Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 2432 | | Number of Logic Elements/Cells | 24320 | | Total RAM Bits | 311296 | | Number of I/O | 508 | | Number of Gates | 1537000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 672-BBGA | | Supplier Device Package | 672-FBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k600efc672-1x | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 5. APEX 20K FineLine BGA Package Options & I/O Count Notes (1), (2) | | | | | | | |---------------------------------------------------------------------------------|---------|---------|---------|----------------|-----------|--| | Device | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | | EP20K30E | 93 | 128 | | | | | | EP20K60E | 93 | 196 | | | | | | EP20K100 | | 252 | | | | | | EP20K100E | 93 | 246 | | | | | | EP20K160E | | | 316 | | | | | EP20K200 | | | 382 | | | | | EP20K200E | | | 376 | 376 | | | | EP20K300E | | | | 408 | | | | EP20K400 | | | | 502 <i>(3)</i> | | | | EP20K400E | | | | 488 (3) | | | | EP20K600E | | | | 508 (3) | 588 | | | EP20K1000E | | | | 508 (3) | 708 | | | EP20K1500E | | | | | 808 | | #### Notes to Tables 4 and 5: - (1) I/O counts include dedicated input and clock pins. - (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages. - (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information. | Table 6. APEX 20K QFP, BGA & PGA Package Sizes | | | | | | | | | |--------------------------------------------------------------------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|--|--| | Feature | 144-Pin TQFP | 208-Pin QFP | 240-Pin QFP | 356-Pin BGA | 652-Pin BGA | 655-Pin PGA | | | | Pitch (mm) | 0.50 | 0.50 | 0.50 | 1.27 | 1.27 | _ | | | | Area (mm <sup>2</sup> ) | 484 | 924 | 1,218 | 1,225 | 2,025 | 3,906 | | | | $\begin{array}{c} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 22 × 22 | 30.4 × 30.4 | 34.9 × 34.9 | 35 × 35 | 45 × 45 | 62.5 × 62.5 | | | | Table 7. APEX 20K FineLine BGA Package Sizes | | | | | | | | |----------------------------------------------|---------|---------|---------|---------|-----------|--|--| | Feature | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | | | Pitch (mm) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Area (mm <sup>2</sup> ) | 169 | 361 | 529 | 729 | 1,089 | | | | $Length \times Width (mm \times mm)$ | 13 × 13 | 19×19 | 23 × 23 | 27 × 27 | 33 × 33 | | | # General Description APEX<sup>TM</sup> 20K devices are the first PLDs designed with the MultiCore architecture, which combines the strengths of LUT-based and product-term-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for data-path, register-intensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20K device architecture uniquely suited for system-on-a-programmable-chip designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20K device. APEX 20KE devices are a superset of APEX 20K devices and include additional features such as advanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices extend the APEX 20K family to 1.5 million gates. APEX 20KE devices are denoted with an "E" suffix in the device name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8 compares the features included in APEX 20K and APEX 20KE devices. All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required. APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy. After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications. APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations. The Quartus II software provides NativeLink interfaces to other industry-standard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture. Figure 6. APEX 20K Carry Chain #### Cascade Chain With the cascade chain, the APEX 20K architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. Figure 7. APEX 20K Cascade