E·XFL

Intel - EP20K400FC672-1X Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	1664
Number of Logic Elements/Cells	16640
Total RAM Bits	212992
Number of I/O	502
Number of Gates	1052000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k400fc672-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations

- Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions
- NativeLink[™] integration with popular synthesis, simulation, and timing analysis tools
- Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
- Supports popular revision-control software packages including PVCS, Revision Control System (RCS), and Source Code Control System (SCCS)

 Table 4. APEX 20K QFP, BGA & PGA Package Options & I/O Count
 Notes (1), (2)

Device	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP	356-Pin BGA	652-Pin BGA	655-Pin PGA
EP20K30E	92	125				
EP20K60E	92	148	151	196		
EP20K100	101	159	189	252		
EP20K100E	92	151	183	246		
EP20K160E	88	143	175	271		
EP20K200		144	174	277		
EP20K200E		136	168	271	376	
EP20K300E			152		408	
EP20K400					502	502
EP20K400E					488	
EP20K600E					488	
EP20K1000E					488	
EP20K1500E					488	

Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs.

If both the rising and falling edges of a clock are used in a LAB, both LABwide clock signals are used.

The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- APEX 20KE devices have four dedicated clocks. (1)
- The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the (2) LAB.
- (3)The SYNCCLR signal can be generated by the local interconnect or global signals.

Figure 6. APEX 20K Carry Chain

LAB-Wide Normal Mode (1) Clock Enable (2) Carry-In (3) Cascade-In LE-Out data1 data2 PRN 4-Input D Q LUT data3 LE-Out ENA data4 CLRN Cascade-Out LAB-Wide Arithmetic Mode Clock Enable (2) Carry-In Cascade-In LE-Out PRN data1 Q D 3-Input data2 LUT LE-Out ENA CLRN 3-Input LUT Cascade-Out Carry-Out

Figure 8. APEX 20K LE Operating Modes

Notes to Figure 8:

- (1) LEs in normal mode support register packing.
- (2) There are two LAB-wide clock enables per LAB.
- (3) When using the carry-in in normal mode, the packed register feature is unavailable.
- (4) A register feedback multiplexer is available on LE1 of each LAB.
- (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB.
- (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB.

Table 9. AP	Table 9. APEX 20K Routing Scheme									
Source					De	stination				
	Row I/O Pin	Column I/O Pin	LE	ESB	Local Interconnect	MegaLAB Interconnect	Row FastTrack Interconnect	Column FastTrack Interconnect	FastRow Interconnect	
Row I/O Pin					✓	~	~	~		
Column I/O Pin								~	✓ (1)	
LE					~	~	~	~		
ESB					 Image: A set of the set of the	~	~	~		
Local Interconnect	~	~	~	~						
MegaLAB Interconnect					~					
Row FastTrack Interconnect						~		~		
Column FastTrack Interconnect						~	~			
FastRow Interconnect					✓ (1)					

Note to Table 9:

(1) This connection is supported in APEX 20KE devices only.

Product-Term Logic

The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode.

ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's selftimed RAM must only meet the setup and hold time specifications of the global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays.

To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18.

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.

For more information on APEX 20KE devices and CAM, see *Application* Note 119 (Implementing High-Speed Search Applications with APEX CAM).

Driving Signals to the ESB

ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic.

(1) APEX 20KE devices have four dedicated clocks.

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used.

Table 14. Multiplication Factor Combinations					
Clock 1	Clock 2				
×1	×1				
×1, ×2	×2				
×1, ×2, ×4	×4				

APEX 20KE ClockLock Feature

APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KE PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM.

Clock Multiplication

The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$, where *m* and *k* range from 2 to 160, and *n* and *v* range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

Notes to Table 16:

- (1) To implement the ClockLock and ClockBoost circuitry with the Quartus II software, designers must specify the input frequency. The Quartus II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The *f_{CLKDEV}* parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{IITTER} specification is measured under long-term observation.

Tables 17 and 18 summarize the ClockLock and ClockBoost parameters for APEX 20KE devices.

