Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 2432 | | Number of Logic Elements/Cells | 24320 | | Total RAM Bits | 311296 | | Number of I/O | 508 | | Number of Gates | 1537000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | - | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | - | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k600efc1020-2x | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Each LE has two outputs that drive the local, MegaLAB, or FastTrack Interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output. The APEX 20K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure. #### Carry Chain The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20K architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as library of parameterized modules (LPM) and DesignWare functions automatically take advantage of carry chains for the appropriate functions. The Quartus II software Compiler creates carry chains longer than ten LEs by linking LABs together automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB<sup>TM</sup> structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 6 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carryin signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack Interconnect routing structures. Select Vertical I/O Pins IOE IOE FastRow Interconnect IOE IOE Drive Local Interconnect FastRow Drives Local Interconnect and FastRow Interconnect in Two MegaLAB Structures Interconnect Local Interconnect LEs MegaLAB MegaLAB *LABs* Figure 12. APEX 20KE FastRow Interconnect Table 9 summarizes how various elements of the APEX 20K architecture drive each other. Figure 14. APEX 20K Macrocell For registered functions, each macrocell register can be programmed individually to implement D, T, JK, or SR operation with programmable clock control. The register can be bypassed for combinatorial operation. During design entry, the designer specifies the desired register type; the Quartus II software then selects the most efficient register operation for each registered function to optimize resource utilization. The Quartus II software or other synthesis tools can also select the most efficient register operation automatically when synthesizing HDL designs. Each programmable register can be clocked by one of two ESB-wide clocks. The ESB-wide clocks can be generated from device dedicated clock pins, global signals, or local interconnect. Each clock also has an associated clock enable, generated from the local interconnect. The clock and clock enable signals are related for a particular ESB; any macrocell using a clock also uses the associated clock enable. If both the rising and falling edges of a clock are used in an ESB, both ESB-wide clock signals are used. Figure 23. APEX 20KE CAM Block Diagram CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management. The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance. When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs. CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches. The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words. The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations. CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required. ## Implementing Logic in ROM In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate. ## **Programmable Speed/Power Control** APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo Bit<sup>TM</sup> option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current. Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power. ## I/O Structure The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently. The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Figure 29. APEX 20KE I/O Banks #### Notes to Figure 29: - For more information on placing I/O pins in LVDS blocks, refer to the Guidelines for Using LVDS Blocks section in Application Note 120 (Using LVDS in APEX 20KE Devices). - (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V<sub>CCIO</sub> set to 3.3 V, 2.5 V, or 1.8 V. ## **Power Sequencing & Hot Socketing** Because APEX 20K and APEX 20KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies may be powered in any order. For more information, please refer to the "Power Sequencing Considerations" section in the *Configuring APEX 20KE & APEX 20KC Devices* chapter of the *Configuration Devices Handbook*. Signals can be driven into APEX 20K devices before and during power-up without damaging the device. In addition, APEX 20K devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20K and APEX 20KE devices operate as specified by the user. For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used. | Table 14. Multiplication Factor Combinations | | | | |----------------------------------------------|---------|--|--| | Clock 1 | Clock 2 | | | | ×1 | ×1 | | | | ×1,×2 | ×2 | | | | ×1, ×2, ×4 | ×4 | | | #### **APEX 20KE ClockLock Feature** APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs. The following sections describe some of the features offered by the APEX 20KE PLLs. #### External PLL Feedback The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM. #### Clock Multiplication The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$ , where m and k range from 2 to 160, and n and v range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements. The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices. | Table 20. APEX 20K Boundary-Scan Register Length | | | | | | |--------------------------------------------------|-------------------------------|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | EP20K30E | 420 | | | | | | EP20K60E | 624 | | | | | | EP20K100 | 786 | | | | | | EP20K100E | 774 | | | | | | EP20K160E | 984 | | | | | | EP20K200 | 1,176 | | | | | | EP20K200E | 1,164 | | | | | | EP20K300E | 1,266 | | | | | | EP20K400 | 1,536 | | | | | | EP20K400E | 1,506 | | | | | | EP20K600E | 1,806 | | | | | | EP20K1000E | 2,190 | | | | | | EP20K1500E | 1 (1) | | | | | #### Note to Table 20: (1) This device does not support JTAG boundary scan testing. | Table 2 | 8. APEX 20KE Device Recommende | d Operating Conditions | | | | |--------------------|-----------------------------------------------------|------------------------|------------------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V <sub>CCINT</sub> | Supply voltage for internal logic and input buffers | (3), (4) | 1.71 (1.71) | 1.89 (1.89) | V | | V <sub>CCIO</sub> | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.375<br>(2.375) | 2.625<br>(2.625) | V | | | Supply voltage for output buffers, 1.8-V operation | (3), (4) | 1.71 (1.71) | 1.89 (1.89) | V | | VI | Input voltage | (5), (6) | -0.5 | 4.0 | ٧ | | Vo | Output voltage | | 0 | V <sub>CCIO</sub> | V | | T <sub>J</sub> | Junction temperature | For commercial use | 0 | 85 | °C | | | | For industrial use | -40 | 100 | °C | | t <sub>R</sub> | Input rise time | | | 40 | ns | | t <sub>F</sub> | Input fall time | | | 40 | ns | | Table 36. APEX 20KE Routing Timing Microparameters Note (1) | | | | | | |-------------------------------------------------------------|----------------------------------------------------|--|--|--|--| | Symbol | Parameter | | | | | | t <sub>F1-4</sub> | Fanout delay using Local Interconnect | | | | | | t <sub>F5-20</sub> | Fanout delay estimate using MegaLab Interconnect | | | | | | t <sub>F20+</sub> | Fanout delay estimate using FastTrack Interconnect | | | | | #### Note to Table 36: (1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. | Table 37. APE | Table 37. APEX 20KE