Chain #### Read/Write Clock Mode The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode. Figure 20. ESB in Read/Write Clock Mode Note (1) Notes to Figure 20: (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (2) APEX 20KE devices have four dedicated clocks. #### Input/Output Clock Mode The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode. Figure 21. ESB in Input/Output Clock Mode Note (1) Notes to Figure 21: - (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. - (2) APEX 20KE devices have four dedicated clocks. #### Single-Port Mode The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22. Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software. | Table 10. APEX 20K Programmable Delay Chains | | | | | |----------------------------------------------|-----------------------------------------|--|--|--| | Programmable Delays Quartus II Logic Option | | | | | | Input pin to core delay | Decrease input delay to internal cells | | | | | Input pin to input register delay | Decrease input delay to input register | | | | | Core to output register delay | Decrease input delay to output register | | | | | Output register t <sub>CO</sub> delay | Increase delay to output pin | | | | The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices. The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used. | Table 14. Multiplication Factor Combinations | | | | | |----------------------------------------------|----|--|--|--| | Clock 1 Clock 2 | | | | | | ×1 | ×1 | | | | | ×1,×2 | ×2 | | | | | ×1, ×2, ×4 | ×4 | | | | #### **APEX 20KE ClockLock Feature** APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs. The following sections describe some of the features offered by the APEX 20KE PLLs. #### External PLL Feedback The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM. #### Clock Multiplication The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$ , where m and k range from 2 to 160, and n and v range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements. | Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2) | | | | | | | | |-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----|-----|------|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | t <sub>SKEW</sub> | Skew delay between related ClockLock/ClockBoost-generated clocks | | 500 | ps | | | | | t <sub>JITTER</sub> | Jitter on ClockLock/ClockBoost-generated clock (5) | | 200 | ps | | | | | t <sub>INCLKSTB</sub> | Input clock stability (measured between adjacent clocks) | | 50 | ps | | | | #### Notes to Table 15: - (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz. - (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time. - (4) The jitter specification is measured under long-term observation. - (5) If the input clock stability is 100 ps, $t_{JITTER}$ is 250 ps. Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices. | Symbol | Parameter | Min | Max | Unit | |-----------------------|----------------------------------------------------------------------------------------------------------------------------|-----|------------|------| | f <sub>OUT</sub> | Output frequency | 25 | 170 | MHz | | f <sub>CLK1</sub> | Input clock frequency (ClockBoost clock multiplication factor equals 1) | 25 | 170 | MHz | | f <sub>CLK2</sub> | Input clock frequency (ClockBoost clock multiplication factor equals 2) | 16 | 80 | MHz | | f <sub>CLK4</sub> | Input clock frequency (ClockBoost clock multiplication factor equals 4) | 10 | 34 | MHz | | t <sub>OUTDUTY</sub> | Duty cycle for ClockLock/ClockBoost-generated clock | 40 | 60 | % | | f <sub>CLKDEV</sub> | Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1) | | 25,000 (2) | PPM | | t <sub>R</sub> | Input rise time | | 5 | ns | | t <sub>F</sub> | Input fall time | | 5 | ns | | t <sub>LOCK</sub> | Time required