E·XFI

Intel - EP20K600EFC33-2 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

D	eta	ails

Details	
Product Status	Obsolete
Number of LABs/CLBs	2432
Number of Logic Elements/Cells	24320
Total RAM Bits	311296
Number of I/O	588
Number of Gates	1537000
Voltage - Supply	$1.71V \sim 1.89V$
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1020-BBGA
Supplier Device Package	1020-FBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k600efc33-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

APEX[™] 20K devices are the first PLDs designed with the MultiCore architecture, which combines the strengths of LUT-based and productterm-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for data-path, registerintensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20K device architecture uniquely suited for system-on-a-programmable-chip designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20K device.

APEX 20KE devices are a superset of APEX 20K devices and include additional features such as advanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices extend the APEX 20K family to 1.5 million gates. APEX 20KE devices are denoted with an "E" suffix in the device name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8 compares the features included in APEX 20K and APEX 20KE devices.

Feature	APEX 20K Devices	APFX 20KF Devices
32/64-Bit, 33-MHz PCI	grades	Full compliance in -1, -2 speed grades
32/64-Bit, 66-MHz PCI	-	Full compliance in -1 speed grade
MultiVolt I/O	2.5-V or 3.3-V V _{CCIO}	1.8-V, 2.5-V, or 3.3-V V _{CCIO}
	V _{CCIO} selected for device	V _{CCIO} selected block-by-block
	Certain devices are 5.0-V tolerant	5.0-V tolerant with use of external resistor
ClockLock support	Clock delay reduction	Clock delay reduction
	2× and 4× clock multiplication	$m/(n \times v)$ or $m/(n \times k)$ clock multiplication
		Drive ClockLock output off-chip
		External clock feedback
		ClockShift
		LVDS support
		Up to four PLLs
		ClockShift, clock phase adjustment
Dedicated clock and input pins	Six	Eight
I/O standard support	2.5-V, 3.3-V, 5.0-V I/O	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O
	3.3-V PCI	2.5-V I/O
	Low-voltage complementary	3.3-V PCI and PCI-X
	metal-oxide semiconductor	3.3-V Advanced Graphics Port (AGP)
	(LVCMOS)	Center tap terminated (CTT)
	Low-voltage transistor-to-transistor	GTL+
	logic (LVTTL)	LVCMOS
		True-LVDS and LVPECL data pins
		(In EP20K300E and larger devices)
		LVDS and LVPECL signaling (in all BGA
		and FineLine BGA devices)
		LVDS and LVPECL data pins up to
		156 Mbps (III - I speed grade devices)
		SSTL-3 Class Land II
Memory support	Dual-port BAM	CAM
	FIFO	Dual-port BAM
	BAM	FIFO
	BOM	BAM
		ROM

APEX 20K devices provide two dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals. These signals use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20K devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry. APEX 20KE devices provide two additional dedicated clock pins, for a total of four dedicated clock pins.

MegaLAB Structure

APEX 20K devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. The EP20K30E device has 10 LABs, EP20K60E through EP20K600E devices have 16 LABs, and the EP20K1000E and EP20K1500E devices have 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack Interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.

Figure 6. APEX 20K Carry Chain

LAB-Wide Normal Mode (1) Clock Enable (2) Carry-In (3) Cascade-In LE-Out data1 data2 PRN 4-Input D Q LUT data3 LE-Out ENA data4 CLRN Cascade-Out LAB-Wide Arithmetic Mode Clock Enable (2) Carry-In Cascade-In LE-Out PRN data1 Q D 3-Input data2 LUT LE-Out ENA CLRN 3-Input LUT Cascade-Out Carry-Out

Figure 8. APEX 20K LE Operating Modes

Notes to Figure 8:

- (1) LEs in normal mode support register packing.
- (2) There are two LAB-wide clock enables per LAB.
- (3) When using the carry-in in normal mode, the packed register feature is unavailable.
- (4) A register feedback multiplexer is available on LE1 of each LAB.
- (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB.
- (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB.

Normal Mode

The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II software Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used.