Functional Timing Microparameters | | | | | |---------------|-------------------------------------------------------|--|--|--|--| | Symbol | Parameter | | | | | | TCH | Minimum clock high time from clock pin | | | | | | TCL | Minimum clock low time from clock pin | | | | | | TCLRP | LE clear Pulse Width | | | | | | TPREP | LE preset pulse width | | | | | | TESBCH | Clock high time for ESB | | | | | | TESBCL | Clock low time for ESB | | | | | | TESBWP | Write pulse width | | | | | | TESBRP | Read pulse width | | | | | Tables 38 and 39 describe the APEX 20KE external timing parameters. | Table 38. APEX 20KE External Timing Parameters Note (1) | | | | | | |---------------------------------------------------------|----------------------------------------------------------------|------------|--|--|--| | Symbol | Clock Parameter | Conditions | | | | | t <sub>INSU</sub> | Setup time with global clock at IOE input register | | | | | | t <sub>INH</sub> | Hold time with global clock at IOE input register | | | | | | t <sub>OUTCO</sub> | Clock-to-output delay with global clock at IOE output register | C1 = 10 pF | | | | | t <sub>INSUPLL</sub> | Setup time with PLL clock at IOE input register | | | | | | t <sub>INHPLL</sub> | Hold time with PLL clock at IOE input register | | | | | | t <sub>OUTCOPLL</sub> | Clock-to-output delay with PLL clock at IOE output register | C1 = 10 pF | | | | | Table 43. EP20K100 External Timing Parameters | | | | | | | | | |-----------------------------------------------|----------------|-----|--------|----------------|-----|----------------|----|--| | Symbol | -1 Speed Grade | | -2 Spe | -2 Speed Grade | | -3 Speed Grade | | | | | Min | Max | Min | Max | Min | Max | | | | t <sub>INSU</sub> (1) | 2.3 | | 2.8 | | 3.2 | | ns | | | t <sub>INH</sub> (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | t <sub>OUTCO</sub> (1) | 2.0 | 4.5 | 2.0 | 4.9 | 2.0 | 6.6 | ns | | | t <sub>INSU</sub> (2) | 1.1 | | 1.2 | | - | | ns | | | t <sub>INH</sub> (2) | 0.0 | | 0.0 | | - | | ns | | | t <sub>OUTCO</sub> (2) | 0.5 | 2.7 | 0.5 | 3.1 | _ | 4.8 | ns | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |----------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | 1 | | t <sub>INSUBIDIR</sub> (1) | 2.3 | | 2.8 | | 3.2 | | ns | | t <sub>INHBIDIR</sub> (1) | 0.0 | | 0.0 | | 0.0 | | ns | | toutcobidir<br>(1) | 2.0 | 4.5 | 2.0 | 4.9 | 2.0 | 6.6 | ns | | t <sub>XZBIDIR</sub> (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t <sub>ZXBIDIR</sub> (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t <sub>INSUBIDIR</sub> (2) | 1.0 | | 1.2 | | - | | ns | | t <sub>INHBIDIR</sub> (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir<br>(2) | 0.5 | 2.7 | 0.5 | 3.1 | - | - | ns | | t <sub>XZBIDIR</sub> (2) | | 4.3 | | 5.0 | | _ | ns | | t <sub>ZXBIDIR</sub> (2) | | 4.3 | | 5.0 | | _ | ns | | Table 45. EP20K200 External Timing Parameters | | | | | | | | | |-----------------------------------------------|----------------|-----|----------------|-----|----------------|-----|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t <sub>INSU</sub> (1) | 1.9 | | 2.3 | | 2.6 | | ns | | | t <sub>INH</sub> (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | t <sub>OUTCO</sub> (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | | t <sub>INSU</sub> (2) | 1.1 | | 1.2 | | - | | ns | | | t <sub>INH</sub> (2) | 0.0 | | 0.0 | | - | | ns | | | t <sub>оитсо</sub> <i>(2)</i> | 0.5 | 2.7 | 0.5 | 3.1 | - | _ | ns | | | Symbol | - | -1 | | -2 | | -3 | | |--------------------|------|-----|------|-----|------|-----|----| | | Min | Max | Min | Max | Min | Max | | | t <sub>CH</sub> | 0.55 | | 0.78 | | 1.15 | | ns | | t <sub>CL</sub> | 0.55 | | 0.78 | | 1.15 | | ns | | t <sub>CLRP</sub> | 0.22 | | 0.31 | | 0.46 | | ns | | t <sub>PREP</sub> | 