Table 17. APEX 20KE ClockLock & ClockBoost Parameters Note (1)									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
t _R	Input rise time				5	ns			
t _F	Input fall time				5	ns			
t _{INDUTY}	Input duty cycle		40		60	%			
t _{INJITTER}	Input jitter peak-to-peak				2% of input period	peak-to- peak			
	Jitter on ClockLock or ClockBoost- generated clock				0.35% of output period	RMS			
t _{outduty}	Duty cycle for ClockLock or ClockBoost-generated clock		45		55	%			
t _{LOCK} <i>(2)_, (3)</i>	Time required for ClockLock or ClockBoost to acquire lock				40	μs			

Figure 34 shows the typical output drive characteristics of APEX 20K devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compatible with the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). 5-V tolerant APEX 20K devices in the -1 speed grade are 5-V PCI compliant over all operating conditions.

Altera Corporation

Figure 40. Synchronous Bidirectional Pin External Timing

Notes to Figure 40:

- (1) The output enable and input registers are LE registers in the LAB adjacent to a bidirectional row pin. The output enable register is set with "Output Enable Routing= Signal-Pin" option in the Quartus II software.
- (2) The LAB adjacent input register is set with "Decrease Input Delay to Internal Cells= Off". This maintains a zero hold time for lab adjacent registers while giving a fast, position independent setup time. A faster setup time with zero hold time is possible by setting "Decrease Input Delay to Internal Cells= ON" and moving the input register farther away from the bidirectional pin. The exact position where zero hold occurs with the minimum setup time, varies with device density and speed grade.

Table 31 describes the f_{MAX} timing parameters shown in Figure 36 on page 68.

Table 31. APEX 20K f _{MAX} Timing Parameters (Part 1 of 2)						
Symbol	Parameter					
t _{SU}	LE register setup time before clock					
t _H	LE register hold time after clock					
t _{CO}	LE register clock-to-output delay					
t _{LUT}	LUT delay for data-in					
t _{ESBRC}	ESB Asynchronous read cycle time					
t _{ESBWC}	ESB Asynchronous write cycle time					
t _{ESBWESU}	ESB WE setup time before clock when using input register					
t _{ESBDATASU}	ESB data setup time before clock when using input register					
t _{ESBDATAH}	ESB data hold time after clock when using input register					
t _{ESBADDRSU}	ESB address setup time before clock when using input registers					
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers					

Note to Tables 32 and 33:

(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model.

Table 34. APEX 20KE LE Timing Microparameters						
Symbol	Parameter					
t _{SU}	LE register setup time before clock					
t _H	LE register hold time after clock					
t _{CO}	LE register clock-to-output delay					
t _{LUT}	LUT delay for data-in to data-out					

Table 35. APEX 20KE ESB Timing Microparameters						
Symbol	Parameter					
t _{ESBARC}	ESB Asynchronous read cycle time					
t _{ESBSRC}	ESB Synchronous read cycle time					
t _{ESBAWC}	ESB Asynchronous write cycle time					
t _{ESBSWC}	ESB Synchronous write cycle time					
t _{ESBWASU}	ESB write address setup time with respect to WE					
t _{ESBWAH}	ESB write address hold time with respect to WE					
t _{ESBWDSU}	ESB data setup time with respect to WE					
t _{ESBWDH}	ESB data hold time with respect to WE					
t _{ESBRASU}	ESB read address setup time with respect to RE					
t _{ESBRAH}	ESB read address hold time with respect to RE					
t _{ESBWESU}	ESB WE setup time before clock when using input register					
t _{ESBWEH}	ESB WE hold time after clock when using input register					
t _{ESBDATASU}	ESB data setup time before clock when using input register					
t _{ESBDATAH}	ESB data hold time after clock when using input register					
t _{ESBWADDRSU}	ESB write address setup time before clock when using input					
	registers					
t _{ESBRADDRSU}	ESB read address setup time before clock when using input					
	registers					
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers					
t _{ESBDATACO2}	ESB clock-to-output delay without output registers					
t _{ESBDD}	ESB data-in to data-out delay for RAM mode					
t _{PD}	ESB Macrocell input to non-registered output					
t PTERMSU	ESB Macrocell register setup time before clock					
t _{PTEBMCO}	ESB Macrocell register clock-to-output delay					