for ClockLock/ ClockBoost to acquire lock (3) | | 10 | μѕ | | t <sub>SKEW</sub> | Skew delay between related ClockLock/ ClockBoost-<br>generated clock | 500 | 500 | ps | | t <sub>JITTER</sub> | Jitter on ClockLock/ ClockBoost-generated clock (4) | | 200 | ps | | t <sub>INCLKSTB</sub> | Input clock stability (measured between adjacent clocks) | | 50 | ps | #### Notes to Table 16: - (1) To implement the ClockLock and ClockBoost circuitry with the Quartus II software, designers must specify the input frequency. The Quartus II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f<sub>CLKDEV</sub> parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter. - (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the $t_{LOCK}$ value is less than the time required for configuration. - (4) The $t_{IITTER}$ specification is measured under long-term observation. Tables 17 and 18 summarize the ClockLock and ClockBoost parameters for APEX 20KE devices. | Table 17. APEX 20KE ClockLock & ClockBoost Parameters Note (1) | | | | | | | | |----------------------------------------------------------------|-----------------------------------------------------------|------------|-----|-----|------------------------|------------------|--| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | | t <sub>R</sub> | Input rise time | | | | 5 | ns | | | t <sub>F</sub> | Input fall time | | | | 5 | ns | | | t <sub>INDUTY</sub> | Input duty cycle | | 40 | | 60 | % | | | t <sub>INJITTER</sub> | Input jitter peak-to-peak | | | | 2% of input period | peak-to-<br>peak | | | t <sub>OUTJITTER</sub> | Jitter on ClockLock or ClockBoost-<br>generated clock | | | | 0.35% of output period | RMS | | | t <sub>OUTDUTY</sub> | Duty cycle for ClockLock or ClockBoost-generated clock | | 45 | | 55 | % | | | t <sub>LOCK</sub> (2), (3) | Time required for ClockLock or ClockBoost to acquire lock | | | | 40 | μs | | ### IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration. | Table 19. APEX 20K JT | Table 19. APEX 20K JTAG Instructions | | | | | |----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | JTAG Instruction | Description | | | | | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer. | | | | | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | | | BYPASS (1) | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation. | | | | | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. | | | | | | IDCODE | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO. | | | | | | ICR Instructions | Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster <sup>TM</sup> or ByteBlasterMV <sup>TM</sup> download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor. | | | | | | SignalTap Instructions (1) | Monitors internal device operation with the SignalTap embedded logic analyzer. | | | | | #### Note to Table 19: (1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|-----|-------------------------|------| | V <sub>OL</sub> | 3.3-V low-level TTL output voltage | I <sub>OL</sub> = 12 mA DC,<br>V <sub>CCIO</sub> = 3.00 V (11) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | I <sub>OL</sub> = 0.1 mA DC,<br>V <sub>CCIO</sub> = 3.00 V (11) | | | 0.2 | V | | 3.3-V low-lev | 3.3-V low-level PCI output voltage | I <sub>OL</sub> = 1.5 mA DC,<br>V <sub>CCIO</sub> = 3.00 to 3.60 V<br>(11) | | | 0.1 × V <sub>CCIO</sub> | V | | | 2.5-V low-level output voltage | I <sub>OL</sub> = 0.1 mA DC,<br>V <sub>CCIO</sub> = 2.30 V (11) | | | 0.2 | ٧ | | | | I <sub>OL</sub> = 1 mA DC,<br>V <sub>CCIO</sub> = 2.30 V (11) | | | 0.4 | ٧ | | | | I <sub>OL</sub> = 2 mA DC,<br>V <sub>CCIO</sub> = 2.30 V (11) | | | 0.7 | ٧ | | I <sub>I</sub> | Input pin leakage current | $V_1 = 5.75 \text{ to } -0.5 \text{ V}$ | -10 | | 10 | μΑ | | I <sub>OZ</sub> | Tri-stated I/O pin leakage current | $V_O = 5.75 \text{ to } -0.5 \text{ V}$ | -10 | | 10 | μΑ | | I <sub>CC0</sub> | V <sub>CC</sub> supply current (standby)<br>(All ESBs in power-down mode) | V <sub>I</sub> = ground, no load, no toggling inputs, -1 speed grade (12) | | 10 | | mA | | | | V <sub>I</sub> = ground, no load, no toggling inputs,<br>-2, -3 speed grades (12) | | 5 | | mA | | R <sub>CONF</sub> | Value of I/O pin pull-up resistor | V <sub>CCIO</sub> = 3.0 V (13) | 20 | | 50 | W | | | before and during configuration | V <sub>CCIO</sub> = 2.375 V (13) | 30 | | 80 | W | For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).* | Table 30. APEX 20KE Device Capacitance Note (15) | | | | | | | |----------------------------------------------------|------------------------------------------|-------------------------------------|-----|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | C <sub>IN</sub> | Input capacitance | V <sub>IN</sub> = 0 V, f = 1.0 MHz | | 8 | pF | | | C <sub>INCLK</sub> | Input capacitance on dedicated clock pin | V <sub>IN</sub> = 0 V, f = 1.0 MHz | | 12 | pF | | | C <sub>OUT</sub> | Output capacitance | V <sub>OUT</sub> = 0 V, f = 1.0 MHz | | 8 | pF | | #### Notes to Tables 27 through 30: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V<sub>CC</sub> rise time is 100 ms, and V<sub>CC</sub> must rise monotonically. - (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle. Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10% - (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V<sub>CCINT</sub> and V<sub>CCIO</sub> are powered. - Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V. - (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60. - (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V<sub>IH</sub>, V<sub>IL</sub>, V<sub>OH</sub>, V<sub>OL</sub>, and I<sub>I</sub> parameters when VCCIO = 1.8 V. - (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL. - (11) The I<sub>OH</sub> parameter refers to high-level TTL, PCI, or CMOS output current. - (12) The I<sub>OL</sub> parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (13) This value is specified for normal device operation. The value may vary during power-up. - (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V<sub>CCIO</sub>. - (15) Capacitance is sample-tested only. Figure 33 shows the relationship between $V_{CCIO}$ and $V_{CCINT}$ for 3.3-V PCI compliance on APEX 20K devices. | Table 31. APEX 2 | POK f <sub>MAX</sub> Timing Parameters (Part 2 of 2) | | | | | | | |-------------------------|------------------------------------------------------|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | | t <sub>ESBDATACO2</sub> | ESB clock-to-output delay without output registers | | | | | | | | t <sub>ESBDD</sub> | ESB data-in to data-out delay for RAM mode | | | | | | | | t <sub>PD</sub> | ESB macrocell input to non-registered output | | | | | | | | t <sub>PTERMSU</sub> | ESB macrocell register setup time before clock | | | | | | | | t <sub>PTERMCO</sub> | ESB macrocell register clock-to-output delay | | | | | | | | t <sub>F1-4</sub> | Fanout delay using local interconnect | | | | | | | | t <sub>F5-20</sub> | Fanout delay using MegaLab Interconnect | | | | | | | | t <sub>F20+</sub> | Fanout delay using FastTrack Interconnect | | | | | | | | t <sub>CH</sub> | Minimum clock high time from clock pin | | | | | | | | t <sub>CL</sub> | Minimum clock low time from clock pin | | | | | | | | t <sub>CLRP</sub> | LE clear pulse width | | | | | | | | t <sub>PREP</sub> | LE preset pulse width | | | | | | | | t <sub>ESBCH</sub> | Clock high time | | | | | | | | t <sub>ESBCL</sub> | Clock low time | | | | | | | | t <sub>ESBWP</sub> | Write pulse width | | | | | | | | t <sub>ESBRP</sub> | Read pulse width | | | | | | | Tables 32 and 33 describe APEX 20K external timing parameters. | Table 