
E·XFI

Intel - EP20K600EBC652-1X Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Deta	i	ls

Details	
Product Status	Obsolete
Number of LABs/CLBs	2432
Number of Logic Elements/Cells	24320
Total RAM Bits	311296
Number of I/O	488
Number of Gates	1537000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	652-BGA
Supplier Device Package	652-BGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k600ebc652-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Additiona	al APEX 20K De	vice Features	Note (1)			
Feature	EP20K300E	EP20K400	EP20K400E	EP20K600E	EP20K1000E	EP20K1500E
Maximum system gates	728,000	1,052,000	1,052,000	1,537,000	1,772,000	2,392,000
Typical gates	300,000	400,000	400,000	600,000	1,000,000	1,500,000
LEs	11,520	16,640	16,640	24,320	38,400	51,840
ESBs	72	104	104	152	160	216
Maximum RAM bits	147,456	212,992	212,992	311,296	327,680	442,368
Maximum macrocells	1,152	1,664	1,664	2,432	2,560	3,456
Maximum user I/O pins	408	502	488	588	708	808

Note to Tables 1 and 2:

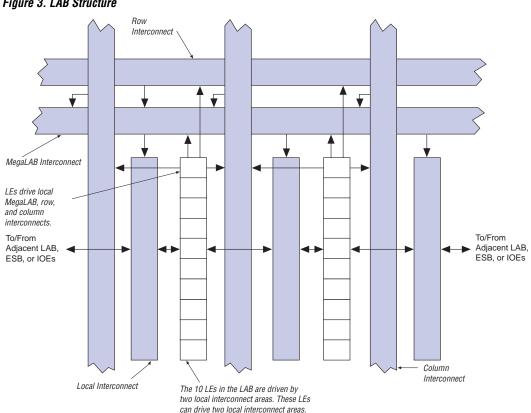
 The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates.

Additional Features

- Designed for low-power operation
 - 1.8-V and 2.5-V supply voltage (see Table 3)
 - MultiVolt[™] I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
 - ESB offering programmable power-saving mode

Feature	De	vice
	EP20K100 EP20K200 EP20K400	EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E EP20K1500E
Internal supply voltage (V _{CCINT})	2.5 V	1.8 V
MultiVolt I/O interface voltage levels (V _{CCIO})	2.5 V, 3.3 V, 5.0 V	1.8 V, 2.5 V, 3.3 V, 5.0 V (1)

Note to Table 3:


(1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor.

Feature	APEX 20K Devices	APEX 20KE Devices
MultiCore system integration	Full support	Full support
SignalTap logic analysis	Full support	Full support
32/64-Bit, 33-MHz PCI	Full compliance in -1, -2 speed grades	Full compliance in -1, -2 speed grades
32/64-Bit, 66-MHz PCI	-	Full compliance in -1 speed grade
MultiVolt I/O	2.5-V or 3.3-V V_{CCIO} V _{CCIO} selected for device Certain devices are 5.0-V tolerant	1.8-V, 2.5-V, or 3.3-V V _{CCIO} V _{CCIO} selected block-by-block 5.0-V tolerant with use of external resistor
ClockLock support	Clock delay reduction 2× and 4× clock multiplication	Clock delay reduction $m/(n \times v)$ or $m/(n \times k)$ clock multiplication Drive ClockLock output off-chip External clock feedback ClockShift LVDS support Up to four PLLs ClockShift, clock phase adjustment
Dedicated clock and input pins	Six	Eight
I/O standard support	2.5-V, 3.3-V, 5.0-V I/O 3.3-V PCI Low-voltage complementary metal-oxide semiconductor (LVCMOS) Low-voltage transistor-to-transistor logic (LVTTL)	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O 2.5-V I/O 3.3-V PCI and PCI-X 3.3-V Advanced Graphics Port (AGP) Center tap terminated (CTT) GTL+ LVCMOS LVTTL True-LVDS and LVPECL data pins (in EP20K300E and larger devices) LVDS and LVPECL signaling (in all BGA and FineLine BGA devices) LVDS and LVPECL data pins up to 156 Mbps (in -1 speed grade devices) HSTL Class I PCI-X SSTL-2 Class I and II SSTL-3 Class I and II
Memory support	Dual-port RAM FIFO RAM ROM	CAM Dual-port RAM FIFO RAM ROM

Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20K LAB.

