Intel - EP20K400FI672-2V Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	1664
Number of Logic Elements/Cells	16640
Total RAM Bits	212992
Number of I/O	502
Number of Gates	1052000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k400fi672-2v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Flexible clock management circuitry with up to four phase-locked loops (PLLs)
 - Built-in low-skew clock tree
 - Up to eight global clock signals
 - ClockLock[®] feature reducing clock delay and skew
 - ClockBoost[®] feature providing clock multiplication and division
 - ClockShiftTM programmable clock phase and delay shifting
- Powerful I/O features
 - Compliant with peripheral component interconnect Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V operation at 33 or 66 MHz and 32 or 64 bits
 - Support for high-speed external memories, including DDR SDRAM and ZBT SRAM (ZBT is a trademark of Integrated Device Technology, Inc.)
 - Bidirectional I/O performance $(t_{CO} + t_{SU})$ up to 250 MHz
 - LVDS performance up to 840 Mbits per channel
 - Direct connection from I/O pins to local interconnect providing fast t_{CO} and t_{SU} times for complex logic
 - MultiVolt I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
 - Programmable clamp to V_{CCIO}
 - Individual tri-state output enable control for each pin
 - Programmable output slew-rate control to reduce switching noise
 - Support for advanced I/O standards, including low-voltage differential signaling (LVDS), LVPECL, PCI-X, AGP, CTT, stubseries terminated logic (SSTL-3 and SSTL-2), Gunning transceiver logic plus (GTL+), and high-speed terminated logic (HSTL Class I)
 - Pull-up on I/O pins before and during configuration
- Advanced interconnect structure
 - Four-level hierarchical FastTrack[®] Interconnect structure providing fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect
- Advanced packaging options
 - Available in a variety of packages with 144 to 1,020 pins (see Tables 4 through 7)
 - FineLine BGA[®] packages maximize board space efficiency
- Advanced software support
 - Software design support and automatic place-and-route provided by the Altera[®] Quartus[®] II development system for

Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20K LAB.

APEX 20K devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas. This feature minimizes use of the MegaLAB and FastTrack interconnect, providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect.

Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other.

Figure 11. Driving the FastTrack Interconnect

APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow[™] interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Programmable Speed/Power Control

APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo Bit[™] option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.

Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.

I/O Structure

The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently.

The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time.

Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software.

Table 11. APEX 20KE Programmable Delay Chains						
Programmable Delays	Quartus II Logic Option					
Input Pin to Core Delay	Decrease input delay to internal cells					
Input Pin to Input Register Delay	Decrease input delay to input registers					
Core to Output Register Delay	Decrease input delay to output register					
Output Register t_{CO} Delay	Increase delay to output pin					
Clock Enable Delay	Increase clock enable delay					

The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

Figure 26. APEX 20KE Bidirectional I/O Registers N

Notes to Figure 26:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect.

Table 18. /	Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1)										
Symbol	Parameter	I/O Standard	-1X Spe	ed Grade	-2X Speed	-2X Speed Grade					
			Min	Max	Min	Max					
f _{IN}	Input clock frequency	3.3-V LVTTL	1.5	290	1.5	257	MHz				
		2.5-V LVTTL	1.5	281	1.5	250	MHz				
		1.8-V LVTTL	1.5	272	1.5	243	MHz				
		GTL+	1.5	303	1.5	261	MHz				
		SSTL-2 Class I	1.5	291	1.5	253	MHz				
		SSTL-2 Class II	1.5	291	1.5	253	MHz				
		SSTL-3 Class I	1.5	300	1.5	260	MHz				
		SSTL-3 Class II	1.5	300	1.5	260	MHz				
		LVDS	1.5	420	1.5	350	MHz				

Notes to Tables 17 and 18:

 All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.

- (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK_ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz ð f_{VCO} ð 840 MHz for LVDS mode.

SignalTap Embedded Logic Analyzer

APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured.

Note to Tables 32 and 33:

(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model.