32. APEX 20 | K External Timing Parameters Note (1) | |-------------------|---------------------------------------------------------| | Symbol | Clock Parameter | | t <sub>INSU</sub> | Setup time with global clock at IOE register | | t <sub>INH</sub> | Hold time with global clock at IOE register | | tоитсо | Clock-to-output delay with global clock at IOE register | | Table 33. APEX 20K External Bidirectional Timing Parameters Note (1) | | | | | | | | | | |------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|--| | Symbol | Symbol Parameter | | | | | | | | | | t <sub>INSUBIDIR</sub> | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | | | | t <sub>INHBIDIR</sub> | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | | | | <sup>t</sup> OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE register | C1 = 10 pF | | | | | | | | | t <sub>XZBIDIR</sub> | Synchronous IOE output buffer disable delay | C1 = 10 pF | | | | | | | | | t <sub>ZXBIDIR</sub> | Synchronous IOE output buffer enable delay, slow slew rate = off | C1 = 10 pF | | | | | | | | | Symbol | Parameter | Conditions | |----------------------------|---------------------------------------------------------------------------------------|------------| | t <sub>INSUBIDIR</sub> | Setup time for bidirectional pins with global clock at LAB adjacent Input Register | | | t <sub>INHBIDIR</sub> | Hold time for bidirectional pins with global clock at LAB adjacent Input Register | | | <sup>t</sup> OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE output register | C1 = 10 pF | | t <sub>XZBIDIR</sub> | Synchronous Output Enable Register to output buffer disable delay | C1 = 10 pF | | t <sub>ZXBIDIR</sub> | Synchronous Output Enable Register output buffer enable delay | C1 = 10 pF | | t <sub>INSUBIDIRPLL</sub> | Setup time for bidirectional pins with PLL clock at LAB adjacent Input Register | | | t <sub>INHBIDIRPLL</sub> | Hold time for bidirectional pins with PLL clock at LAB adjacent Input Register | | | <sup>†</sup> OUTCOBIDIRPLL | Clock-to-output delay for bidirectional pins with PLL clock at IOE output register | C1 = 10 pF | | t <sub>XZBIDIRPLL</sub> | Synchronous Output Enable Register to output buffer disable delay with PLL | C1 = 10 pF | | t <sub>ZXBIDIRPLL</sub> | Synchronous Output Enable Register output buffer enable delay with PLL | C1 = 10 pF | Note to Tables 38 and 39: <sup>(1)</sup> These timing parameters are sample-tested only. | Symbol | -1 Spee | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | |-------------------------|---------|----------------|-----|----------------|-----|----------------|----| | | Min | Max | Min | Max | Min | Max | | | t <sub>SU</sub> | 0.1 | | 0.3 | | 0.6 | | ns | | t <sub>H</sub> | 0.5 | | 0.8 | | 0.9 | | ns | | t <sub>CO</sub> | | 0.1 | | 0.4 | | 0.6 | ns | | t <sub>LUT</sub> | | 1.0 | | 1.2 | | 1.4 | ns | | t <sub>ESBRC</sub> | | 1.7 | | 2.1 | | 2.4 | ns | | t <sub>ESBWC</sub> | | 5.7 | | 6.9 | | 8.1 | ns | | t <sub>ESBWESU</sub> | 3.3 | | 3.9 | | 4.6 | | ns | | t <sub>ESBDATASU</sub> | 2.2 | | 2.7 | | 3.1 | | ns | | t <sub>ESBDATAH</sub> | 0.6 | | 0.8 | | 0.9 | | ns | | t <sub>ESBADDRSU</sub> | 2.4 | | 2.9 | | 3.3 | | ns | | t <sub>ESBDATACO1</sub> | | 1.3 | | 1.6 | | 1.8 | ns | | t <sub>ESBDATACO2</sub> | | 2.5 | | 3.1 | | 3.6 | ns | | t <sub>ESBDD</sub> | | 2.5 | | 3.3 | | 3.6 | ns | | t <sub>PD</sub> | | 2.5 | | 3.1 | | 3.6 | ns | | t <sub>PTERMSU</sub> | 1.7 | | 2.1 | | 2.4 | | ns | | t <sub>PTERMCO</sub> | | 1.0 | | 1.2 | | 1.4 | ns | | t <sub>F1-4</sub> | | 0.4 | | 0.5 | | 0.6 | ns | | t <sub>F5-20</sub> | | 2.6 | | 2.8 | | 2.9 | ns | | t <sub>F20+</sub> | | 3.7 | | 3.8 | | 3.9 | ns | | t <sub>CH</sub> | 2.0 | | 2.5 | | 3.0 | | ns | | t <sub>CL</sub> | 2.0 | | 2.5 | | 3.0 | | ns | | t <sub>CLRP</sub> | 0.5 | | 0.6 | | 