Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 1664 | | Number of Logic Elements/Cells | 16640 | | Total RAM Bits | 212992 | | Number of I/O | - | | Number of Gates | 1052000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 208-BFQFP Exposed Pad | | Supplier Device Package | 208-RQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k400erc208-2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Flexible clock management circuitry with up to four phase-locked loops (PLLs) - Built-in low-skew clock tree - Up to eight global clock signals - ClockLock[®] feature reducing clock delay and skew - ClockBoost[®] feature providing clock multiplication and division - ClockShift™ programmable clock phase and delay shifting #### Powerful I/O features - Compliant with peripheral component interconnect Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V operation at 33 or 66 MHz and 32 or 64 bits - Support for high-speed external memories, including DDR SDRAM and ZBT SRAM (ZBT is a trademark of Integrated Device Technology, Inc.) - Bidirectional I/O performance ($t_{CO} + t_{SU}$) up to 250 MHz - LVDS performance up to 840 Mbits per channel - Direct connection from I/O pins to local interconnect providing fast t_{CO} and t_{SU} times for complex logic - MultiVolt I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3) - Programmable clamp to V_{CCIO} - Individual tri-state output enable control for each pin - Programmable output slew-rate control to reduce switching noise - Support for advanced I/O standards, including low-voltage differential signaling (LVDS), LVPECL, PCI-X, AGP, CTT, stubseries terminated logic (SSTL-3 and SSTL-2), Gunning transceiver logic plus (GTL+), and high-speed terminated logic (HSTL Class I) - Pull-up on I/O pins before and during configuration #### Advanced interconnect structure - Four-level hierarchical FastTrack[®] Interconnect structure providing fast, predictable interconnect delays - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions) - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions) - Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect #### Advanced packaging options - Available in a variety of packages with 144 to 1,020 pins (see Tables 4 through 7) - FineLine BGA® packages maximize board space efficiency #### Advanced software support Software design support and automatic place-and-route provided by the Altera® Quartus® II development system for # Functional Description APEX 20K devices incorporate LUT-based logic, product-term-based logic, and memory into one device. Signal interconnections within APEX 20K devices (as well as to and from device pins) are provided by the FastTrack[®] Interconnect—a series of fast, continuous row and column channels that run the entire length and width of the device. Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect. Each IOE contains a bidirectional I/O buffer and a register that can be used as either an input or output register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI compliance; JTAG BST support; slew-rate control; and tri-state buffers. APEX 20KE devices offer enhanced I/O support, including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V AGP I/O standards. The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs ensures that the APEX 20K device can implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. The abundance of ESBs ensures that designers can create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20K device. Altera Corporation 9 APEX 20K devices provide two dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals. These signals use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20K devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry. APEX 20KE devices provide two additional dedicated clock pins, for a total of four dedicated clock pins. #### MegaLAB Structure APEX 20K devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. The EP20K30E device has 10 LABs, EP20K60E through EP20K600E devices have 16 LABs, and the EP20K1000E and EP20K1500E devices have 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack Interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure. Figure 2. MegaLAB Structure Figure 6. APEX 20K Carry Chain Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software. | Table 10. APEX 20K Programmable Delay Chains | | | | | | | |--|---|--|--|--|--|--| | Programmable Delays | Quartus II Logic Option | | | | | | | Input pin to core delay | Decrease input delay to internal cells | | | | | | | Input pin to input register delay | Decrease input delay to input register | | | | | | | Core to output register delay | Decrease input delay to output register | | | | | | | Output register t _{CO} delay | Increase delay to output pin | | | | | | The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices. The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. Figure 25. APEX 20K Bidirectional I/O Registers Note (1) Note to Figure 25: (1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect. Figure 27. Row IOE Connection to the Interconnect Figure 30. Specifications for the Incoming & Generated Clocks Note (1) *Note to Figure 30:* (1) The tl parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period. Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices. | Symbol | Parameter N | | Max | Unit | | |-----------------------|--|------------------------|------------|------|--| | f _{OUT} | Output frequency | 25 | 180 | MHz | | | f _{CLK1} (1) | Input clock frequency (ClockBoost clock multiplication factor equals 1) | 25 | 180 (1) | MHz | | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | 16 | 90 | MHz | | | f _{CLK4} | Input clock frequency (ClockBoost clock multiplication factor equals 4) | 10 | 48 | MHz | | | ^t OUTDUTY | Duty cycle for ClockLock/ClockBoost-generated clock | kBoost-generated 40 60 | | % | | | f _{CLKDEV} | Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2) | | 25,000 (3) | PPM | | | t _R | Input rise time | | 5 | ns | | | t _F | Input fall time | | 5 | ns | | | t _{LOCK} | Time required for ClockLock/ClockBoost to acquire lock (4) | | 10 | μs | | | Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2) | | | | | | | | |---|--|-----|-----|------|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | t _{SKEW} | Skew delay between related ClockLock/ClockBoost-generated clocks | | 500 | ps | | | | | t _{JITTER} | Jitter on ClockLock/ClockBoost-generated clock (5) | | 200 | ps | | | | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | 50 | ps | | | | #### Notes to Table 15: - (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz. - (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time. - (4) The jitter specification is measured under long-term observation. - (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps. Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices. | Symbol | Parameter | Min | Unit | | |-----------------------|--|-----|------------|-----| | f _{OUT} | Output frequency | 25 | 170 | MHz | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | 25 | 170 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | | | | | f _{CLK4} | Input clock frequency (ClockBoost clock multiplication factor equals 4) | | | | | t _{OUTDUTY} | Duty cycle for ClockLock/ClockBoost-generated clock | 40 | 60 | % | | f _{CLKDEV} | Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1) | | 25,000 (2) | PPM | | t _R | Input rise time | | 5 | ns | | t _F | Input fall time | | 5 | ns | | t _{LOCK} | Time required for ClockLock/ ClockBoost to acquire lock (3) | | 10 | μѕ | | t _{SKEW} | Skew delay between related ClockLock/ ClockBoost-generated clock | 500 | 500 | ps | | t _{JITTER} | Jitter on ClockLock/ ClockBoost-generated clock (4) | | 200 | ps | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | 50 | ps | | Table 18. | APEX 20KE Clock Input & | Output Parameters | (Part 2 | of 2) Note | 9 (1) | | | |-----------------|-------------------------|-------------------|-----------------|-------------------|-----------------|-----|-------| | Symbol | Parameter | I/O Standard | -1X Speed Grade | | -2X Speed Grade | | Units | | | | | Min | Max | Min | Max | | | f _{IN} | Input clock frequency | 3.3-V LVTTL | 1.5 | 290 | 1.5 | 257 | MHz | | | | 2.5-V LVTTL | 1.5 | 281 | 1.5 | 250 | MHz | | | | 1.8-V LVTTL | 1.5 | 272 | 1.5 | 243 | MHz | | | | GTL+ | 1.5 | 303 | 1.5 | 261 | MHz | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | #### Notes to Tables 17 and 18: - All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first. - (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK ENA pin goes high in user mode. - (4) The PLL VCO operating range is 200 MHz δ f_{VCO} δ 840 MHz for LVDS mode. ### SignalTap Embedded Logic Analyzer APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured. All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum driver strength. Figure 36 shows the f_{MAX} timing model for APEX 20K devices. Figure 37 shows the f_{MAX} timing model for APEX 20KE devices. These parameters can be used to estimate f_{MAX} for multiple levels of logic. Quartus II software timing analysis should be used for more accurate timing information. | Table 36. APEX 20KE Routing Timing Microparameters Note (1) | | | | | | | |---|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | t _{F1-4} | Fanout delay using Local Interconnect | | | | | | | t _{F5-20} | Fanout delay estimate using MegaLab Interconnect | | | | | | | t _{F20+} | Fanout delay estimate using FastTrack Interconnect | | | | | | #### Note to Table 36: (1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. | Table 37. APEX 20KE Functional Timing Microparameters | | | | | | |---|--|--|--|--|--| | Symbol | Parameter | | | | | | TCH | Minimum clock high time from clock pin | | | | | | TCL | Minimum clock low time from clock pin | | | | | | TCLRP | LE clear Pulse Width | | | | | | TPREP | LE preset pulse width | | | | | | TESBCH | Clock high time for ESB | | | | | | TESBCL | Clock low time for ESB | | | | | | TESBWP | Write pulse width | | | | | | TESBRP | Read pulse width | | | | | Tables 38 and 39 describe the APEX 20KE external timing parameters. | Table 38. APEX 20KE External Timing Parameters Note (1) | | | | | | | |---|--|------------|--|--|--|--| | Symbol | Clock Parameter | Conditions | | | | | | t _{INSU} | Setup time with global clock at IOE input register | | | | | | | t _{INH} | Hold time with global clock at IOE input register | | | | | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE output register | C1 = 10 pF | | | | | | t _{INSUPLL} | Setup time with PLL clock at IOE input register | | | | | | | t _{INHPLL} | Hold time with PLL clock at IOE input register | | | | | | | t _{OUTCOPLL} | Clock-to-output delay with PLL clock at IOE output register | C1 = 10 pF | | | | | | Table 43. EP20K100 External Timing Parameters | | | | | | | | | | |---|--------|----------|----------------|-----|----------------|-----|------|--|--| | Symbol | -1 Spe | ed Grade | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{INSU} (1) | 2.3 | | 2.8 | | 3.2 | | ns | | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{OUTCO} (1) | 2.0 | 4.5 | 2.0 | 4.9 | 2.0 | 6.6 | ns | | | | t _{INSU} (2) | 1.1 | | 1.2 | | - | | ns | | | | t _{INH} (2) | 0.0 | | 0.0 | | - | | ns | | | | t _{OUTCO} (2) | 0.5 | 2.7 | 0.5 | 3.1 | _ | 4.8 | ns | | | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | |----------------------------|----------------|-----|---------|----------------|-----|----------------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 2.3 | | 2.8 | | 3.2 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | toutcobidir
(1) | 2.0 | 4.5 | 2.0 | 4.9 | 2.0 | 6.6 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.0 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir
(2) | 0.5 | 2.7 | 0.5 | 3.1 | - | - | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 45. EP20K200 External Timing Parameters | | | | | | | | | |---|---------|----------|--------|----------|---------|---------|------|--| | Symbol | -1 Spec | ed Grade | -2 Spe | ed Grade | -3 Spee | d Grade | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{OUTCO} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | | t _{INSU} (2) | 1.1 | | 1.2 | | - | | ns | | | t _{INH} (2) | 0.0 | | 0.0 | | - | | ns | | | t _{оитсо} <i>(2)</i> | 0.5 | 2.7 | 0.5 | 3.1 | - | _ | ns | | #### Notes to Tables 43 through 48: - (1) This parameter is measured without using ClockLock or ClockBoost circuits. - (2) This parameter is measured using ClockLock or ClockBoost circuits. Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices. | Table 49. EP2 | OK30E f _{MAX} L | E Timing Micr | oparameters | | | | | |------------------|--------------------------|---------------|-------------|------|------|------|------| | Symbol | _ | 1 | - | 2 | -; | 3 | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.01 | | 0.02 | | 0.02 | | ns | | t _H | 0.11 | | 0.16 | | 0.23 | | ns | | t _{CO} | | 0.32 | | 0.45 | | 0.67 | ns | | t _{LUT} | | 0.85 | | 1.20 | | 1.77 | ns | | Symbol | -1 | | - | -2 | | -3 | | | |--------------------|------|-----|------|-----|------|-----|----|--| | | Min | Max | Min | Max | Min | Max | | | | t _{CH} | 0.55 | | 0.78 | | 1.15 | | ns | | | t _{CL} | 0.55 | | 0.78 | | 1.15 | | ns | | | t _{CLRP} | 0.22 | | 0.31 | | 0.46 | | ns | | | t _{PREP} | 0.22 | | 0.31 | | 0.46 | | ns | | | t _{ESBCH} | 0.55 | | 0.78 | | 1.15 | | ns | | | t _{ESBCL} | 0.55 | | 0.78 | | 1.15 | | ns | | | t _{ESBWP} | 1.43 | | 2.01 | | 2.97 | | ns | | | t _{ESBRP} | 1.15 | | 1.62 | | 2.39 | | ns | | | Symbol | -1 | | - | -2 | | 3 | Unit | |-----------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.02 | | 2.13 | | 2.24 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{outco} | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns | | t _{INSUPLL} | 2.11 | | 2.23 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | t _{OUTCOPLL} | 0.50 | 2.60 | 0.50 | 2.88 | - | - | ns | | Symbol | - | 1 | - | 2 | - | 3 | Unit | |----------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 1.85 | | 1.77 | | 1.54 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns | | t _{XZBIDIR} | | 7.48 | | 8.46 | | 9.83 | ns | | t _{ZXBIDIR} | | 7.48 | | 8.46 | | 9.83 | ns | | t _{INSUBIDIRPLL} | 4.12 | | 4.24 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | t _{OUTCOBIDIRPLL} | 0.50 | 2.60 | 0.50 | 2.88 | - | - | ns | | t _{XZBIDIRPLL} | | 5.21 | | 5.99 | | - | ns | | tzxbidirpll | | 5.21 | | 5.99 | | - | ns | | Table 69. EP2 | OK160E f _{MAX} | Routing Delays | s | | | | | |--------------------|-------------------------|----------------|-----|------|-----|------|------| | Symbol | - | 1 | | -2 | -1 | 3 | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{F1-4} | | 0.25 | | 0.26 | | 0.28 | ns | | t _{F5-20} | | 1.00 | | 1.18 | | 1.35 | ns | | t _{F20+} | | 1.95 | | 2.19 | | 2.30 | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |--------------------|------|-----|------|-----|------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{CL} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{CLRP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{PREP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{ESBCH} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{ESBCL} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{ESBWP} | 1.15 | | 1.45 | | 1.73 | | ns | | t _{ESBRP} | 0.93 | | 1.15 | | 1.38 | | ns | | Symbol | - | 1 | - | 2 | -3 | 3 | Unit | | |----------------------|------|------|------|------|------|------|------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} | 2.23 | | 2.34 | | 2.47 | | ns | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | toutco | 2.00 | 5.07 | 2.00 | 5.59 | 2.00 | 6.13 | ns | | | t _{INSUPLL} | 2.12 | | 2.07 | | = | | ns | | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | | toutcople | 0.50 | 3.00 | 0.50 | 3.35 | - | - | ns | | | Table 76. EP2 | OK200E Minin | num Pulse W | idth Timing Pa | arameters | | | | |--------------------|--------------|-------------|----------------|-----------|------|-----|------| | Symbol | -1 | | - | -2 | | 3 | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.36 | | 2.44 | | 2.65 | | ns | | t _{CL} | 1.36 | | 2.44 | | 2.65 | | ns | | t _{CLRP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{PREP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{ESBCH} | 1.36 | | 2.44 | | 2.65 | | ns | | t _{ESBCL} | 1.36 | | 2.44 | | 2.65 | | ns | | t _{ESBWP} | 1.18 | | 1.48 | | 