Counter Mode

The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs.

Figure 22. ESB in Single-Port Mode Note (1)

Notes to Figure 22:

All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.
APEX 20KE devices have four dedicated clocks.

Content-Addressable Memory

In APEX 20KE devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it.

CAM is used for high-speed search operations. When searching for data within a RAM block, the search is performed serially. Thus, finding a particular data word can take many cycles. CAM searches all addresses in parallel and outputs the address storing a particular word. When a match is found, a match flag is set high. Figure 23 shows the CAM block diagram.

Figure 28 shows how a column IOE connects to the interconnect.

Figure 28. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed. For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used.

Table 14. Multiplication Factor Combinations					
Clock 1	Clock 2				
×1	×1				
×1, ×2	×2				
×1, ×2, ×4	×4				

APEX 20KE ClockLock Feature

APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KE PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM.

Clock Multiplication

The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$, where *m* and *k* range from 2 to 160, and *n* and *v* range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

Table 18. A	Table 18. APEX 20KE Clock Input & Output Parameters (Part 1 of 2) Note (1)							
Symbol	Parameter	I/O Standard -1X Speed		ed Grade	-2X Speed	-2X Speed Grade		
			Min	Max	Min	Max		
f _{VCO} (4)	Voltage controlled oscillator operating range		200	500	200	500	MHz	
f _{CLOCK0}	Clock0 PLL output frequency for internal use		1.5	335	1.5	200	MHz	
f _{CLOCK1}	Clock1 PLL output frequency for internal use		20	335	20	200	MHz	
fclock0_ext	Output clock frequency for	3.3-V LVTTL	1.5	245	1.5	226	MHz	
	external clock0 output	2.5-V LVTTL	1.5	234	1.5	221	MHz	
		1.8-V LVTTL	1.5	223	1.5	216	MHz	
		GTL+	1.5	205	1.5	193	MHz	
		SSTL-2 Class I	1.5	158	1.5	157	MHz	
		SSTL-2 Class II	1.5	142	1.5	142	MHz	
		SSTL-3 Class I	1.5	166	1.5	162	MHz	
		SSTL-3 Class II	1.5	149	1.5	146	MHz	
		LVDS	1.5	420	1.5	350	MHz	
f _{CLOCK1_EXT}	Output clock frequency for	3.3-V LVTTL	20	245	20	226	MHz	
	external clock1 output	2.5-V LVTTL	20	234	20	221	MHz	
		1.8-V LVTTL	20	223	20	216	MHz	
		GTL+	20	205	20	193	MHz	
		SSTL-2 Class I	20	158	20	157	MHz	
		SSTL-2 Class II	20	142	20	142	MHz	
		SSTL-3 Class I	20	166	20	162	MHz	
		SSTL-3 Class II	20	149	20	146	MHz	
		LVDS	20	420	20	350	MHz	

Table 2	Table 29. APEX 20KE Device DC Operating Conditions Notes (7), (8), (9)										
Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
V _{IH}	High-level LVTTL, CMOS, or 3.3-V PCI input voltage		1.7, 0.5 × V _{CCIO} (10)		4.1	V					
V _{IL}	Low-level LVTTL, CMOS, or 3.3-V PCI input voltage		-0.5		0.8, 0.3 × V _{CCIO} (10)	V					
V _{OH}	3.3-V high-level LVTTL output voltage	I _{OH} = -12 mA DC, V _{CCIO} = 3.00 V (11)	2.4			V					
	3.3-V high-level LVCMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V (11)	V _{CCIO} – 0.2			V					
	3.3-V high-level PCI output voltage	I _{OH} = -0.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (11)	$0.9 imes V_{CCIO}$			V					
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V (11)	2.1			V					
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (11)	2.0			V					
		I _{OH} = -2 mA DC, V _{CCIO} = 2.30 V (11)	1.7			V					
V _{OL}	3.3-V low-level LVTTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V <i>(12)</i>			0.4	V					
	3.3-V low-level LVCMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V <i>(12)</i>			0.2	V					
	3.3-V low-level PCI output voltage	I_{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (12)			0.1 × V _{CCIO}	V					
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (<i>12</i>)			0.2	V					
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.4	V					
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.7	V					
I _I	Input pin leakage current	V ₁ = 4.1 to -0.5 V (13)	-10		10	μΑ					
I _{OZ}	Tri-stated I/O pin leakage current	V _O = 4.1 to -0.5 V (13)	-10		10	μA					
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -1 speed grade		10		mA					
		V ₁ = ground, no load, no toggling inputs, -2, -3 speed grades		5		mA					
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (14)	20		50	kΩ					
	before and during configuration	V _{CCIO} = 2.375 V (14)	30		80	kΩ					
		V _{CCIO} = 1.71 V (14)	60		150	kΩ					