Table 52. EP20K30E Minimum Pulse Width Timing Parameters									
Symbol	Symbol -1		-	2	-3		Unit		
	Min	Max	Min	Мах	Min	Max			
t _{CH}	0.55		0.78		1.15		ns		
t _{CL}	0.55		0.78		1.15		ns		
t _{CLRP}	0.22		0.31		0.46		ns		
t _{PREP}	0.22		0.31		0.46		ns		
t _{ESBCH}	0.55		0.78		1.15		ns		
t _{ESBCL}	0.55		0.78		1.15		ns		
t _{ESBWP}	1.43		2.01		2.97		ns		
t _{ESBRP}	1.15		1.62		2.39		ns		

Table 53. EP20K30E External Timing Parameters										
Symbol	-1			-2	-3	-3				
	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.02		2.13		2.24		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	4.88	2.00	5.36	2.00	5.88	ns			
t _{INSUPLL}	2.11		2.23		-		ns			
t _{INHPLL}	0.00		0.00		-		ns			
t _{outcopll}	0.50	2.60	0.50	2.88	-	-	ns			

Table 54. EP20K30E External Bidirectional Timing Parameters								
Symbol	-	1	-	2		Unit		
	Min	Max	Min	Max	Min	Max		
t _{insubidir}	1.85		1.77		1.54		ns	
t _{inhbidir}	0.00		0.00		0.00		ns	
t _{outcobidir}	2.00	4.88	2.00	5.36	2.00	5.88	ns	
t _{XZBIDIR}		7.48		8.46		9.83	ns	
t _{ZXBIDIR}		7.48		8.46		9.83	ns	
t _{insubidirpll}	4.12		4.24		-		ns	
t _{inhbidirpll}	0.00		0.00		-		ns	
t _{outcobidirpll}	0.50	2.60	0.50	2.88	-	-	ns	
t _{xzbidirpll}		5.21		5.99		-	ns	
t _{ZXBIDIRPLL}		5.21		5.99		-	ns	

Table 57. EP20K60E f _{MAX} Routing Delays									
Symbol		·1	-2		-	Unit			
	Min	Max	Min	Max	Min	Max			
t _{F1-4}		0.24		0.26		0.30	ns		
t _{F5-20}		1.45		1.58		1.79	ns		
t _{F20+}		1.96		2.14		2.45	ns		

Table 58. EP20K60E Minimum Pulse Width Timing Parameters								
Symbol	-	-1		-2		-3		
	Min	Max	Min	Max	Min	Мах		
t _{CH}	2.00		2.50		2.75		ns	
t _{CL}	2.00		2.50		2.75		ns	
t _{CLRP}	0.20		0.28		0.41		ns	
t _{PREP}	0.20		0.28		0.41		ns	
t _{ESBCH}	2.00		2.50		2.75		ns	
t _{ESBCL}	2.00		2.50		2.75		ns	
t _{ESBWP}	1.29		1.80		2.66		ns	
t _{ESBRP}	1.04		1.45		2.14		ns	

Table 59. EP20K60E External Timing Parameters							
Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.03		2.12		2.23		ns
t _{INH}	0.00		0.00		0.00		ns
t _{outco}	2.00	4.84	2.00	5.31	2.00	5.81	ns
tinsupll	1.12		1.15		-		ns
t _{INHPLL}	0.00		0.00		-		ns
t _{outcopll}	0.50	3.37	0.50	3.69	-	-	ns

Table 68. EP20K160E f _{MAX} ESB Timing Microparameters							
Symbol	-	1		-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.65		2.02		2.11	ns
t _{ESBSRC}		2.21		2.70		3.11	ns
t _{ESBAWC}		3.04		3.79		4.42	ns
t _{ESBSWC}		2.81		3.56		4.10	ns
t _{ESBWASU}	0.54		0.66		0.73		ns
t _{ESBWAH}	0.36		0.45		0.47		ns
t _{ESBWDSU}	0.68		0.81		0.94		ns
t _{ESBWDH}	0.36		0.45		0.47		ns
t _{ESBRASU}	1.58		1.87		2.06		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.41		1.71		2.00		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.02		-0.03		0.09		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.14		0.17		0.35		ns
t _{ESBRADDRSU}	0.21		0.27		0.43		ns
t _{ESBDATACO1}		1.04		1.30		1.46	ns
t _{ESBDATACO2}		2.15		2.70		3.16	ns
t _{ESBDD}		2.69		3.35		3.97	ns
t _{PD}		1.55		1.93		2.29	ns
t _{PTERMSU}	1.01		1.23		1.52		ns
t _{PTERMCO}		1.06		1.32		1.04	ns

