E·XFL

Intel - EP20K600EFC672-1N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	2432
Number of Logic Elements/Cells	24320
Total RAM Bits	311296
Number of I/O	508
Number of Gates	1537000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k600efc672-1n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5. APEX 20K FineLine BGA Package Options & I/O Count Notes (1), (2)									
Device	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin				
EP20K30E	93	128							
EP20K60E	93	196							
EP20K100		252							
EP20K100E	93	246							
EP20K160E			316						
EP20K200			382						
EP20K200E			376	376					
EP20K300E				408					
EP20K400				502 <i>(3)</i>					
EP20K400E				488 <i>(3)</i>					
EP20K600E				508 <i>(3)</i>	588				
EP20K1000E				508 <i>(3)</i>	708				
EP20K1500E					808				

Notes to Tables 4 and 5:

Г

- (1) I/O counts include dedicated input and clock pins.
- (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages.
- (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information.

Table 6. APEX 20K QFP, BGA & PGA Package Sizes										
Feature	144-Pin TQFP	208-Pin QFP	240-Pin QFP	356-Pin BGA	652-Pin BGA	655-Pin PGA				
Pitch (mm)	0.50	0.50	0.50	1.27	1.27	-				
Area (mm ²)	484	924	1,218	1,225	2,025	3,906				
$\begin{array}{l} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.4 × 30.4	34.9×34.9	35 × 35	45 × 45	62.5 × 62.5				

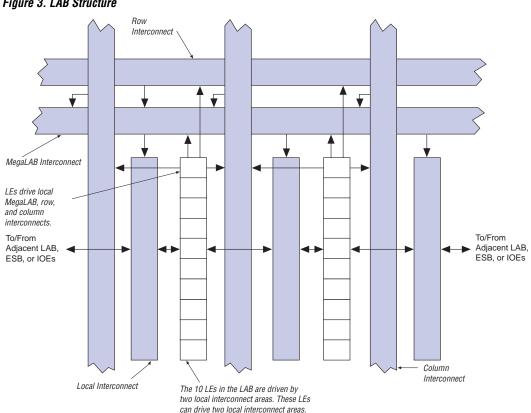
Table 7. APEX 20K FineLine BGA Package Sizes								
Feature	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin			
Pitch (mm)	1.00	1.00	1.00	1.00	1.00			
Area (mm ²)	169	361	529	729	1,089			
$\text{Length} \times \text{Width} \text{ (mm} \times \text{mm)}$	13 × 13	19×19	23 × 23	27 × 27	33 × 33			

1

All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required.

APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy.

After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.


APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations.

The Quartus II software provides NativeLink interfaces to other industrystandard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture.

Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20K LAB.

APEX 20K devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas. This feature minimizes use of the MegaLAB and FastTrack interconnect, providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect.

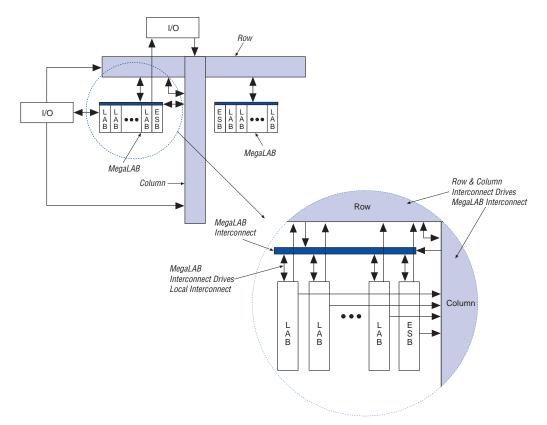


Figure 10. FastTrack Connection to Local Interconnect

Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other.

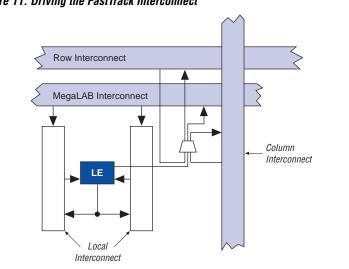


Figure 11. Driving the FastTrack Interconnect

APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow[™] interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect.