Note to Tables 32 and 33:

(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model.

Table 34. APEX 20KE LE Timing Microparameters					
Symbol	Parameter				
t _{SU}	LE register setup time before clock				
t _H	LE register hold time after clock				
t _{CO}	LE register clock-to-output delay				
t _{LUT}	LUT delay for data-in to data-out				

Table 35. APEX 20KE ESB Timing Microparameters					
Symbol	Parameter				
t _{ESBARC}	ESB Asynchronous read cycle time				
t _{ESBSRC}	ESB Synchronous read cycle time				
t _{ESBAWC}	ESB Asynchronous write cycle time				
t _{ESBSWC}	ESB Synchronous write cycle time				
t _{ESBWASU}	ESB write address setup time with respect to WE				
t _{ESBWAH}	ESB write address hold time with respect to WE				
t _{ESBWDSU}	ESB data setup time with respect to WE				
t _{ESBWDH}	ESB data hold time with respect to WE				
t _{ESBRASU}	ESB read address setup time with respect to RE				
t _{ESBRAH}	ESB read address hold time with respect to RE				
t _{ESBWESU}	ESB WE setup time before clock when using input register				
t _{ESBWEH}	ESB WE hold time after clock when using input register				
t _{ESBDATASU}	ESB data setup time before clock when using input register				
t _{ESBDATAH}	ESB data hold time after clock when using input register				
t _{ESBWADDRSU}	ESB write address setup time before clock when using input				
	registers				
t _{ESBRADDRSU}	ESB read address setup time before clock when using input				
	registers				
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers				
t _{ESBDATACO2}	ESB clock-to-output delay without output registers				
t _{ESBDD}	ESB data-in to data-out delay for RAM mode				
t _{PD}	ESB Macrocell input to non-registered output				
t PTERMSU	ESB Macrocell register setup time before clock				
t _{PTEBMCO}	ESB Macrocell register clock-to-output delay				

Table 43. EP20K100 External Timing Parameters									
Symbol	-1 Spe	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade			
	Min	Мах	Min	Max	Min	Max			
t _{INSU} (1)	2.3		2.8		3.2		ns		
t _{INH} (1)	0.0		0.0		0.0		ns		
t _{OUTCO} (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns		
t _{INSU} (2)	1.1		1.2		-		ns		
t _{INH} (2)	0.0		0.0		-		ns		
t _{OUTCO} (2)	0.5	2.7	0.5	3.1	_	4.8	ns		

Table 44. EP20K100 External Bidirectional Timing Parameters								
Symbol	-1 Spe	ed Grade	-2 Spe	-2 Speed Grade		-3 Speed Grade		
	Min	Мах	Min	Max	Min	Max		
t _{INSUBIDIR} (1)	2.3		2.8		3.2		ns	
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns	
t _{OUTCOBIDIR}	2.0	4.5	2.0	4.9	2.0	6.6	ns	
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns	
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns	
t _{INSUBIDIR} (2)	1.0		1.2		-		ns	
t _{inhbidir} (2)	0.0		0.0		-		ns	
toutcobidir <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns	
t _{XZBIDIR} (2)		4.3		5.0		-	ns	
t _{ZXBIDIR} (2)		4.3		5.0		-	ns	

