Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|-------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 1664 | | Number of Logic Elements/Cells | 16640 | | Total RAM Bits | 212992 | | Number of I/O | - | | Number of Gates | 1052000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 240-BFQFP Exposed Pad | | Supplier Device Package | 240-RQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k400erc240-3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 5. APEX 20K F | ineLine BGA Pack | age Options & I/C | O Count Note | s (1), (2) | | |---------------------|------------------|-------------------|--------------|----------------|-----------| | Device | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | EP20K30E | 93 | 128 | | | | | EP20K60E | 93 | 196 | | | | | EP20K100 | | 252 | | | | | EP20K100E | 93 | 246 | | | | | EP20K160E | | | 316 | | | | EP20K200 | | | 382 | | | | EP20K200E | | | 376 | 376 | | | EP20K300E | | | | 408 | | | EP20K400 | | | | 502 <i>(3)</i> | | | EP20K400E | | | | 488 (3) | | | EP20K600E | | | | 508 (3) | 588 | | EP20K1000E | | | | 508 (3) | 708 | | EP20K1500E | | | | | 808 | #### Notes to Tables 4 and 5: - (1) I/O counts include dedicated input and clock pins. - (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages. - (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information. | Table 6. APEX 20K QFP, BGA & PGA Package Sizes | | | | | | | | | | |--------------------------------------------------------------------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|--|--|--| | Feature | 144-Pin TQFP | 208-Pin QFP | 240-Pin QFP | 356-Pin BGA | 652-Pin BGA | 655-Pin PGA | | | | | Pitch (mm) | 0.50 | 0.50 | 0.50 | 1.27 | 1.27 | _ | | | | | Area (mm ²) | 484 | 924 | 1,218 | 1,225 | 2,025 | 3,906 | | | | | $\begin{array}{c} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 22 × 22 | 30.4 × 30.4 | 34.9 × 34.9 | 35 × 35 | 45 × 45 | 62.5 × 62.5 | | | | | Table 7. APEX 20K FineLine BGA Package Sizes | | | | | | | | | | |-------------------------------------------------------------------------------------------|---------|-------|---------|---------|---------|--|--|--|--| | Feature 144 Pin 324 Pin 484 Pin 672 Pin 1,020 Pin | | | | | | | | | | | Pitch (mm) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | | | Area (mm ²) | 169 | 361 | 529 | 729 | 1,089 | | | | | | $Length \times Width (mm \times mm)$ | 13 × 13 | 19×19 | 23 × 23 | 27 × 27 | 33 × 33 | | | | | Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions. Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs. If both the rising and falling edges of a clock are used in a LAB, both LAB-wide clock signals are used. The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit. Figure 4. LAB Control Signal Generation #### Notes to Figure 4: - (1) APEX 20KE devices have four dedicated clocks. - (2) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB. - (3) The SYNCCLR signal can be generated by the local interconnect or global signals. ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's self-timed RAM must only meet the setup and hold time specifications of the global clock. ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic. When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays. To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18. Figure 22. ESB in Single-Port Mode Note (1) Notes to Figure 22: - (1) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset. - (2) APEX 20KE devices have four dedicated clocks. ## **Content-Addressable Memory** In APEX 20KE devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it. CAM is used for high-speed search operations. When searching for data within a RAM block, the search is performed serially. Thus, finding a particular data word can take many cycles. CAM searches all addresses in parallel and outputs the address storing a particular word. When a match is found, a match flag is set high. Figure 23 shows the CAM block diagram. ## Implementing Logic in ROM In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate. ## **Programmable Speed/Power Control** APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo BitTM option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current. Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power. ## I/O Structure The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently. The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. ## Advanced I/O Standard Support APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II. For more information on I/O standards supported by APEX 20KE devices, see *Application Note 117 (Using Selectable I/O Standards in Altera Devices)*. The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support. Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs. When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks. Under hot socketing conditions, APEX 20KE devices will not sustain any damage, but the I/O pins will drive out. # MultiVolt I/O Interface The APEX device architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The APEX 20K VCCINT pins must always be connected to a 2.5 V power supply. With a 2.5-V V_{CCINT} level, input pins are 2.5-V, 3.3-V, and 5.0-V tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems. | Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support | | | | | | | | | |---------------------------------------------------------|------------------------------------------|--------------|--------------|--------------|-----|-----|--|--| | V _{CCIO} (V) | (V) Input Signals (V) Output Signals (V) | | | | | | | | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | | 2.5 | ✓ | √ (1) | √ (1) | ✓ | | | | | | 3.3 | ✓ | ✓ | √ (1) | √ (2) | ✓ | ✓ | | | #### Notes to Table 12: - (1) The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO} . - (2) When $V_{\rm CCIO}$ = 3.3 V, an APEX 20K device can drive a 2.5-V device with 3.3-V tolerant inputs. Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor. For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used. | Table 14. Multiplication Factor Combinations | | | | | | | |----------------------------------------------|----|--|--|--|--|--| | Clock 1 Clock 2 | | | | | | | | ×1 | ×1 | | | | | | | ×1,×2 ×2 | | | | | | | | ×1, ×2, ×4 | ×4 | | | | | | #### **APEX 20KE ClockLock Feature** APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs. The following sections describe some of the features offered by the APEX 20KE PLLs. #### External PLL Feedback The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM. #### Clock Multiplication The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$, where m and k range from 2 to 160, and n and v range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements. | Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2) | | | | | | | | |-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----|-----|------|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | t _{SKEW} | Skew delay between related ClockLock/ClockBoost-generated clocks | | 500 | ps | | | | | t _{JITTER} | Jitter on ClockLock/ClockBoost-generated clock (5) | | 200 | ps | | | | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | 50 | ps | | | | #### Notes to Table 15: - (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz. - (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time. - (4) The jitter specification is measured under long-term observation. - (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps. Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices. | Symbol | Parameter | Min | in Max | | |-----------------------|----------------------------------------------------------------------------------------------------------------------------|-----|------------|-----| | f _{OUT} | Output frequency | 25 | 170 | MHz | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | 25 | 170 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | 16 | 80 | MHz | | f _{CLK4} | Input clock frequency (ClockBoost clock multiplication factor equals 4) | 10 | 34 | MHz | | t _{OUTDUTY} | Duty cycle for ClockLock/ClockBoost-generated clock | 40 | 60 | % | | f _{CLKDEV} | Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1) | | 25,000 (2) | PPM | | t _R | Input rise time | | 5 | ns | | t _F | Input fall time | | 5 | ns | | t _{LOCK} | Time required for ClockLock/ ClockBoost to acquire lock (3) | | 10 | μѕ | | t _{SKEW} | Skew delay between related ClockLock/ ClockBoost-generated clock | 500 | 500 | ps | | t _{JITTER} | Jitter on ClockLock/ ClockBoost-generated clock (4) | | 200 | ps | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | 50 | ps | For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).