APEX 20K devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas. This feature minimizes use of the MegaLAB and FastTrack interconnect, providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect.

Each LE has two outputs that drive the local, MegaLAB, or FastTrack Interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output.

The APEX 20K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure.

Carry Chain

The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higherorder bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20K architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as library of parameterized modules (LPM) and DesignWare functions automatically take advantage of carry chains for the appropriate functions.

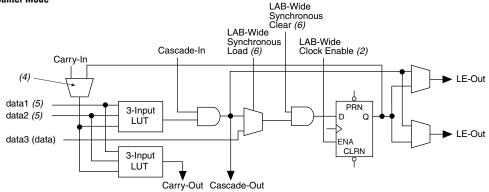
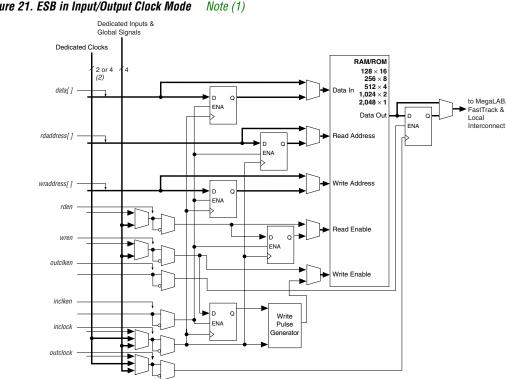

The Quartus II software Compiler creates carry chains longer than ten LEs by linking LABs together automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB[™] structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure.

Figure 6 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack Interconnect routing structures.

LAB-Wide Normal Mode (1) Clock Enable (2) Carry-In (3) Cascade-In LE-Out data1 data2 PRN 4-Input D Q LUT data3 LE-Out ENA data4 CLRN Cascade-Out LAB-Wide Arithmetic Mode Clock Enable (2) Carry-In Cascade-In LE-Out PRN data1 Q D 3-Input data2 LUT LE-Out ENA CLRN 3-Input LUT Cascade-Out Carry-Out

Figure 8. APEX 20K LE Operating Modes



Notes to Figure 8:

- (1) LEs in normal mode support register packing.
- (2) There are two LAB-wide clock enables per LAB.
- (3) When using the carry-in in normal mode, the packed register feature is unavailable.
- (4) A register feedback multiplexer is available on LE1 of each LAB.
- (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB.
- (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB.

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode

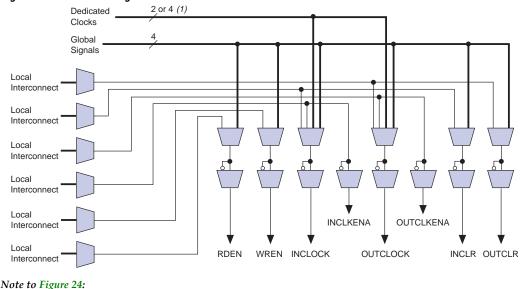
Notes to Figure 21:

All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)APEX 20KE devices have four dedicated clocks. (2)

Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

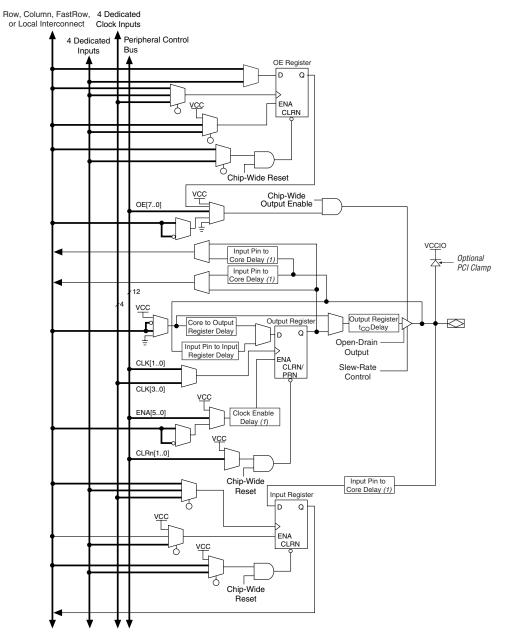
Altera Corporation



For more information on APEX 20KE devices and CAM, see *Application* Note 119 (Implementing High-Speed Search Applications with APEX CAM).

Driving Signals to the ESB

ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic.



(1) APEX 20KE devices have four dedicated clocks.