Table 45. EP20K200 External Timing Parameters									
Symbol	Symbol -1 Speed Gra		Grade -2 Speed Grade		-3 Spee	-3 Speed Grade			
	Min	Max	Min	Мах	Min	Мах			
t _{INSU} (1)	1.9		2.3		2.6		ns		
t _{INH} (1)	0.0		0.0		0.0		ns		
t _{OUTCO} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns		
t _{INSU} (2)	1.1		1.2		-		ns		
t _{INH} (2)	0.0		0.0		-		ns		
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns		

Table 46. EP20K200 External Bidirectional Timing Parameters								
Symbol	-1 Spee	d Grade	-2 Spe	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR} (1)	1.9		2.3		2.6		ns	
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns	
t _{OUTCOBIDIR} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns	
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns	
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns	
t _{INSUBIDIR} (2)	1.1		1.2		-		ns	
t _{INHBIDIR} (2)	0.0		0.0		-		ns	
t _{OUTCOBIDIR} (2)	0.5	2.7	0.5	3.1	-	-	ns	
t _{XZBIDIR} (2)		4.3		5.0		-	ns	
t _{ZXBIDIR} (2)		4.3		5.0		-	ns	

Table 47. EP20K400 External Timing Parameters

Symbol	-1 Speed Grade		-2 Spee	eed Grade -3 Spee		l Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU} (1)	1.4		1.8		2.0		ns
t _{INH} (1)	0.0		0.0		0.0		ns
t _{OUTCO} (1)	2.0	4.9	2.0	6.1	2.0	7.0	ns
t _{INSU} (2)	0.4		1.0		-		ns
t _{INH} (2)	0.0		0.0		-		ns
t _{OUTCO} (2)	0.5	3.1	0.5	4.1	-	-	ns

Table 48. EP20K400 External Bidirectional Timing Parameters

Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade -3 Speed Grad		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	1.4		1.8		2.0		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
t _{OUTCOBIDIR} (1)	2.0	4.9	2.0	6.1	2.0	7.0	ns
t _{XZBIDIR} (1)		7.3		8.9		10.3	ns
t _{ZXBIDIR} (1)		7.3		8.9		10.3	ns
t _{INSUBIDIR} (2)	0.5		1.0		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (2)	0.5	3.1	0.5	4.1	-	-	ns
t _{XZBIDIR} (2)		6.2		7.6		-	ns
t _{ZXBIDIR} (2)		6.2		7.6		_	ns

Altera Corporation

Table 64. EP2	Table 64. EP20K100E Minimum Pulse Width Timing Parameters											
Symbol	-	-1		-2		3	Unit					
	Min	Max	Min	Max	Min	Max						
t _{CH}	2.00		2.00		2.00		ns					
t _{CL}	2.00		2.00		2.00		ns					
t _{CLRP}	0.20		0.20		0.20		ns					
t _{PREP}	0.20		0.20		0.20		ns					
t _{ESBCH}	2.00		2.00		2.00		ns					
t _{ESBCL}	2.00		2.00		2.00		ns					
t _{ESBWP}	1.29		1.53		1.66		ns					
t _{ESBRP}	1.11		1.29		1.41		ns					

Table 65. EP20K100E External Timing Parameters											
Symbol	-	1		-2		}	Unit				
	Min	Max	Min	Max	Min	Max					
t _{INSU}	2.23		2.32		2.43		ns				
t _{INH}	0.00		0.00		0.00		ns				
t _{outco}	2.00	4.86	2.00	5.35	2.00	5.84	ns				
t _{INSUPLL}	1.58		1.66		-		ns				
t _{INHPLL}	0.00		0.00		-		ns				
t _{outcopll}	0.50	2.96	0.50	3.29	-	-	ns				