1.76 | | ns | | t _{ESBRP} | 0.95 | | 1.17 | | 1.41 | | ns | | Symbol | -1 | | - | -2 | | -3 | | | |-----------------------|------|------|------|------|------|------|----|--| | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} | 2.24 | | 2.35 | | 2.47 | | ns | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | t _{outco} | 2.00 | 5.12 | 2.00 | 5.62 | 2.00 | 6.11 | ns | | | t _{INSUPLL} | 2.13 | | 2.07 | | - | | ns | | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | | t _{OUTCOPLL} | 0.50 | 3.01 | 0.50 | 3.36 | - | - | ns | | | Symbol | -1 | İ | - | -2 | -3 | 3 | Unit | | |--------------------|------|-----|------|-----|------|-----|------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{CH} | 1.25 | | 1.43 | | 1.67 | | ns | | | t _{CL} | 1.25 | | 1.43 | | 1.67 | | ns | | | t _{CLRP} | 0.19 | | 0.26 | | 0.35 | | ns | | | t _{PREP} | 0.19 | | 0.26 | | 0.35 | | ns | | | t _{ESBCH} | 1.25 | | 1.43 | | 1.67 | | ns | | | t _{ESBCL} | 1.25 | | 1.43 | | 1.67 | | ns | | | t _{ESBWP} | 1.25 | | 1.71 | | 2.28 | | ns | | | t _{ESBRP} | 1.01 | | 1.38 | | 1.84 | | ns | | | Symbol | - | 1 | - | 2 | -3 | } | Unit | | |----------------------|------|------|------|------|------|------|------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} | 2.31 | | 2.44 | | 2.57 | | ns | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | t _{OUTCO} | 2.00 | 5.29 | 2.00 | 5.82 | 2.00 | 6.24 | ns | | | t _{INSUPLL} | 1.76 | | 1.85 | | - | | ns | | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | | toutcople | 0.50 | 2.65 | 0.50 | 2.95 | _ | - | ns | | | Symbol | - | 1 | - | 2 | - | 3 | Unit | |---------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.77 | | 2.85 | | 3.11 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 5.29 | 2.00 | 5.82 | 2.00 | 6.24 | ns | | t _{XZBIDIR} | | 7.59 | | 8.30 | | 9.09 | ns | | t _{ZXBIDIR} | | 7.59 | | 8.30 | | 9.09 | ns | | t _{INSUBIDIRPLL} | 2.50 | | 2.76 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 2.65 | 0.50 | 2.95 | - | - | ns | | ^t xzbidirpll | | 5.00 | | 5.43 | | - | ns | | tzxbidirpll | | 5.00 | | 5.43 | | - | ns | | Table 92. EP20K600E f _{MAX} ESB Timing Microparameters | | | | | | | | | | | |---|----------------|------|----------------|------|----------------|------|------|--|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{ESBARC} | | 1.67 | | 2.39 | | 3.11 | ns | | | | | t _{ESBSRC} | | 2.27 | | 3.07 | | 3.86 | ns | | | | | t _{ESBAWC} | | 3.19 | | 4.56 | | 5.93 | ns | | | | | t _{ESBSWC} | | 3.51 | | 4.62 | | 5.72 | ns | | | | | t _{ESBWASU} | 1.46 | | 2.08 | | 2.70 | | ns | | | | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | | | | t _{ESBWDSU} | 1.60 | | 2.29 | | 2.97 | | ns | | | | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | | | | t _{ESBRASU} | 1.61 | | 2.30 | | 2.99 | | ns | | | | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | | | | t _{ESBWESU} | 1.49 | | 2.30 | | 3.11 | | ns | | | | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | | | | t _{ESBDATASU} | -0.01 | | 0.35 | | 0.71 | | ns | | | | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | | | | t _{ESBWADDRSU} | 0.19 | | 0.62 | | 1.06 | | ns | | | | | t _{ESBRADDRSU} | 0.25 | | 0.71 | | 1.17 | | ns | | | | | t _{ESBDATACO1} | | 1.01 | | 1.19 | | 1.37 | ns | | | | | t _{ESBDATACO2} | | 2.18 | | 3.12 | | 4.05 | ns | | | | | t _{ESBDD} | | 3.19 | | 4.56 | | 5.93 | ns | | | | | t _{PD} | | 1.57 | | 2.25 | | 2.92 | ns | | | | | t _{PTERMSU} | 0.85 | | 1.43 | | 2.01 | | ns | | | | | t _{PTERMCO} | | 1.03 | | 1.21 | | 1.39 | ns | | | | | Table 93. EP20K600E f _{MAX} Routing Delays | | | | | | | | | | | | | |---|----------------|------|----------------|------|----------------|------|------|--|--|--|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | | t _{F1-4} | | 0.22 | | 0.25 | | 0.26 | ns | | | | | | | t _{F5-20} | | 1.26 | | 1.39 | | 1.52 | ns | | | | | | | t _{F20+} | | 3.51 | | 3.88 | | 4.26 | ns | | | | | | #### Version 4.1 APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes: - t_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104. - Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.