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

Figure 26. APEX 20KE Bidirectional I/O Registers N

Notes to Figure 26:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Under hot socketing conditions, APEX 20KE devices will not sustain any damage, but the I/O pins will drive out.

MultiVolt I/O Interface

The APEX device architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The APEX 20K VCCINT pins must always be connected to a 2.5 V power supply. With a 2.5-V V_{CCINT} level, input pins are 2.5-V, 3.3-V, and 5.0-V tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems.

Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support						
V _{CCIO} (V)	Ir	put Signals	(V)	Outp	ut Signals	(V)
-	2.5	3.3	5.0	2.5	3.3	5.0
2.5	\checkmark	√(1)	√ (1)	 ✓ 		
3.3	\checkmark	\checkmark	√ (1)	√ (2)	\checkmark	 Image: A start of the start of

Table 12 summarizes 5.0-V tolerant APEX 20K MultiVolt I/O support.

Notes to Table 12:

- The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}.
- (2) When $V_{CCIO} = 3.3 \text{ V}$, an APEX 20K device can drive a 2.5-V device with 3.3-V tolerant inputs.

Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pullup resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pullup resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor. APEX 20KE devices also support the MultiVolt I/O interface feature. The APEX 20KE VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels are sometime with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KE device is 5.0-V tolerant with the addition of a resistor.

Table 13 summarizes APEX 20KE MultiVolt I/O support.

Table 13. APEX 20KE MultiVolt I/O Support Note (1)								
V _{CCIO} (V)	Input Signals (V) Output Signals (V)							
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0
1.8	~	\checkmark	>		\checkmark			
2.5	\checkmark	\checkmark	\checkmark			 Image: A start of the start of		
3.3	~	\checkmark	>	(2)			√ (3)	

Notes to Table 13:

 The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case.

(2) An APEX 20KE device can be made 5.0-V tolerant with the addition of an external resistor. You also need a PCI clamp and series resistor.

(3) When V_{CCIO} = 3.3 V, an APEX 20KE device can drive a 2.5-V device with 3.3-V tolerant inputs.

ClockLock & ClockBoost Features

APEX 20K devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20K devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20K device's high-speed clock to provide significant improvements in system performance and band-width. Devices with an X-suffix on the ordering code include the ClockLock circuit.

The ClockLock and ClockBoost features in APEX 20K devices are enabled through the Quartus II software. External devices are not required to use these features.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (11)			0.2	V
	3.3-V low-level PCI output voltage	$I_{OL} = 1.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (11)			$0.1 imes V_{CCIO}$	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (11)			0.2	V
	I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (11)			0.4	V	
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (11)			0.7	V
I _I	Input pin leakage current	$V_1 = 5.75$ to -0.5 V	-10		10	μA
I _{OZ}	Tri-stated I/O pin leakage current	V _O = 5.75 to -0.5 V	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V_1 = ground, no load, no toggling inputs, -1 speed grade (12)		10		mA
		V _I = ground, no load, no toggling inputs, -2, -3 speed grades (12)		5		mA
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (13)	20		50	W
	before and during configuration	V _{CCIO} = 2.375 V (13)	30		80	W

Table 2	Table 26. APEX 20K 5.0-V Tolerant Device Capacitance Notes (2), (14)					
Symbol	Parameter	Conditions	Min	Мах	Unit	
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF	
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF	
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF	

Notes to Tables 23 through 26:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- All APEX 20K devices are 5.0-V tolerant. (2)
- (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- Numbers in parentheses are for industrial-temperature-range devices. (4)
- Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. (5)
- All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are (6) powered.
- (7)Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ or 3.3 V.
- These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on (8)page 62.
- (9) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 33 on page 68.
- (10) The I_{OH} parameter refers to high-level TTL, PCI or CMOS output current.
- (11) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (12) This value is specified for normal device operation. The value may vary during power-up.
- (13) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO} .
- (14) Capacitance is sample-tested only.

Tables 27 through 30 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KE devices.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	2.5	V
V _{CCIO}			-0.5	4.6	V
VI	DC input voltage		-0.5	4.6	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
ΤJ	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	°C
		Ceramic PGA packages, under bias		150	°C

Note to Tables 32 and 33:

(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model.