Table 66. EP20K100E External Bidirectional Timing Parameters										
Symbol	-	1	-	-2		-3	Unit			
	Min	Max	Min	Max	Min	Max				
t _{insubidir}	2.74		2.96		3.19		ns			
t _{inhbidir}	0.00		0.00		0.00		ns			
t _{outcobidir}	2.00	4.86	2.00	5.35	2.00	5.84	ns			
t _{XZBIDIR}		5.00		5.48		5.89	ns			
t _{ZXBIDIR}		5.00		5.48		5.89	ns			
t _{insubidirpll}	4.64		5.03		-		ns			
t _{inhbidirpll}	0.00		0.00		-		ns			
t _{outcobidirpll}	0.50	2.96	0.50	3.29	-	-	ns			
t _{xzbidirpll}		3.10		3.42		-	ns			
t _{ZXBIDIRPLL}		3.10		3.42		-	ns			

Table 74. EP20k	Table 74. EP20K200E f _{MAX} ESB Timing Microparameters										
Symbol	-1			-2		-3					
	Min	Мах	Min	Мах	Min	Max					
t _{ESBARC}		1.68		2.06		2.24	ns				
t _{ESBSRC}		2.27		2.77		3.18	ns				
t _{ESBAWC}		3.10		3.86		4.50	ns				
t _{ESBSWC}		2.90		3.67		4.21	ns				
t _{ESBWASU}	0.55		0.67		0.74		ns				
t _{ESBWAH}	0.36		0.46		0.48		ns				
t _{ESBWDSU}	0.69		0.83		0.95		ns				
t _{ESBWDH}	0.36		0.46		0.48		ns				
t _{ESBRASU}	1.61		1.90		2.09		ns				
t _{ESBRAH}	0.00		0.00		0.01		ns				
t _{ESBWESU}	1.42		1.71		2.01		ns				
t _{ESBWEH}	0.00		0.00		0.00		ns				
t _{ESBDATASU}	-0.06		-0.07		0.05		ns				
t _{ESBDATAH}	0.13		0.13		0.13		ns				
t _{ESBWADDRSU}	0.11		0.13		0.31		ns				
t _{ESBRADDRSU}	0.18		0.23		0.39		ns				
t _{ESBDATACO1}		1.09		1.35		1.51	ns				
t _{ESBDATACO2}		2.19		2.75		3.22	ns				
t _{ESBDD}		2.75		3.41		4.03	ns				
t _{PD}		1.58		1.97		2.33	ns				
t _{PTERMSU}	1.00		1.22		1.51		ns				
t _{PTERMCO}		1.10		1.37		1.09	ns				

Table 75. EP20K200E f _{MAX} Routing Delays											
Symbol	-	-1		-2	-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.25		0.27		0.29	ns				
t _{F5-20}		1.02		1.20		1.41	ns				
t _{F20+}		1.99		2.23		2.53	ns				

Table 80. EP20K	Table 80. EP20K300E f _{MAX} ESB Timing Microparameters										
Symbol	-	1		-2		3	Unit				
	Min	Max	Min	Max	Min	Max					
t _{ESBARC}		1.79		2.44		3.25	ns				
t _{ESBSRC}		2.40		3.12		4.01	ns				
t _{ESBAWC}		3.41		4.65		6.20	ns				
t _{ESBSWC}		3.68		4.68		5.93	ns				
t _{ESBWASU}	1.55		2.12		2.83		ns				
t _{ESBWAH}	0.00		0.00		0.00		ns				
t _{ESBWDSU}	1.71		2.33		3.11		ns				
t _{ESBWDH}	0.00		0.00		0.00		ns				
t _{ESBRASU}	1.72		2.34		3.13		ns				
t _{ESBRAH}	0.00		0.00		0.00		ns				
t _{ESBWESU}	1.63		2.36		3.28		ns				
t _{ESBWEH}	0.00		0.00		0.00		ns				
t _{ESBDATASU}	0.07		0.39		0.80		ns				
t _{ESBDATAH}	0.13		0.13		0.13		ns				
t _{ESBWADDRSU}	0.27		0.67		1.17		ns				
t _{ESBRADDRSU}	0.34		0.75		1.28		ns				
t _{ESBDATACO1}		1.03		1.20		1.40	ns				
t _{ESBDATACO2}		2.33		3.18		4.24	ns				
t _{ESBDD}		3.41		4.65		6.20	ns				
t _{PD}		1.68		2.29		3.06	ns				
t _{PTERMSU}	0.96		1.48		2.14		ns				
t _{PTERMCO}		1.05		1.22		1.42	ns				