Table 34. APEX 20KE LE Timing Microparameters						
Symbol Parameter						
t _{SU}	LE register setup time before clock					
t _H	LE register hold time after clock					
t _{CO}	LE register clock-to-output delay					
t _{LUT}	LUT delay for data-in to data-out					

Table 35. APEX 20KE ESB Timing Microparameters						
Symbol	Parameter					
t _{ESBARC}	ESB Asynchronous read cycle time					
t _{ESBSRC}	ESB Synchronous read cycle time					
t _{ESBAWC}	ESB Asynchronous write cycle time					
t _{ESBSWC}	ESB Synchronous write cycle time					
t _{ESBWASU}	ESB write address setup time with respect to WE					
t _{ESBWAH}	ESB write address hold time with respect to WE					
t _{ESBWDSU}	ESB data setup time with respect to WE					
t _{ESBWDH}	ESB data hold time with respect to WE					
t _{ESBRASU}	ESB read address setup time with respect to RE					
t _{ESBRAH}	ESB read address hold time with respect to RE					
t _{ESBWESU}	ESB WE setup time before clock when using input register					
t _{ESBWEH}	ESB WE hold time after clock when using input register					
t _{ESBDATASU}	ESB data setup time before clock when using input register					
t _{ESBDATAH}	ESB data hold time after clock when using input register					
t _{ESBWADDRSU}	ESB write address setup time before clock when using input					
	registers					
t _{ESBRADDRSU}	ESB read address setup time before clock when using input					
	registers					
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers					
t _{ESBDATACO2}	ESB clock-to-output delay without output registers					
t _{ESBDD}	ESB data-in to data-out delay for RAM mode					
t _{PD}	ESB Macrocell input to non-registered output					
t PTERMSU	ESB Macrocell register setup time before clock					
t _{PTEBMCO}	ESB Macrocell register clock-to-output delay					

Table 39. APEX 20KE External Bidirectional Timing Parameters Note (1)							
Symbol	Parameter	Conditions					
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at LAB adjacent Input Register						
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at LAB adjacent Input Register						
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE output register	C1 = 10 pF					
t _{XZBIDIR}	Synchronous Output Enable Register to output buffer disable delay	C1 = 10 pF					
t _{ZXBIDIR}	Synchronous Output Enable Register output buffer enable delay	C1 = 10 pF					
t _{INSUBIDIRPLL}	Setup time for bidirectional pins with PLL clock at LAB adjacent Input Register						
t _{INHBIDIRPLL}	Hold time for bidirectional pins with PLL clock at LAB adjacent Input Register						
^t OUTCOBIDIRPLL	Clock-to-output delay for bidirectional pins with PLL clock at IOE output register	C1 = 10 pF					
t _{XZBIDIRPLL}	Synchronous Output Enable Register to output buffer disable delay with PLL	C1 = 10 pF					
t _{ZXBIDIRPLL}	Synchronous Output Enable Register output buffer enable delay with PLL	C1 = 10 pF					

Note to Tables 38 and 39:

Г

(1) These timing parameters are sample-tested only.

Tables 40 through 42 show the f_{MAX} timing parameters for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

Symbol	-1 Sneed Grade		-2 Snee	d Grade	-3 Sner	ed Grade	Units	
oymbol			2 0000		0 0000			
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.5		0.6		0.8		ns	
t _H	0.7		0.8		1.0		ns	
t _{CO}		0.3		0.4		0.5	ns	
t _{LUT}		0.8		1.0		1.3	ns	
t _{ESBRC}		1.7		2.1		2.4	ns	
t _{ESBWC}		5.7		6.9		8.1	ns	
t _{ESBWESU}	3.3		3.9		4.6		ns	
t _{ESBDATASU}	2.2		2.7		3.1		ns	
t _{ESBDATAH}	0.6		0.8		0.9		ns	
t _{ESBADDRSU}	2.4		2.9		3.3		ns	
t _{ESBDATACO1}		1.3		1.6		1.8	ns	
t _{ESBDATACO2}		2.6		3.1		3.6	ns	
t _{ESBDD}		2.5		3.3		3.6	ns	
t _{PD}		2.5		3.0		3.6	ns	
t _{PTERMSU}	2.3		2.6		3.2		ns	
t _{PTERMCO}		1.5		1.8		2.1	ns	
t _{F1-4}		0.5		0.6		0.7	ns	
t _{F5-20}		1.6		1.7		1.8	ns	
t _{F20+}		2.2		2.2		2.3	ns	
t _{CH}	2.0		2.5		3.0		ns	
t _{CL}	2.0		2.5		3.0		ns	
t _{CLRP}	0.3		0.4		0.4		ns	
t _{PREP}	0.5		0.5		0.5		ns	
t _{ESBCH}	2.0		2.5		3.0		ns	
t _{ESBCL}	2.0		2.5		3.0		ns	
t _{ESBWP}	1.6		1.9		2.2		ns	
t _{ESBRP}	1.0		1.3		1.4		ns	