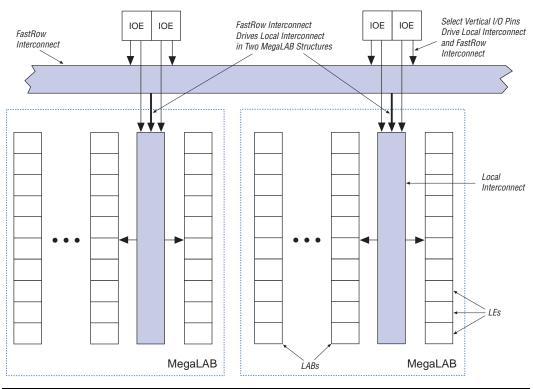
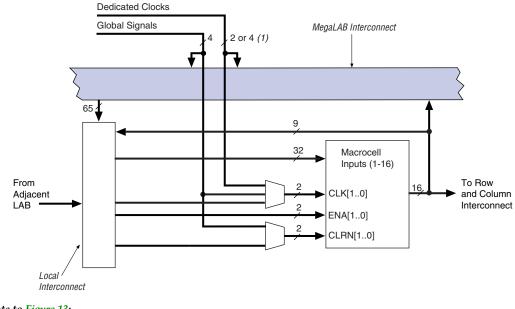



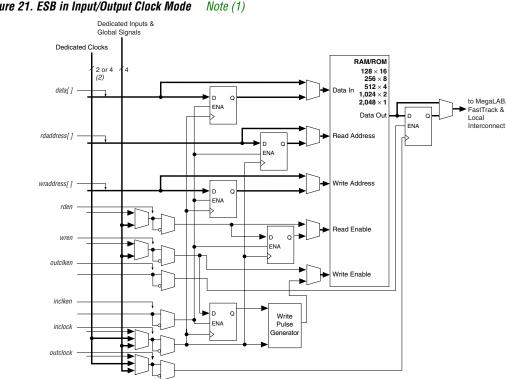
Figure 12. APEX 20KE FastRow Interconnect

Table 9 summarizes how various elements of the APEX 20K architecture drive each other.

Figure 13. Product-Term Logic in ESB

Note to Figure 13:

(1) APEX 20KE devices have four dedicated clocks.


Macrocells

APEX 20K macrocells can be configured individually for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register.

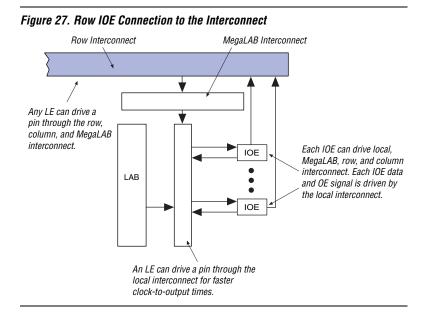
Combinatorial logic is implemented in the product terms. The productterm select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as parallel expanders to be used to increase the logic available to another macrocell. One product term can be inverted; the Quartus II software uses this feature to perform DeMorgan's inversion for more efficient implementation of wide OR functions. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Figure 14 shows the APEX 20K macrocell.

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode

Notes to Figure 21:


All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)APEX 20KE devices have four dedicated clocks. (2)

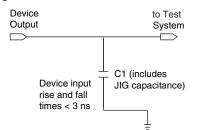
Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Altera Corporation

Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect.

Symbol Parameter		Min	Max	Unit	
t _{SKEW}	Skew delay between related ClockLock/ClockBoost-generated clocks		500	ps	
JITTER	Jitter on ClockLock/ClockBoost-generated clock (5)		200	ps	
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps	


Notes to Table 15:

- (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz.
- (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time.
- (4) The jitter specification is measured under long-term observation.
- (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps.

Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices.

Symbol	Parameter	Min	Max	Unit
f _{out}	Output frequency	25	170	MHz
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	170	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	80	MHz
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	34	MHz
t _{OUTDUTY}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1)		25,000 (2)	PPM
t _R	Input rise time		5	ns
t _F	Input fall time		5	ns
t _{LOCK}	Time required for ClockLock/ ClockBoost to acquire lock (3)		10	μs
t _{SKEW}	Skew delay between related ClockLock/ ClockBoost- generated clock	500	500	ps
t _{JITTER}	Jitter on ClockLock/ ClockBoost-generated clock (4)		200	ps
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps

Table 16. APEX 20K ClockLock & ClockBoost Parameters for -2 Speed Grade Devices

Figure 32. APEX 20K AC Test Conditions Note (1)

Note to Figure 32:

Power supply transients can affect AC measurements. Simultaneous transitions of (1) multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.

Operating **Conditions**

Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices.