Table 81. EP20K300E f _{MAX} Routing Delays											
Symbol		-1		-2	-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.22		0.24		0.26	ns				
t _{F5-20}		1.33		1.43		1.58	ns				
t _{F20+}		3.63		3.93		4.35	ns				

Altera Corporation

APEX 20K Programmable Logic Device Family Data Sheet

Table 87. EP20K400E f _{MAX} Routing Delays											
Symbol	-1 Spe	ed Grade	-2 Spe	ed Grade	-3 Spee	-3 Speed Grade					
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.25		0.25		0.26	ns				
t _{F5-20}		1.01		1.12		1.25	ns				
t _{F20+}		3.71		3.92		4.17	ns				

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{CH}	1.36		2.22		2.35		ns	
t _{CL}	1.36		2.26		2.35		ns	
t _{CLRP}	0.18		0.18		0.19		ns	
t _{PREP}	0.18		0.18		0.19		ns	
t _{ESBCH}	1.36		2.26		2.35		ns	
t _{ESBCL}	1.36		2.26		2.35		ns	
t _{ESBWP}	1.17		1.38		1.56		ns	
t _{ESBRP}	0.94		1.09		1.25		ns	

Table 89. EP20K400E External Timing Parameters									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{INSU}	2.51		2.64		2.77		ns		
t _{INH}	0.00		0.00		0.00		ns		
t _{outco}	2.00	5.25	2.00	5.79	2.00	6.32	ns		
t _{INSUPLL}	3.221		3.38		-		ns		
t _{INHPLL}	0.00		0.00		-		ns		
t _{outcopll}	0.50	2.25	0.50	2.45	-	-	ns		

Г

Tables 97 through 102 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices.

Table 97. EP20K1000E f _{MAX} LE Timing Microparameters									
Symbol	Symbol -1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{SU}	0.25		0.25		0.25		ns		
t _H	0.25		0.25		0.25		ns		
t _{CO}		0.28		0.32		0.33	ns		
t _{LUT}		0.80		0.95		1.13	ns		

Table 104. EP20K1500E f _{MAX} ESB Timing Microparameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	1	
t _{ESBARC}		1.78		2.02		1.95	ns	
t _{ESBSRC}		2.52		2.91		3.14	ns	
t _{ESBAWC}		3.52		4.11		4.40	ns	
t _{ESBSWC}		3.23		3.84		4.16	ns	
t _{ESBWASU}	0.62		0.67		0.61		ns	
t _{ESBWAH}	0.41		0.55		0.55		ns	
t _{ESBWDSU}	0.77		0.79		0.81		ns	
t _{ESBWDH}	0.41		0.55		0.55		ns	
t _{ESBRASU}	1.74		1.92		1.85		ns	
t _{ESBRAH}	0.00		0.01		0.23		ns	
t _{ESBWESU}	2.07		2.28		2.41		ns	
t _{ESBWEH}	0.00		0.00		0.00		ns	
t _{ESBDATASU}	0.25		0.27		0.29		ns	
t _{ESBDATAH}	0.13		0.13		0.13		ns	
t _{ESBWADDRSU}	0.11		0.04		0.11		ns	
t _{ESBRADDRSU}	0.14		0.11		0.16		ns	
t _{ESBDATACO1}		1.29		1.50		1.63	ns	
t _{ESBDATACO2}		2.55		2.99		3.22	ns	
t _{ESBDD}		3.12		3.57		3.85	ns	
t _{PD}		1.84		2.13		2.32	ns	
t _{PTERMSU}	1.08		1.19		1.32		ns	
t _{PTERMCO}		1.31		1.53		1.66	ns	

Table 105. EP20K1500E f _{MAX} Routing Delays									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{F1-4}		0.28		0.28		0.28	ns		
t _{F5-20}		1.36		1.50		1.62	ns		
t _{F20+}		4.43		4.48		5.07	ns		