* | Table 30. | Table 30. APEX 20KE Device Capacitance Note (15) | | | | | | | |--------------------|----------------------------------------------------|-------------------------------------|-----|-----|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | #### Notes to Tables 27 through 30: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle. Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10% - (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V. - (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60. - (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V. - (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL. - (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (13) This value is specified for normal device operation. The value may vary during power-up. - (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}. - (15) Capacitance is sample-tested only. Figure 33 shows the relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance on APEX 20K devices. ### Figure 39. ESB Synchronous Timing Waveforms #### **ESB Synchronous Read** #### ESB Synchronous Write (ESB Output Registers Used) Figure 40 shows the timing model for bidirectional I/O pin timing. | Symbol | Parameter | Conditions | |----------------------------|---------------------------------------------------------------------------------------|------------| | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at LAB adjacent Input Register | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at LAB adjacent Input Register | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE output register | C1 = 10 pF | | t _{XZBIDIR} | Synchronous Output Enable Register to output buffer disable delay | C1 = 10 pF | | t _{ZXBIDIR} | Synchronous Output Enable Register output buffer enable delay | C1 = 10 pF | | t _{INSUBIDIRPLL} | Setup time for bidirectional pins with PLL clock at LAB adjacent Input Register | | | t _{INHBIDIRPLL} | Hold time for bidirectional pins with PLL clock at LAB adjacent Input Register | | | [†] OUTCOBIDIRPLL | Clock-to-output delay for bidirectional pins with PLL clock at IOE output register | C1 = 10 pF | | t _{XZBIDIRPLL} | Synchronous Output Enable Register to output buffer disable delay with PLL | C1 = 10 pF | | t _{ZXBIDIRPLL} | Synchronous Output Enable Register output buffer enable delay with PLL | C1 = 10 pF | Note to Tables 38 and 39: ⁽¹⁾ These timing parameters are sample-tested only. | Symbol | -1 Spee | d Grade | -2 Speed Grade | | -3 Speed Grade | | Units | |-------------------------|---------|---------|----------------|-----|----------------|-----|-------| | | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.5 | | 0.6 | | 0.8 | | ns | | t _H | 0.7 | | 0.8 | | 1.0 | | ns | | t _{CO} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{LUT} | | 0.8 | | 1.0 | | 1.3 | ns | | t _{ESBRC} | | 1.7 | | 2.1 | | 2.4 | ns | | t _{ESBWC} | | 5.7 | | 6.9 | | 8.1 | ns | | t _{ESBWESU} | 3.3 | | 3.9 | | 4.6 | | ns | | t _{ESBDATASU} | 2.2 | | 2.7 | | 3.1 | | ns | | t _{ESBDATAH} | 0.6 | | 0.8 | | 0.9 | | ns | | t _{ESBADDRSU} | 2.4 | | 2.9 | | 3.3 | | ns | | t _{ESBDATACO1} | | 1.3 | | 1.6 | | 1.8 | ns | | t _{ESBDATACO2} | | 2.6 | | 3.1 | | 3.6 | ns | | t _{ESBDD} | | 2.5 | | 3.3 | | 3.6 | ns | | t _{PD} | | 2.5 | | 3.0 | | 3.6 | ns | | t _{PTERMSU} | 2.3 | | 2.7 | | 3.2 | | ns | | t _{PTERMCO} | | 1.5 | | 1.8 | | 2.1 | ns | | t _{F1-4} | | 0.5 | | 0.6 | | 0.7 | ns | | t _{F5-20} | | 1.6 | | 1.7 | | 1.8 | ns | | t _{F20+} | | 2.2 | | 2.2 | | 2.3 | ns | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{CLRP} | 0.3 | | 0.4 | | 0.4 | | ns | | t _{PREP} | 0.4 | | 0.5 | | 0.5 | | ns | | t _{ESBCH} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{ESBCL} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{ESBWP} | 1.6 | | 1.9 | | 2.2 | | ns | | t _{ESBRP} | 1.0 | | 1.3 | | 1.4 | | ns | #### Notes to Tables 43 through 48: - (1) This parameter is measured without using ClockLock or ClockBoost circuits. - (2) This parameter is measured using ClockLock or ClockBoost circuits. Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices. | Table 49. EP20K30E f _{MAX} LE Timing Microparameters | | | | | | | | | |---------------------------------------------------------------|------|------|------|------|------|------|------|--| | Symbol | -1 | | -2 | | -3 | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{SU} | 0.01 | | 0.02 | | 0.02 | | ns | | | t _H | 0.11 | | 0.16 | | 0.23 | | ns | | | t _{CO} | | 0.32 | | 0.45 | | 0.67 | ns | | | t _{LUT} | | 0.85 | | 1.20 | | 1.77 | ns | | Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices. | Table 55. EP20K60E f _{MAX} LE Timing Microparameters | | | | | | | | | |---------------------------------------------------------------|----------|------|------|------|------|------|------|--| | Symbol | ymbol -1 | | -2 | | -3 | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{SU} | 0.17 | | 0.15 | | 0.16 | | ns | | | t _H | 0.32 | | 0.33 | | 0.39 | | ns | | | t _{CO} | | 0.29 | | 0.40 | | 0.60 | ns | | | t _{LUT} | | 0.77 | | 1.07 | | 1.59 | ns | | | Symbol | - | 1 | - | -2 | -; | 3 | Unit | |-------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.83 | | 2.57 | | 3.79 | ns | | t _{ESBSRC} | | 2.46 | | 3.26 | | 4.61 | ns | | t _{ESBAWC} | | 3.50 | | 4.90 | | 7.23 | ns | | t _{ESBSWC} | | 3.77 | | 4.90 | | 6.79 | ns | | t _{ESBWASU} | 1.59 | | 2.23 | | 3.29 | | ns | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWDSU} | 1.75 | | 2.46 | | 3.62 | | ns | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBRASU} | 1.76 | | 2.47 | | 3.64 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWESU} | 1.68 | | 2.49 | | 3.87 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.08 | | 0.43 | | 1.04 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.29 | | 0.72 | | 1.46 | | ns | | t _{ESBRADDRSU} | 0.36 | | 0.81 | | 1.58 | | ns | | t _{ESBDATACO1} | | 1.06 | | 1.24 | | 1.55 | ns | | t _{ESBDATACO2} | | 2.39 | | 3.35 | | 4.94 | ns | | t _{ESBDD} | | 3.50 | | 4.90 | | 7.23 | ns | | t _{PD} | | 1.72 | | 2.41 | | 3.56 | ns | | t _{PTERMSU} | 0.99 | | 1.56 | | 2.55 | | ns | | t _{PTERMCO} | | 1.07 | | 1.26 | | 1.08 | ns | | Table 87. EP2 | Table 87. EP20K400E f _{MAX} Routing Delays | | | | | | | | | | |--------------------|-----------------------------------------------------|------|--------|----------------|-----|---------|------|--|--|--| | Symbol | -1 Speed Grade | | -2 Spe | -2 Speed Grade | | d Grade | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.25 | | 0.25 | | 0.26 | ns | | | | | t _{F5-20} | | 1.01 | | 1.12 | | 1.25 | ns | | | | | t _{F20+} | | 3.71 | | 3.92 | | 4.17 | ns | | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |--------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.36 | | 2.22 | | 2.35 | | ns | | t _{CL} | 1.36 | | 2.26 | | 2.35 | | ns | | t _{CLRP} | 0.18 | | 0.18 | | 0.19 | | ns | | t _{PREP} | 0.18 | | 0.18 | | 0.19 | | ns | | t _{ESBCH} | 1.36 | | 2.26 | | 2.35 | | ns | | t _{ESBCL} | 1.36 | | 2.26 | | 2.35 | | ns | | t _{ESBWP} | 1.17 | | 1.38 | | 1.56 | | ns | | t _{ESBRP} | 0.94 | | 1.09 | | 1.25 | | ns | | Table 89. EP20K400E External Timing Parameters | | | | | | | | | | |------------------------------------------------|------------|---------|----------------|------|----------|---------|------|--|--| | Symbol | -1 Speed G | d Grade | -2 Speed Grade | | -3 Speed | i Grade | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{INSU} | 2.51 | | 2.64 | | 2.77 | | ns | | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | | t _{OUTCO} | 2.00 | 5.25 | 2.00 | 5.79 | 2.00 | 6.32 | ns | | | | t _{INSUPLL} | 3.221 | | 3.38 | | - | | ns | | | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | | | t _{OUTCOPLL} | 0.50 | 2.25 | 0.50 | 2.45 | - | - | ns | | | | Table 92. EP20K | 600E f _{MAX} ESE | 3 Timing Micr | oparameters | | | | | |-------------------------|---------------------------|---------------|-------------|----------|---------|---------|------| | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.67 | | 2.39 | | 3.11 | ns | | t _{ESBSRC} | | 2.27 | | 3.07 | | 3.86 | ns | | t _{ESBAWC} | | 3.19 | | 4.56 | | 5.93 | ns | | t _{ESBSWC} | | 3.51 | | 4.62 | | 5.72 | ns | | t _{ESBWASU} | 1.46 | | 2.08 | | 2.70 | | ns | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWDSU} | 1.60 | | 2.29 | | 2.97 | | ns | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBRASU} | 1.61 | | 2.30 | | 2.99 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWESU} | 1.49 | | 2.30 | | 3.11 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.01 | | 0.35 | | 0.71 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.19 | | 0.62 | | 1.06 | | ns | | t _{ESBRADDRSU} | 0.25 | | 0.71 | | 1.17 | | ns | | t _{ESBDATACO1} | | 1.01 | | 1.19 | | 1.37 | ns | | t _{ESBDATACO2} | | 2.18 | | 3.12 | | 4.05 | ns | | t _{ESBDD} | | 3.19 | | 4.56 | | 5.93 | ns | | t _{PD} | | 1.57 | | 2.25 | | 2.92 | ns | | t _{PTERMSU} | 0.85 | | 1.43 | | 2.01 | | ns | | t _{PTERMCO} | | 1.03 | | 1.21 | | 1.39 | ns | | Table 93. EP2 | Table 93. EP20K600E f _{MAX} Routing Delays | | | | | | | | | |--------------------|-----------------------------------------------------|------|----------------|------|----------------|------|------|--|--| | Symbol | ol -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{F1-4} | | 0.22 | | 0.25 | | 0.26 | ns | | | | t _{F5-20} | | 1.26 | | 1.39 | | 1.52 | ns | | | | t _{F20+} | | 3.51 | | 3.88 | | 4.26 | ns | | | | Table 99. EP2 | OK1000E f _{MAX} | Routing Dela | ys | | | | | |--------------------|--------------------------|--------------|---------|----------------|-----|----------|------| | Symbol | -1 Speed Grade | | -2 Spec | -2 Speed Grade | | ed Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{F1-4} | | 0.27 | | 0.27 | | 0.27 | ns | | t _{F5-20} | | 1.45 | | 1.63 | | 1.75 | ns | | t _{F20+} | | 4.15 | | 4.33 | | 4.97 | ns | | Symbol | -1 Spee | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | |--------------------|---------|----------------|------|----------------|------|----------------|----| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CLRP} | 0.20 | | 0.20 | | 0.20 | | ns | | t _{PREP} | 0.20 | | 0.20 | | 0.20 | | ns | | t _{ESBCH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBCL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBWP} | 1.28 | | 1.51 | | 1.65 | | ns | | t _{ESBRP} | 1.11 | | 1.29 | | 1.41 | | ns | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | |-----------------------|----------------|------|---------|----------------|------|----------------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.70 | | 2.84 | | 2.97 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.75 | 2.00 | 6.33 | 2.00 | 6.90 | ns | | t _{INSUPLL} | 1.64 | | 2.09 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | t _{OUTCOPLL} | 0.50 | 2.25 | 0.50 | 2.99 | - | - | ns | SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files. ## **Configuration Schemes** The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up. Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 111. Data Sources for Configura | ntion | |---------------------------------------|------------------------------------------------------------------------------------------| | Configuration Scheme | Data Source | | Configuration device | EPC1, EPC2, EPC16 configuration devices | | Passive serial (PS) | MasterBlaster or ByteBlasterMV download cable or serial data source | | Passive parallel asynchronous (PPA) | Parallel data source | | Passive parallel synchronous (PPS) | Parallel data source | | JTAG | MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File | For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*) ## **Device Pin-Outs** See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information