Table 34. APEX 20KE LE Timing Microparameters			
Symbol	Parameter		
t _{SU}	LE register setup time before clock		
t _H	LE register hold time after clock		
t _{CO}	LE register clock-to-output delay		
t _{LUT}	LUT delay for data-in to data-out		

Table 35. APEX 20KE ESB Timing Microparameters				
Symbol	Parameter			
t _{ESBARC}	ESB Asynchronous read cycle time			
t _{ESBSRC}	ESB Synchronous read cycle time			
t _{ESBAWC}	ESB Asynchronous write cycle time			
t _{ESBSWC}	ESB Synchronous write cycle time			
t _{ESBWASU}	ESB write address setup time with respect to WE			
t _{ESBWAH}	ESB write address hold time with respect to WE			
t _{ESBWDSU}	ESB data setup time with respect to WE			
t _{ESBWDH}	ESB data hold time with respect to WE			
t _{ESBRASU}	ESB read address setup time with respect to RE			
t _{ESBRAH}	ESB read address hold time with respect to RE			
t _{ESBWESU}	ESB WE setup time before clock when using input register			
t _{ESBWEH}	ESB WE hold time after clock when using input register			
t _{ESBDATASU}	ESB data setup time before clock when using input register			
t _{ESBDATAH}	ESB data hold time after clock when using input register			
^t ESBWADDRSU	ESB write address setup time before clock when using input registers			
t _{ESBRADDRSU}	ESB read address setup time before clock when using input registers			
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers			
t _{ESBDATACO2}	ESB clock-to-output delay without output registers			
t _{ESBDD}	ESB data-in to data-out delay for RAM mode			
t _{PD}	ESB Macrocell input to non-registered output			
t _{PTERMSU}	ESB Macrocell register setup time before clock			
t _{PTERMCO}	ESB Macrocell register clock-to-output delay			

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
							-	
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.1		0.3		0.6		ns	
t _H	0.5		0.8		0.9		ns	
t _{CO}		0.1		0.4		0.6	ns	
t _{LUT}		1.0		1.2		1.4	ns	
t _{ESBRC}		1.7		2.1		2.4	ns	
t _{ESBWC}		5.7		6.9		8.1	ns	
t _{ESBWESU}	3.3		3.9		4.6		ns	
t _{ESBDATASU}	2.2		2.7		3.1		ns	
t _{ESBDATAH}	0.6		0.8		0.9		ns	
t _{ESBADDRSU}	2.4		2.9		3.3		ns	
t _{ESBDATACO1}		1.3		1.6		1.8	ns	
t _{ESBDATACO2}		2.5		3.1		3.6	ns	
t _{ESBDD}		2.5		3.3		3.6	ns	
t _{PD}		2.5		3.1		3.6	ns	
t _{PTERMSU}	1.7		2.1		2.4		ns	
t _{PTERMCO}		1.0		1.2		1.4	ns	
t _{F1-4}		0.4		0.5		0.6	ns	
t _{F5-20}		2.6		2.8		2.9	ns	
t _{F20+}		3.7		3.8		3.9	ns	
t _{CH}	2.0		2.5		3.0		ns	
t _{CL}	2.0		2.5		3.0		ns	
t _{CLRP}	0.5		0.6		0.8		ns	
t _{PREP}	0.5		0.5		0.5		ns	
t _{ESBCH}	2.0		2.5		3.0		ns	
t _{ESBCL}	2.0		2.5		3.0		ns	
t _{ESBWP}	1.5		1.9		2.2		ns	
t _{ESBRP}	1.0		1.2		1.4		ns	

Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

Symbol	-	1		-2		3	Unit
	Min	Max	Min	Max	Min	Max	1
t _{ESBARC}		1.83		2.57		3.79	ns
t _{ESBSRC}		2.46		3.26		4.61	ns
t _{ESBAWC}		3.50		4.90		7.23	ns
t _{ESBSWC}		3.77		4.90		6.79	ns
t _{ESBWASU}	1.59		2.23		3.29		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.75		2.46		3.62		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.76		2.47		3.64		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.68		2.49		3.87		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.08		0.43		1.04		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.29		0.72		1.46		ns
t _{ESBRADDRSU}	0.36		0.81		1.58		ns
t _{ESBDATACO1}		1.06		1.24		1.55	ns
t _{ESBDATACO2}		2.39		3.35		4.94	ns
t _{ESBDD}		3.50		4.90		7.23	ns
t _{PD}		1.72		2.41		3.56	ns
TERMSU	0.99		1.56		2.55		ns
t _{PTERMCO}		1.07		1.26		1.08	ns

Tables 67 through 72 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K160E APEX 20KE devices.

