(2) | 0.5 | 2.7 | 0.5 | 3.1 | - | - | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 45. EP20K200 External Timing Parameters | | | | | | | | | |---|----------------|-----|----------------|-----|----------------|-----|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{OUTCO} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | | t _{INSU} (2) | 1.1 | | 1.2 | | - | | ns | | | t _{INH} (2) | 0.0 | | 0.0 | | - | | ns | | | t _{оитсо} <i>(2)</i> | 0.5 | 2.7 | 0.5 | 3.1 | - | _ | ns | | | Symbol | - | 1 | - | 2 | -3 | | Unit | |--------------------|------|-----|------|-----|------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{CL} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{CLRP} | 0.22 | | 0.31 | | 0.46 | | ns | | t _{PREP} | 0.22 | | 0.31 | | 0.46 | | ns | | t _{ESBCH} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{ESBCL} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{ESBWP} | 1.43 | | 2.01 | | 2.97 | | ns | | t _{ESBRP} | 1.15 | | 1.62 | | 2.39 | | ns | | Symbol | | 1 | -2 | | -3 | | Unit | |-----------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max |] | | t _{INSU} | 2.02 | | 2.13 | | 2.24 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ouтco} | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns | | t _{INSUPLL} | 2.11 | | 2.23 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | t _{OUTCOPLL} | 0.50 | 2.60 | 0.50 | 2.88 | - | - | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |----------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 1.85 | | 1.77 | | 1.54 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns | | t _{XZBIDIR} | | 7.48 | | 8.46 | | 9.83 | ns | | t _{ZXBIDIR} | | 7.48 | | 8.46 | | 9.83 | ns | | t _{INSUBIDIRPLL} | 4.12 | | 4.24 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | t _{OUTCOBIDIRPLL} | 0.50 | 2.60 | 0.50 | 2.88 | - | - | ns | | t _{XZBIDIRPLL} | | 5.21 | | 5.99 | | - | ns | | tzxbidirpll | | 5.21 | | 5.99 | | - | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |-------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.79 | | 2.44 | | 3.25 | ns | | t _{ESBSRC} | | 2.40 | | 3.12 | | 4.01 | ns | | t _{ESBAWC} | | 3.41 | | 4.65 | | 6.20 | ns | | t _{ESBSWC} | | 3.68 | | 4.68 | | 5.93 | ns | | t _{ESBWASU} | 1.55 | | 2.12 | | 2.83 | | ns | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWDSU} | 1.71 | | 2.33 | | 3.11 | | ns | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBRASU} | 1.72 | | 2.34 | | 3.13 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWESU} | 1.63 | | 2.36 | | 3.28 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.07 | | 0.39 | | 0.80 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.27 | | 0.67 | | 1.17 | | ns | | t _{ESBRADDRSU} | 0.34 | | 0.75 | | 1.28 | | ns | | t _{ESBDATACO1} | | 1.03 | | 1.20 | | 1.40 | ns | | t _{ESBDATACO2} | | 2.33 | | 3.18 | | 4.24 | ns | | t _{ESBDD} | | 3.41 | | 4.65 | | 6.20 | ns | | t _{PD} | | 1.68 | | 2.29 | | 3.06 | ns | | t _{PTERMSU} | 0.96 | | 1.48 | | 2.14 | | ns | | t _{PTERMCO} | | 1.05 | | 1.22 | | 1.42 | ns | | Table 81. EP2 | Table 81. EP20K300E f _{MAX} Routing Delays | | | | | | | | |--------------------|---|------|-----|------|-----|------|------|--| | Symbol | - | 1 | | 2 | - | 3 | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{F1-4} | | 0.22 | | 0.24 | | 0.26 | ns | | | t _{F5-20} | | 1.33 | | 1.43 | | 1.58 | ns | | | t _{F20+} | | 3.63 | | 3.93 | | 4.35 | ns | | | Symbol | -1 | | -2 | | -3 | | Unit | |--------------------|------|-----|------|-----|------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CLRP} | 0.19 | | 0.26 | | 0.35 | | ns | | t _{PREP} | 0.19 | | 0.26 | | 0.35 | | ns | | t _{ESBCH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBCL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBWP} | 1.25 | | 1.71 | | 2.28 | | ns | | t _{ESBRP} | 1.01 | | 1.38 | | 1.84 | | ns | | Symbol | - | 1 | - | 2 | -3 | Unit | | |----------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.31 | | 2.44 | | 2.57 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.29 | 2.00 | 5.82 | 2.00 | 6.24 | ns | | t _{INSUPLL} | 1.76 | | 1.85 | | - | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | toutcople | 0.50 | 2.65 | 0.50 | 2.95 | _ | - | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |---------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 2.77 | | 2.85 | | 3.11 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 5.29 | 2.00 | 5.82 | 2.00 | 6.24 | ns | | t _{XZBIDIR} | | 7.59 | | 8.30 | | 9.09 | ns | | t _{ZXBIDIR} | | 7.59 | | 8.30 | | 9.09 | ns | | t _{INSUBIDIRPLL} | 2.50 | | 2.76 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 2.65 | 0.50 | 2.95 | - | - | ns | | t _{XZBIDIRPLL} | | 5.00 | | 5.43 | | - | ns | | tzxbidirpll | | 5.00 | | 5.43 | | - | ns | SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files. ### **Configuration Schemes** The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up. Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 111. Data Sources for Configuration | | | | | |---|--|--|--|--| | Configuration Scheme | Data Source | | | | | Configuration device | EPC1, EPC2, EPC16 configuration devices | | | | | Passive serial (PS) | MasterBlaster or ByteBlasterMV download cable or serial data source | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | JTAG | MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File | | | | For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*) ### **Device Pin-Outs** See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information ### Revision History The information contained in the *APEX 20K Programmable Logic Device Family Data Sheet* version 5.1 supersedes information published in previous versions. ### Version 5.1 APEX 20K Programmable Logic Device Family Data Sheet version 5.1 contains the following changes: - In version 5.0, the VI input voltage spec was updated in Table 28 on page 63. - In version 5.0, *Note* (5) to Tables 27 through 30 was revised. - Added Note (2) to Figure 21 on page 33. ### Version 5.0 APEX 20K Programmable Logic Device Family Data Sheet version 5.0 contains the following changes: - Updated Tables 23 through 26. Removed 2.5-V operating condition tables because all APEX 20K devices are now 5.0-V tolerant. - Updated conditions in Tables 33, 38 and 39. - Updated data for t_{ESBDATAH} parameter. ### Version 4.3 APEX 20K Programmable Logic Device Family Data Sheet version 4.3 contains the following changes: - Updated Figure 20. - Updated *Note* (2) to Table 13. - Updated notes to Tables 27 through 30. ### Version 4.2 APEX 20K Programmable Logic Device Family Data Sheet version 4.2 contains the following changes: - Updated Figure 29. - Updated *Note* (1) to Figure 29.