Table 50. EP20k	Table 50. EP20K30E f _{MAX} ESB Timing Microparameters									
Symbol	-1			-2		3	Unit			
	Min	Max	Min	Max	Min	Max				
t _{ESBARC}		2.03		2.86		4.24	ns			
t _{ESBSRC}		2.58		3.49		5.02	ns			
t _{ESBAWC}		3.88		5.45		8.08	ns			
t _{ESBSWC}		4.08		5.35		7.48	ns			
t _{ESBWASU}	1.77		2.49		3.68		ns			
t _{ESBWAH}	0.00		0.00		0.00		ns			
t _{ESBWDSU}	1.95		2.74		4.05		ns			
t _{ESBWDH}	0.00		0.00		0.00		ns			
t _{ESBRASU}	1.96		2.75		4.07		ns			
t _{ESBRAH}	0.00		0.00		0.00		ns			
t _{ESBWESU}	1.80		2.73		4.28		ns			
t _{ESBWEH}	0.00		0.00		0.00		ns			
t _{ESBDATASU}	0.07		0.48		1.17		ns			
t _{ESBDATAH}	0.13		0.13		0.13		ns			
t _{ESBWADDRSU}	0.30		0.80		1.64		ns			
t _{ESBRADDRSU}	0.37		0.90		1.78		ns			
t _{ESBDATACO1}		1.11		1.32		1.67	ns			
t _{ESBDATACO2}		2.65		3.73		5.53	ns			
t _{ESBDD}		3.88		5.45		8.08	ns			
t _{PD}		1.91		2.69		3.98	ns			
t _{PTERMSU}	1.04		1.71		2.82		ns			
t _{PTERMCO}		1.13		1.34		1.69	ns			

Table 51. EP20K30E f_{MAX} Routing Delays

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.24		0.27		0.31	ns
t _{F5-20}		1.03		1.14		1.30	ns
t _{F20+}		1.42		1.54		1.77	ns

Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices.

Table 55. EP20K60E f _{MAX} LE Timing Microparameters									
Symbol -1		-1	-2		-3		Unit		
	Min	Max	Min	Max	Min	Max			
t _{SU}	0.17		0.15		0.16		ns		
t _H	0.32		0.33		0.39		ns		
t _{CO}		0.29		0.40		0.60	ns		
t _{LUT}		0.77		1.07		1.59	ns		

Table 64. EP20K100E Minimum Pulse Width Timing Parameters									
Symbol	-	-1		-2		-3			
	Min	Max	Min	Max	Min	Max			
t _{CH}	2.00		2.00		2.00		ns		
t _{CL}	2.00		2.00		2.00		ns		
t _{CLRP}	0.20		0.20		0.20		ns		
t _{PREP}	0.20		0.20		0.20		ns		
t _{ESBCH}	2.00		2.00		2.00		ns		
t _{ESBCL}	2.00		2.00		2.00		ns		
t _{ESBWP}	1.29		1.53		1.66		ns		
t _{ESBRP}	1.11		1.29		1.41		ns		

Table 65. EP20K100E External Timing Parameters									
Symbol	-1			-2		-3			
	Min	Max	Min	Max	Min	Max			
t _{INSU}	2.23		2.32		2.43		ns		
t _{INH}	0.00		0.00		0.00		ns		
t _{outco}	2.00	4.86	2.00	5.35	2.00	5.84	ns		
t _{INSUPLL}	1.58		1.66		-		ns		
t _{INHPLL}	0.00		0.00		-		ns		
t _{outcopll}	0.50	2.96	0.50	3.29	-	-	ns		