Table 2	J. AFEN ZUN J.U-V TUIETAII	it Device Adsolute maximum Ratings No)tes (1), (2)		
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage	With respect to ground (3)	-0.5	3.6	V
V _{CCIO}			-0.5	4.6	V
VI	DC input voltage		-2.0	5.75	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
Т _Ј	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	°C
		Ceramic PGA packages, under bias		150	°C

Table 23. APEX 20K 5.0-V Tolerant Device Absolute Maximum Ratings	Notes (1), (2)
---	----------------

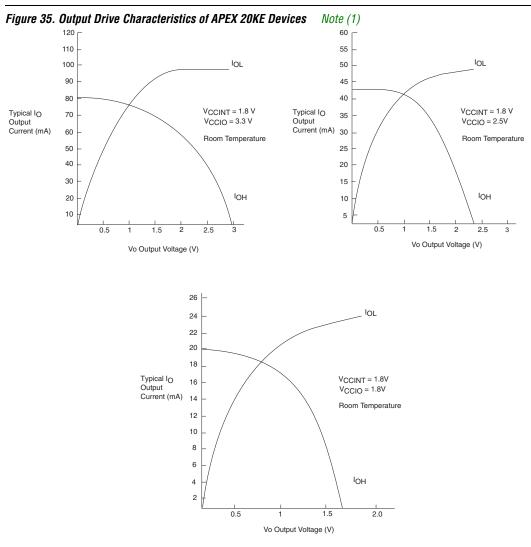


Figure 35 shows the output drive characteristics of APEX 20KE devices.

Note to Figure 35:(1) These are transient (AC) currents.

Timing Model

The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	Units	
	Min	Мах	Min	Max	Min	Max	
t _{SU}	0.5		0.6		0.8		ns
t _H	0.7		0.8		1.0		ns
t _{co}		0.3		0.4		0.5	ns
t _{lut}		0.8		1.0		1.3	ns
t _{ESBRC}		1.7		2.1		2.4	ns
t _{ESBWC}		5.7		6.9		8.1	ns
t _{ESBWESU}	3.3		3.9		4.6		ns
t _{ESBDATASU}	2.2		2.7		3.1		ns
t _{ESBDATAH}	0.6		0.8		0.9		ns
t _{ESBADDRSU}	2.4		2.9		3.3		ns
t _{ESBDATACO1}		1.3		1.6		1.8	ns
t _{ESBDATACO2}		2.6		3.1		3.6	ns
t _{ESBDD}		2.5		3.3		3.6	ns
t _{PD}		2.5		3.0		3.6	ns
t _{PTERMSU}	2.3		2.7		3.2		ns
t _{PTERMCO}		1.5		1.8		2.1	ns
t _{F1-4}		0.5		0.6		0.7	ns
t _{F5-20}		1.6		1.7		1.8	ns
t _{F20+}		2.2		2.2		2.3	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns
t _{CLRP}	0.3		0.4		0.4		ns
t _{PREP}	0.4		0.5		0.5		ns
t _{ESBCH}	2.0		2.5		3.0		ns
t _{ESBCL}	2.0		2.5		3.0		ns
t _{ESBWP}	1.6		1.9		2.2		ns
t _{ESBRP}	1.0		1.3		1.4		ns

Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		d Grade	Units
			•		_	_	
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.1		0.3		0.6		ns
t _H	0.5		0.8		0.9		ns
t _{CO}		0.1		0.4		0.6	ns
t _{LUT}		1.0		1.2		1.4	ns
t _{ESBRC}		1.7		2.1		2.4	ns
t _{ESBWC}		5.7		6.9		8.1	ns
t _{ESBWESU}	3.3		3.9		4.6		ns
t _{ESBDATASU}	2.2		2.7		3.1		ns
t _{ESBDATAH}	0.6		0.8		0.9		ns
t _{ESBADDRSU}	2.4		2.9		3.3		ns
t _{ESBDATACO1}		1.3		1.6		1.8	ns
t _{ESBDATACO2}		2.5		3.1		3.6	ns
t _{ESBDD}		2.5		3.3		3.6	ns
t _{PD}		2.5		3.1		3.6	ns
t _{PTERMSU}	1.7		2.1		2.4		ns
t _{PTERMCO}		1.0		1.2		1.4	ns
t _{F1-4}		0.4		0.5		0.6	ns
t _{F5-20}		2.6		2.8		2.9	ns
t _{F20+}		3.7		3.8		3.9	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns
t _{CLRP}	0.5		0.6		0.8		ns
t _{PREP}	0.5		0.5		0.5		ns
t _{ESBCH}	2.0		2.5		3.0		ns
t _{ESBCL}	2.0		2.5		3.0		ns
t _{ESBWP}	1.5		1.9		2.2		ns
t _{ESBRP}	1.0		1.2		1.4		ns

Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

Notes to Tables 43 through 48:

- (1) This parameter is measured without using ClockLock or ClockBoost circuits.
- (2) This parameter is measured using ClockLock or ClockBoost circuits.

Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices.

Symbol	-	1	-	2	-;	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.01		0.02		0.02		ns
t _H	0.11		0.16		0.23		ns
t _{CO}		0.32		0.45		0.67	ns
t _{LUT}		0.85		1.20		1.77	ns

Symbol	-	-1		-2		-3		
	Min	Max	Min	Max	Min	Мах		
t _{CH}	0.55		0.78		1.15		ns	
t _{CL}	0.55		0.78		1.15		ns	
t _{CLRP}	0.22		0.31		0.46		ns	
t _{PREP}	0.22		0.31		0.46		ns	
t _{ESBCH}	0.55		0.78		1.15		ns	
t _{ESBCL}	0.55		0.78		1.15		ns	
t _{ESBWP}	1.43		2.01		2.97		ns	
t _{ESBRP}	1.15		1.62		2.39		ns	

Symbol	-1		-2		-3		Unit
	Min	Мах	Min	Max	Min	Max	
t _{INSU}	2.02		2.13		2.24		ns
t _{INH}	0.00		0.00		0.00		ns
t _{outco}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{INSUPLL}	2.11		2.23		-		ns
t _{INHPLL}	0.00		0.00		-		ns
toutcopll	0.50	2.60	0.50	2.88	-	-	ns

Symbol	-1		-	2	-	Unit	
	Min	Max	Min	Max	Min	Max	1
t _{insubidir}	1.85		1.77		1.54		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{XZBIDIR}		7.48		8.46		9.83	ns
t _{ZXBIDIR}		7.48		8.46		9.83	ns
t _{insubidirpll}	4.12		4.24		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	2.60	0.50	2.88	-	-	ns
t _{XZBIDIRPLL}		5.21		5.99		-	ns
t _{ZXBIDIRPLL}		5.21		5.99		-	ns

Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices.

Table 55. EP20K60E f _{MAX} LE Timing Microparameters										
Symbol	-	1	-2 -3				Unit			
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.17		0.15		0.16		ns			
t _H	0.32		0.33		0.39		ns			
t _{CO}		0.29		0.40		0.60	ns			
t _{LUT}		0.77		1.07		1.59	ns			

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	1
t _{CH}	2.00		2.50		2.75		ns
t _{CL}	2.00		2.50		2.75		ns
t _{CLRP}	0.18		0.26		0.34		ns
t _{PREP}	0.18		0.26		0.34		ns
t _{ESBCH}	2.00		2.50		2.75		ns
t _{ESBCL}	2.00		2.50		2.75		ns
t _{ESBWP}	1.17		1.68		2.18		ns
t _{ESBRP}	0.95		1.35		1.76		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.74		2.74		2.87		ns
t _{INH}	0.00		0.00		0.00		ns
toutco	2.00	5.51	2.00	6.06	2.00	6.61	ns
tINSUPLL	1.86		1.96		-		ns
t _{INHPLL}	0.00		0.00		-		ns
toutcopll	0.50	2.62	0.50	2.91	-	-	ns

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	1
t _{insubidir}	0.64		0.98		1.08		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	5.51	2.00	6.06	2.00	6.61	ns
t _{xzbidir}		6.10		6.74		7.10	ns
t _{zxbidir}		6.10		6.74		7.10	ns
t _{insubidirpll}	2.26		2.68		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	2.62	0.50	2.91	-	-	ns
t _{xzbidirpll}		3.21		3.59		-	ns
t _{ZXBIDIRPLL}		3.21		3.59		-	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.28		1.51		1.65		ns
t _{ESBRP}	1.11		1.29		1.41		ns

Table 107. EP20K1500E External Timing Parameters										
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max	1			
tINSU	3.09		3.30		3.58		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	6.18	2.00	6.81	2.00	7.36	ns			
t _{INSUPLL}	1.94		2.08		-		ns			
t _{INHPLL}	0.00		0.00		-		ns			
toutcopll	0.50	2.67	0.50	2.99	-	-	ns			

Version 4.1

APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes:

- *t*_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104.
- Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.