Table 72. EP20K160E External Bidirectional Timing Parameters							
Symbol	-1		-:	2	-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{insubidir}	2.86		3.24		3.54		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	5.07	2.00	5.59	2.00	6.13	ns
t _{XZBIDIR}		7.43		8.23		8.58	ns
t _{ZXBIDIR}		7.43		8.23		8.58	ns
t _{insubidirpll}	4.93		5.48		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
t _{outcobidirpll}	0.50	3.00	0.50	3.35	-	-	ns
t _{XZBIDIRPLL}		5.36		5.99		-	ns
t _{ZXBIDIRPLL}		5.36		5.99		-	ns

Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

Table 73. EP20K200E f _{MAX} LE Timing Microparameters							
Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.23		0.24		0.26		ns
t _H	0.23		0.24		0.26		ns
t _{CO}		0.26		0.31		0.36	ns
t _{LUT}		0.70		0.90		1.14	ns

Altera Corporation

٦

Table 86. EP20K400E f _{MAX} ESB Timing Microparameters							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.67		1.91		1.99	ns
t _{ESBSRC}		2.30		2.66		2.93	ns
t _{ESBAWC}		3.09		3.58		3.99	ns
t _{ESBSWC}		3.01		3.65		4.05	ns
t _{ESBWASU}	0.54		0.63		0.65		ns
t _{ESBWAH}	0.36		0.43		0.42		ns
t _{ESBWDSU}	0.69		0.77		0.84		ns
t _{ESBWDH}	0.36		0.43		0.42		ns
t _{ESBRASU}	1.61		1.77		1.86		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.35		1.47		1.61		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.18		-0.30		-0.27		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	-0.02		-0.11		-0.03		ns
t _{ESBRADDRSU}	0.06		-0.01		-0.05		ns
t _{ESBDATACO1}		1.16		1.40		1.54	ns
t _{ESBDATACO2}		2.18		2.55		2.85	ns
t _{ESBDD}		2.73		3.17		3.58	ns
t _{PD}		1.57		1.83		2.07	ns
t _{PTERMSU}	0.92		0.99		1.18		ns
t _{PTERMCO}		1.18		1.43		1.17	ns

Table 98. EP20K1000E f _{MAX} ESB Timing Microparameters							
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.78		2.02		1.95	ns
t _{ESBSRC}		2.52		2.91		3.14	ns
t _{ESBAWC}		3.52		4.11		4.40	ns
t _{ESBSWC}		3.23		3.84		4.16	ns
t _{ESBWASU}	0.62		0.67		0.61		ns
t _{ESBWAH}	0.41		0.55		0.55		ns
t _{ESBWDSU}	0.77		0.79		0.81		ns
t _{ESBWDH}	0.41		0.55		0.55		ns
t _{ESBRASU}	1.74		1.92		1.85		ns
t _{ESBRAH}	0.00		0.01		0.23		ns
t _{ESBWESU}	2.07		2.28		2.41		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.25		0.27		0.29		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.11		0.04		0.11		ns
t _{ESBRADDRSU}	0.14		0.11		0.16		ns
t _{ESBDATACO1}		1.29		1.50		1.63	ns
t _{ESBDATACO2}		2.55		2.99		3.22	ns
t _{ESBDD}		3.12		3.57		3.85	ns
t _{PD}		1.84		2.13		2.32	ns
t _{PTERMSU}	1.08		1.19		1.32		ns
t _{PTERMCO}		1.31		1.53		1.66	ns

Г

٦

SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up.

Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 111. Data Sources for Configuration				
Configuration Scheme	Data Source			
Configuration device	EPC1, EPC2, EPC16 configuration devices			
Passive serial (PS)	MasterBlaster or ByteBlasterMV download cable or serial data source			
Passive parallel asynchronous (PPA)	Parallel data source			
Passive parallel synchronous (PPS)	Parallel data source			
JTAG	MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File			

For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information