Table 66. EP20K100E External Bidirectional Timing Parameters											
Symbol	-	1	-	-2		-3	Unit				
	Min	Max	Min	Max	Min	Max					
t _{insubidir}	2.74		2.96		3.19		ns				
t _{inhbidir}	0.00		0.00		0.00		ns				
t _{outcobidir}	2.00	4.86	2.00	5.35	2.00	5.84	ns				
t _{XZBIDIR}		5.00		5.48		5.89	ns				
t _{ZXBIDIR}		5.00		5.48		5.89	ns				
t _{insubidirpll}	4.64		5.03		-		ns				
t _{inhbidirpll}	0.00		0.00		-		ns				
t _{outcobidirpll}	0.50	2.96	0.50	3.29	-	-	ns				
t _{xzbidirpll}		3.10		3.42		-	ns				
t _{ZXBIDIRPLL}		3.10		3.42		-	ns				

Table 68. EP20K	160E f _{MAX} ESE	3 Timing Micı	roparameters				
Symbol	-1			-2	-;	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.65		2.02		2.11	ns
t _{ESBSRC}		2.21		2.70		3.11	ns
t _{ESBAWC}		3.04		3.79		4.42	ns
t _{ESBSWC}		2.81		3.56		4.10	ns
t _{ESBWASU}	0.54		0.66		0.73		ns
t _{ESBWAH}	0.36		0.45		0.47		ns
t _{ESBWDSU}	0.68		0.81		0.94		ns
t _{ESBWDH}	0.36		0.45		0.47		ns
t _{ESBRASU}	1.58		1.87		2.06		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.41		1.71		2.00		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.02		-0.03		0.09		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.14		0.17		0.35		ns
t _{ESBRADDRSU}	0.21		0.27		0.43		ns
t _{ESBDATACO1}		1.04		1.30		1.46	ns
t _{ESBDATACO2}		2.15		2.70		3.16	ns
t _{ESBDD}		2.69		3.35		3.97	ns
t _{PD}		1.55		1.93		2.29	ns
t _{PTERMSU}	1.01		1.23		1.52		ns
t _{PTERMCO}		1.06		1.32		1.04	ns

Table 76. EP	Table 76. EP20K200E Minimum Pulse Width Timing Parameters											
Symbol		1	-	-2			Unit					
	Min	Max	Min	Max	Min	Max						
t _{CH}	1.36		2.44		2.65		ns					
t _{CL}	1.36		2.44		2.65		ns					
t _{CLRP}	0.18		0.19		0.21		ns					
t _{PREP}	0.18		0.19		0.21		ns					
t _{ESBCH}	1.36		2.44		2.65		ns					
t _{ESBCL}	1.36		2.44		2.65		ns					
t _{ESBWP}	1.18		1.48		1.76		ns					
t _{ESBRP}	0.95		1.17		1.41		ns					

Table 77. EP20K200E External Timing Parameters											
Symbol	-	1		-2		}	Unit				
	Min	Max	Min	Max	Min	Max					
t _{INSU}	2.24		2.35		2.47		ns				
t _{INH}	0.00		0.00		0.00		ns				
t _{outco}	2.00	5.12	2.00	5.62	2.00	6.11	ns				
t _{INSUPLL}	2.13		2.07		-		ns				
t _{INHPLL}	0.00		0.00		-		ns				
t _{outcopll}	0.50	3.01	0.50	3.36	-	-	ns				

Table 92. EP20k	600E f _{MAX} ES	B Timing Micr	oparameters				
Symbol	-1 Speed Grade		-2 Spe	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.67		2.39		3.11	ns
t _{ESBSRC}		2.27		3.07		3.86	ns
t _{ESBAWC}		3.19		4.56		5.93	ns
t _{ESBSWC}		3.51		4.62		5.72	ns
t _{ESBWASU}	1.46		2.08		2.70		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.60		2.29		2.97		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.61		2.30		2.99		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.49		2.30		3.11		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.01		0.35		0.71		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.19		0.62		1.06		ns
t _{ESBRADDRSU}	0.25		0.71		1.17		ns
t _{ESBDATACO1}		1.01		1.19		1.37	ns
t _{ESBDATACO2}		2.18		3.12		4.05	ns
t _{ESBDD}		3.19		4.56		5.93	ns
t _{PD}		1.57		2.25		2.92	ns
t _{PTERMSU}	0.85		1.43		2.01		ns
t _{PTERMCO}		1.03		1.21		1.39	ns