Table 67. EP2	OK160E f _{max}	LE Timing Mic	roparameter	S			
Symbol	-1			-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.22		0.24		0.26		ns
t _H	0.22		0.24		0.26		ns
t _{CO}		0.25		0.31		0.35	ns
t _{LUT}		0.69		0.88		1.12	ns

Table 78. EP20K200	DE External B	idirectional Ti	ming Paramo	eters			
Symbol	-1		-2		-	Unit	
	Min	Мах	Min	Max	Min	Max	
t _{insubidir}	2.81		3.19		3.54		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	5.12	2.00	5.62	2.00	6.11	ns
t _{XZBIDIR}		7.51		8.32		8.67	ns
t _{ZXBIDIR}		7.51		8.32		8.67	ns
t _{insubidirpll}	3.30		3.64		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
t _{outcobidirpll}	0.50	3.01	0.50	3.36	-	-	ns
t _{XZBIDIRPLL}		5.40		6.05		-	ns
tZXBIDIRPLL		5.40		6.05		-	ns

Tables 79 through 84 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K300E APEX 20KE devices.

Table 79. EP2	OK300E f _{max}	LE Timing Mic	roparameters	5			
Symbol	-1		-	2	-3		Unit
	Min	Max	Min	Max	Min	Мах	
t _{SU}	0.16		0.17		0.18		ns
t _H	0.31		0.33		0.38		ns
t _{CO}		0.28		0.38		0.51	ns
t _{LUT}		0.79		1.07		1.43	ns

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade		
-	Min	Max	Min	Max	Min	Max		
t _{CH}	2.00		2.50		2.75		ns	
t _{CL}	2.00		2.50		2.75		ns	
t _{CLRP}	0.18		0.26		0.34		ns	
t _{PREP}	0.18		0.26		0.34		ns	
t _{ESBCH}	2.00		2.50		2.75		ns	
t _{ESBCL}	2.00		2.50		2.75		ns	
t _{ESBWP}	1.17		1.68		2.18		ns	
t _{ESBRP}	0.95		1.35		1.76		ns	

Symbol	-1 Spee	-1 Speed Grade -2 Speed Grade -3 Spe	-3 Speed	l Grade	Unit		
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.74		2.74		2.87		ns
t _{INH}	0.00		0.00		0.00		ns
toutco	2.00	5.51	2.00	6.06	2.00	6.61	ns
tINSUPLL	1.86		1.96		-		ns
t _{INHPLL}	0.00		0.00		-		ns
toutcopll	0.50	2.62	0.50	2.91	-	-	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	1
t _{insubidir}	0.64		0.98		1.08		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	5.51	2.00	6.06	2.00	6.61	ns
t _{xzbidir}		6.10		6.74		7.10	ns
t _{zxbidir}		6.10		6.74		7.10	ns
t _{insubidirpll}	2.26		2.68		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	2.62	0.50	2.91	-	-	ns
t _{xzbidirpll}		3.21		3.59		-	ns
t _{ZXBIDIRPLL}		3.21		3.59		-	ns

Table 110. Selectab	ole I/O Standa	ord Output De	lays					
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Min	
LVCMOS		0.00		0.00		0.00	ns	
LVTTL		0.00		0.00		0.00	ns	
2.5 V		0.00		0.09		0.10	ns	
1.8 V		2.49		2.98		3.03	ns	
PCI		-0.03		0.17		0.16	ns	
GTL+		0.75		0.75		0.76	ns	
SSTL-3 Class I		1.39		1.51		1.50	ns	
SSTL-3 Class II		1.11		1.23		1.23	ns	
SSTL-2 Class I		1.35		1.48		1.47	ns	
SSTL-2 Class II		1.00		1.12		1.12	ns	
LVDS		-0.48		-0.48		-0.48	ns	
CTT		0.00		0.00		0.00	ns	
AGP		0.00		0.00		0.00	ns	

Power Consumption

To estimate device power consumption, use the interactive power calculator on the Altera web site at **http://www.altera.com**.

Configuration & Operation

The APEX 20K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

Before and during device configuration, all I/O pins are pulled to $\rm V_{\rm CCIO}$ by a built-in weak pull-up resistor.

Version 4.1

APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes:

- *t*_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104.
- Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.