0.22 | | 0.31 | | 0.46 | | ns | | t <sub>ESBCH</sub> | 0.55 | | 0.78 | | 1.15 | | ns | | t <sub>ESBCL</sub> | 0.55 | | 0.78 | | 1.15 | | ns | | t <sub>ESBWP</sub> | 1.43 | | 2.01 | | 2.97 | | ns | | t <sub>ESBRP</sub> | 1.15 | | 1.62 | | 2.39 | | ns | | Symbol | | -1 | | -2 | | -3 | | |-----------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t <sub>INSU</sub> | 2.02 | | 2.13 | | 2.24 | | ns | | t <sub>INH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>outco</sub> | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns | | t <sub>INSUPLL</sub> | 2.11 | | 2.23 | | = | | ns | | t <sub>INHPLL</sub> | 0.00 | | 0.00 | | = | | ns | | t <sub>OUTCOPLL</sub> | 0.50 | 2.60 | 0.50 | 2.88 | - | - | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |----------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t <sub>INSUBIDIR</sub> | 1.85 | | 1.77 | | 1.54 | | ns | | t <sub>INHBIDIR</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns | | t <sub>XZBIDIR</sub> | | 7.48 | | 8.46 | | 9.83 | ns | | t <sub>ZXBIDIR</sub> | | 7.48 | | 8.46 | | 9.83 | ns | | t <sub>INSUBIDIRPLL</sub> | 4.12 | | 4.24 | | - | | ns | | t <sub>INHBIDIRPLL</sub> | 0.00 | | 0.00 | | - | | ns | | t <sub>OUTCOBIDIRPLL</sub> | 0.50 | 2.60 | 0.50 | 2.88 | - | - | ns | | t <sub>XZBIDIRPLL</sub> | | 5.21 | | 5.99 | | - | ns | | tzxbidirpll | | 5.21 | | 5.99 | | - | ns | | Symbol | - | 1 | - | -2 | -; | 3 | Unit | |-------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t <sub>ESBARC</sub> | | 1.83 | | 2.57 | | 3.79 | ns | | t <sub>ESBSRC</sub> | | 2.46 | | 3.26 | | 4.61 | ns | | t <sub>ESBAWC</sub> | | 3.50 | | 4.90 | | 7.23 | ns | | t <sub>ESBSWC</sub> | | 3.77 | | 4.90 | | 6.79 | ns | | t <sub>ESBWASU</sub> | 1.59 | | 2.23 | | 3.29 | | ns | | t <sub>ESBWAH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>ESBWDSU</sub> | 1.75 | | 2.46 | | 3.62 | | ns | | t <sub>ESBWDH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>ESBRASU</sub> | 1.76 | | 2.47 | | 3.64 | | ns | | t <sub>ESBRAH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>ESBWESU</sub> | 1.68 | | 2.49 | | 3.87 | | ns | | t <sub>ESBWEH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>ESBDATASU</sub> | 0.08 | | 0.43 | | 1.04 | | ns | | t <sub>ESBDATAH</sub> | 0.13 | | 0.13 | | 0.13 | | ns | | t <sub>ESBWADDRSU</sub> | 0.29 | | 0.72 | | 1.46 | | ns | | t <sub>ESBRADDRSU</sub> | 0.36 | | 0.81 | | 1.58 | | ns | | t <sub>ESBDATACO1</sub> | | 1.06 | | 1.24 | | 1.55 | ns | | t <sub>ESBDATACO2</sub> | | 2.39 | | 3.35 | | 4.94 | ns | | t <sub>ESBDD</sub> | | 3.50 | | 4.90 | | 7.23 | ns | | t <sub>PD</sub> | | 1.72 | | 2.41 | | 3.56 | ns | | t <sub>PTERMSU</sub> | 0.99 | | 1.56 | | 2.55 | | ns | | t <sub>PTERMCO</sub> | | 1.07 | | 1.26 | | 1.08 | ns | | Table 57. EP20K60E f <sub>MAX</sub> Routing Delays | | | | | | | | | | | |----------------------------------------------------|-----|------|-----|------|-----|------|------|--|--|--| | Symbol | - | 1 | | -2 | | 3 | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t <sub>F1-4</sub> | | 0.24 | | 0.26 | | 0.30 | ns | | | | | t <sub>F5-20</sub> | | 1.45 | | 1.58 | | 1.79 | ns | | | | | t <sub>F20+</sub> | | 1.96 | | 2.14 | | 2.45 | ns | | | | | Symbol | -1 | | - | -2 | | -3 | | |--------------------|------|-----|------|-----|------|-----|----| | | Min | Max | Min | Max | Min | Max | | | t <sub>CH</sub> | 2.00 | | 2.50 | | 2.75 | | ns | | t <sub>CL</sub> | 2.00 | | 2.50 | | 2.75 | | ns | | t <sub>CLRP</sub> | 0.20 | | 0.28 | | 0.41 | | ns | | t <sub>PREP</sub> | 0.20 | | 0.28 | | 0.41 | | ns | | t <sub>ESBCH</sub> | 2.00 | | 2.50 | | 2.75 | | ns | | t <sub>ESBCL</sub> | 2.00 | | 2.50 | | 2.75 | | ns | | t <sub>ESBWP</sub> | 1.29 | | 1.80 | | 2.66 | | ns | | t <sub>ESBRP</sub> | 1.04 | | 1.45 | | 2.14 | | ns | | Symbol | - | -1 | | -2 | | -3 | | |----------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t <sub>INSU</sub> | 2.03 | | 2.12 | | 2.23 | | ns | | t <sub>INH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>OUTCO</sub> | 2.00 | 4.84 | 2.00 | 5.31 | 2.00 | 5.81 | ns | | t <sub>INSUPLL</sub> | 1.12 | | 1.15 | | - | | ns | | t <sub>INHPLL</sub> | 0.00 | | 0.00 | | - | | ns | | toutcople | 0.50 | 3.37 | 0.50 | 3.69 | - | - | ns | | Symbol | - | 1 | | 2 | -; | 3 | Unit | |-------------------------|-------|------|-------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t <sub>ESBARC</sub> | | 1.68 | | 2.06 | | 2.24 | ns | | t <sub>ESBSRC</sub> | | 2.27 | | 2.77 | | 3.18 | ns | | t <sub>ESBAWC</sub> | | 3.10 | | 3.86 | | 4.50 | ns | | t <sub>ESBSWC</sub> | | 2.90 | | 3.67 | | 4.21 | ns | | t <sub>ESBWASU</sub> | 0.55 | | 0.67 | | 0.74 | | ns | | t <sub>ESBWAH</sub> | 0.36 | | 0.46 | | 0.48 | | ns | | t <sub>ESBWDSU</sub> | 0.69 | | 0.83 | | 0.95 | | ns | | t <sub>ESBWDH</sub> | 0.36 | | 0.46 | | 0.48 | | ns | | t <sub>ESBRASU</sub> | 1.61 | | 1.90 | | 2.09 | | ns | | t <sub>ESBRAH</sub> | 0.00 | | 0.00 | | 0.01 | | ns | | t <sub>ESBWESU</sub> | 1.42 | | 1.71 | | 2.01 | | ns | | t <sub>ESBWEH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>ESBDATASU</sub> | -0.06 | | -0.07 | | 0.05 | | ns | | t <sub>ESBDATAH</sub> | 0.13 | | 0.13 | | 0.13 | | ns | | t <sub>ESBWADDRSU</sub> | 0.11 | | 0.13 | | 0.31 | | ns | | t <sub>ESBRADDRSU</sub> | 0.18 | | 0.23 | | 0.39 | | ns | | t <sub>ESBDATACO1</sub> | | 1.09 | | 1.35 | | 1.51 | ns | | t <sub>ESBDATACO2</sub> | | 2.19 | | 2.75 | | 3.22 | ns | | t <sub>ESBDD</sub> | | 2.75 | | 3.41 | | 4.03 | ns | | t <sub>PD</sub> | | 1.58 | | 1.97 | | 2.33 | ns | | t <sub>PTERMSU</sub> | 1.00 | | 1.22 | | 1.51 | | ns | | t <sub>PTERMCO</sub> | | 1.10 | | 1.37 | | 1.09 | ns | | Table 75. EP2 | 0K200E f <sub>MAX</sub> 1 | Routing Delay | s | | | | | |--------------------|---------------------------|---------------|-----|------|-----|------|------| | Symbol | - | 1 | | -2 | -( | 3 | Unit | | | Min | Max | Min | Max | Min | Max | | | t <sub>F1-4</sub> | | 0.25 | | 0.27 | | 0.29 | ns | | t <sub>F5-20</sub> | | 1.02 | | 1.20 | | 1.41 | ns | | t <sub>F20+</sub> | | 1.99 | | 2.23 | | 2.53 | ns | | Table 76. EP2 | OK200E Minin | num Pulse W | idth Timing Pa | arameters | | | | |--------------------|--------------|-------------|----------------|-----------|------|-----|------| | Symbol | -1 | | -2 | | -3 | | Unit | | | Min | Max | Min | Max | Min | Max | | | t <sub>CH</sub> | 1.36 | | 2.44 | | 2.65 | | ns | | t <sub>CL</sub> | 1.36 | | 2.44 | | 2.65 | | ns | | t <sub>CLRP</sub> | 0.18 | | 0.19 | | 0.21 | | ns | | t <sub>PREP</sub> | 0.18 | | 0.19 | | 0.21 | | ns | | t <sub>ESBCH</sub> | 1.36 | | 2.44 | | 2.65 | | ns | | t <sub>ESBCL</sub> | 1.36 | | 2.44 | | 2.65 | | ns | | t <sub>ESBWP</sub> | 1.18 | | 1.48 | | 1.76 | | ns | | t <sub>ESBRP</sub> | 0.95 | | 1.17 | | 1.41 | | ns | | Symbol | -1 | | - | -2 | | -3 | | |-----------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t <sub>INSU</sub> | 2.24 | | 2.35 | | 2.47 | | ns | | t <sub>INH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>outco</sub> | 2.00 | 5.12 | 2.00 | 5.62 | 2.00 | 6.11 | ns | | t <sub>INSUPLL</sub> | 2.13 | | 2.07 | | - | | ns | | t <sub>INHPLL</sub> | 0.00 | | 0.00 | | - | | ns | | t <sub>OUTCOPLL</sub> | 0.50 | 3.01 | 0.50 | 3.36 | - | - | ns | | Table 87. EP2 | 0K400E f <sub>MAX</sub> | Routing Delay | 'S | | | | | |--------------------|-------------------------|---------------|--------|----------|---------|---------|------| | Symbol | -1 Spee | d Grade | -2 Spe | ed Grade | -3 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t <sub>F1-4</sub> | | 0.25 | | 0.25 | | 0.26 | ns | | t <sub>F5-20</sub> | | 1.01 | | 1.12 | | 1.25 | ns | | t <sub>F20+</sub> | | 3.71 | | 3.92 | | 4.17 | ns | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | | |--------------------|----------------|-----|---------|----------------|------|----------------|----|--| | | Min | Max | Min | Max | Min | Max | | | | t <sub>CH</sub> | 1.36 | | 2.22 | | 2.35 | | ns | | | t <sub>CL</sub> | 1.36 | | 2.26 | | 2.35 | | ns | | | t <sub>CLRP</sub> | 0.18 | | 0.18 | | 0.19 | | ns | | | t <sub>PREP</sub> | 0.18 | | 0.18 | | 0.19 | | ns | | | t <sub>ESBCH</sub> | 1.36 | | 2.26 | | 2.35 | | ns | | | t <sub>ESBCL</sub> | 1.36 | | 2.26 | | 2.35 | | ns | | | t <sub>ESBWP</sub> | 1.17 | | 1.38 | | 1.56 | | ns | | | t <sub>ESBRP</sub> | 0.94 | | 1.09 | | 1.25 | | ns | | | Table 89. EP20K400E External Timing Parameters | | | | | | | | | | |------------------------------------------------|----------------|------|---------|----------------|------|---------|------|--|--| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | i Grade | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t <sub>INSU</sub> | 2.51 | | 2.64 | | 2.77 | | ns | | | | t <sub>INH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | | | t <sub>OUTCO</sub> | 2.00 | 5.25 | 2.00 | 5.79 | 2.00 | 6.32 | ns | | | | t <sub>INSUPLL</sub> | 3.221 | | 3.38 | | - | | ns | | | | t <sub>INHPLL</sub> | 0.00 | | 0.00 | | - | | ns | | | | toutcopll | 0.50 | 2.25 | 0.50 | 2.45 | - | - | ns | | | | Table 99. EP20K1000E f <sub>MAX</sub> Routing Delays | | | | | | | | |------------------------------------------------------|----------------|------|----------------|------|----------------|------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t <sub>F1-4</sub> | | 0.27 | | 0.27 | | 0.27 | ns | | t <sub>F5-20</sub> | | 1.45 | | 1.63 | | 1.75 | ns | | t <sub>F20+</sub> | | 4.15 | | 4.33 | | 4.97 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |--------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t <sub>CH</sub> | 1.25 | | 1.43 | | 1.67 | | ns | | t <sub>CL</sub> | 1.25 | | 1.43 | | 1.67 | | ns | | t <sub>CLRP</sub> | 0.20 | | 0.20 | | 0.20 | | ns | | t <sub>PREP</sub> | 0.20 | | 0.20 | | 0.20 | | ns | | t <sub>ESBCH</sub> | 1.25 | | 1.43 | | 1.67 | | ns | | t <sub>ESBCL</sub> | 1.25 | | 1.43 | | 1.67 | | ns | | t <sub>ESBWP</sub> | 1.28 | | 1.51 | | 1.65 | | ns | | t <sub>ESBRP</sub> | 1.11 | | 1.29 | | 1.41 | | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |-----------------------|----------------|------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t <sub>INSU</sub> | 2.70 | | 2.84 | | 2.97 | | ns | | t <sub>INH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>OUTCO</sub> | 2.00 | 5.75 | 2.00 | 6.33 | 2.00 | 6.90 | ns | | t <sub>INSUPLL</sub> | 1.64 | | 2.09 | | = | | ns | | t <sub>INHPLL</sub> | 0.00 | | 0.00 | | = | | ns | | t <sub>OUTCOPLL</sub> | 0.50 | 2.25 | 0.50 | 2.99 | - | - | ns | SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files. ## **Configuration Schemes** The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up. Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 111. Data Sources for Configuration | | | | | |-------------------------------------------|------------------------------------------------------------------------------------------|--|--|--| | Configuration Scheme | Data Source | | | | | Configuration device | EPC1, EPC2, EPC16 configuration devices | | | | | Passive serial (PS) | MasterBlaster or ByteBlasterMV download cable or serial data source | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | JTAG | MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File | | | | For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*) # **Device Pin-Outs** See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit\_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.