Table 93. EP20K600E f _{MAX} Routing Delays										
Symbol	-1 Speed Grade -2 Speed Grade -3 Speed Grade									
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.22		0.25		0.26	ns			
t _{F5-20}		1.26		1.39		1.52	ns			
t _{F20+}		3.51		3.88		4.26	ns			

Table 102. EP20K1	Table 102. EP20K1000E External Bidirectional Timing Parameters											
Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spec	Unit						
	Min	Max	Min	Max	Min	Max						
t _{insubidir}	3.22		3.33		3.51		ns					
t _{inhbidir}	0.00		0.00		0.00		ns					
toutcobidir	2.00	5.75	2.00	6.33	2.00	6.90	ns					
t _{XZBIDIR}		6.31		7.09		7.76	ns					
t _{ZXBIDIR}		6.31		7.09		7.76	ns					
t _{INSUBIDIRPL} L	3.25		3.26				ns					
t _{inhbidirpll}	0.00		0.00				ns					
t _{outcobidirpll}	0.50	2.25	0.50	2.99			ns					
t _{XZBIDIRPLL}		2.81		3.80			ns					
t _{ZXBIDIRPLL}		2.81		3.80			ns					

Tables 103 through 108 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1500E APEX 20KE devices.

Table 103. EP20K1500E f _{MAX} LE Timing Microparameters										
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.25		0.25		0.25		ns			
t _H	0.25		0.25		0.25		ns			
t _{CO}		0.28		0.32		0.33	ns			
t _{LUT}		0.80		0.95		1.13	ns			

Т

Table 104. EP20	K1500E f _{MAX} I	ESB Timing M	icroparamete	ers			
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.78		2.02		1.95	ns
t _{ESBSRC}		2.52		2.91		3.14	ns
t _{ESBAWC}		3.52		4.11		4.40	ns
t _{ESBSWC}		3.23		3.84		4.16	ns
t _{ESBWASU}	0.62		0.67		0.61		ns
t _{ESBWAH}	0.41		0.55		0.55		ns
t _{ESBWDSU}	0.77		0.79		0.81		ns
t _{ESBWDH}	0.41		0.55		0.55		ns
t _{ESBRASU}	1.74		1.92		1.85		ns
t _{ESBRAH}	0.00		0.01		0.23		ns
t _{ESBWESU}	2.07		2.28		2.41		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.25		0.27		0.29		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.11		0.04		0.11		ns
t _{ESBRADDRSU}	0.14		0.11		0.16		ns
t _{ESBDATACO1}		1.29		1.50		1.63	ns
t _{ESBDATACO2}		2.55		2.99		3.22	ns
t _{ESBDD}		3.12		3.57		3.85	ns
t _{PD}		1.84		2.13		2.32	ns
t _{PTERMSU}	1.08		1.19		1.32		ns
t _{PTERMCO}		1.31		1.53		1.66	ns

Table 105. EP20K1500E f _{MAX} Routing Delays										
Symbol	-1 Spe	-1 Speed Grade -2 Speed Grade -3 Speed Grade								
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.28		0.28		0.28	ns			
t _{F5-20}		1.36		1.50		1.62	ns			
t _{F20+}		4.43		4.48		5.07	ns			

Table 106. EP20K1500E Minimum Pulse Width Timing Parameters										
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed	Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{CH}	1.25		1.43		1.67		ns			
t _{CL}	1.25		1.43		1.67		ns			
t _{CLRP}	0.20		0.20		0.20		ns			
t _{PREP}	0.20		0.20		0.20		ns			
t _{ESBCH}	1.25		1.43		1.67		ns			
t _{ESBCL}	1.25		1.43		1.67		ns			
t _{ESBWP}	1.28		1.51		1.65		ns			
t _{ESBRP}	1.11		1.29		1.41		ns			

Table 107. EP20K1500E External Timing Parameters											
Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		l Grade	Unit				
	Min	Max	Min	Max	Min	Max					
t _{INSU}	3.09		3.30		3.58		ns				
t _{INH}	0.00		0.00		0.00		ns				
tоитсо	2.00	6.18	2.00	6.81	2.00	7.36	ns				
tINSUPLL	1.94		2.08		-		ns				
t _{INHPLL}	0.00		0.00		-		ns				
toutcopll	0.50	2.67	0.50	2.99	-	-	ns				