0.8 | | ns | | t <sub>PREP</sub> | 0.5 | | 0.5 | | 0.5 | | ns | | t <sub>ESBCH</sub> | 2.0 | | 2.5 | | 3.0 | | ns | | t <sub>ESBCL</sub> | 2.0 | | 2.5 | | 3.0 | | ns | | t <sub>ESBWP</sub> | 1.5 | | 1.9 | | 2.2 | | ns | | t <sub>ESBRP</sub> | 1.0 | | 1.2 | | 1.4 | | ns | Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices. | Symbol | -1 | | - | 2 | - | Unit | | |----------------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t <sub>INSUBIDIR</sub> | 2.77 | | 2.91 | | 3.11 | | ns | | t <sub>INHBIDIR</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>OUTCOBIDIR</sub> | 2.00 | 4.84 | 2.00 | 5.31 | 2.00 | 5.81 | ns | | t <sub>XZBIDIR</sub> | | 6.47 | | 7.44 | | 8.65 | ns | | t <sub>ZXBIDIR</sub> | | 6.47 | | 7.44 | | 8.65 | ns | | t <sub>INSUBIDIRPLL</sub> | 3.44 | | 3.24 | | - | | ns | | tinhbidirpll | 0.00 | | 0.00 | | - | | ns | | <sup>t</sup> OUTCOBIDIRPLL | 0.50 | 3.37 | 0.50 | 3.69 | - | - | ns | | txzbidirpll | | 5.00 | | 5.82 | | - | ns | | tzxbidirpll | | 5.00 | | 5.82 | | - | ns | Tables 61 through 66 describe $f_{MAX}$ LE Timing Microparameters, $f_{MAX}$ ESB Timing Microparameters, $f_{MAX}$ Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices. | Table 61. EP2 | OK100E f <sub>MAX</sub> | LE Timing Mic | croparameters | 3 | | | | |------------------|-------------------------|---------------|---------------|------|------|------|----| | Symbol | -1 | | -2 | | -1 | -3 | | | | Min | Max | Min | Max | Min | Max | | | t <sub>SU</sub> | 0.25 | | 0.25 | | 0.25 | | ns | | t <sub>H</sub> | 0.25 | | 0.25 | | 0.25 | | ns | | t <sub>CO</sub> | | 0.28 | | 0.28 | | 0.34 | ns | | t <sub>LUT</sub> | | 0.80 | | 0.95 | | 1.13 | ns | | Symbol Symbol | UKTUUE MIININ | | dth Timing Parameters<br>-2 | | | <br>3 | Unit | |--------------------|---------------|-----|-----------------------------|-----|------|-------|------| | | Min | Max | Min | Max | Min | Max | | | t <sub>CH</sub> | 2.00 | | 2.00 | | 2.00 | | ns | | t <sub>CL</sub> | 2.00 | | 2.00 | | 2.00 | | ns | | t <sub>CLRP</sub> | 0.20 | | 0.20 | | 0.20 | | ns | | t <sub>PREP</sub> | 0.20 | | 0.20 | | 0.20 | | ns | | t <sub>ESBCH</sub> | 2.00 | | 2.00 | | 2.00 | | ns | | t <sub>ESBCL</sub> | 2.00 | | 2.00 | | 2.00 | | ns | | t <sub>ESBWP</sub> | 1.29 | | 1.53 | | 1.66 | | ns | | t <sub>ESBRP</sub> | 1.11 | | 1.29 | | 1.41 | | ns | | Symbol | - | 1 | -2 | | -3 | | Unit | |-----------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t <sub>INSU</sub> | 2.23 | | 2.32 | | 2.43 | | ns | | t <sub>INH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>outco</sub> | 2.00 | 4.86 | 2.00 | 5.35 | 2.00 | 5.84 | ns | | t <sub>INSUPLL</sub> | 1.58 | | 1.66 | | - | | ns | | t <sub>INHPLL</sub> | 0.00 | | 0.00 | | = | | ns | | t <sub>OUTCOPLL</sub> | 0.50 | 2.96 | 0.50 | 3.29 | - | - | ns | | Symbol | -1 | | - | 2 | - | Unit | | |----------------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t <sub>INSUBIDIR</sub> | 2.74 | | 2.96 | | 3.19 | | ns | | t <sub>INHBIDIR</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>OUTCOBIDIR</sub> | 2.00 | 4.86 | 2.00 | 5.35 | 2.00 | 5.84 | ns | | t <sub>XZBIDIR</sub> | | 5.00 | | 5.48 | | 5.89 | ns | | t <sub>ZXBIDIR</sub> | | 5.00 | | 5.48 | | 5.89 | ns | | t <sub>INSUBIDIRPLL</sub> | 4.64 | | 5.03 | | - | | ns | | t <sub>INHBIDIRPLL</sub> | 0.00 | | 0.00 | | - | | ns | | t <sub>OUTCOBIDIRPLL</sub> | 0.50 | 2.96 | 0.50 | 3.29 | - | - | ns | | t <sub>XZBIDIRPLL</sub> | | 3.10 | | 3.42 | | - | ns | | tzxbidirpll | | 3.10 | | 3.42 | | - | ns | | Table 92. EP20K | 600E f <sub>MAX</sub> ESE | 3 Timing Micr | oparameters | | | | | |-------------------------|---------------------------|---------------|-------------|----------|---------|---------|------| | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t <sub>ESBARC</sub> | | 1.67 | | 2.39 | | 3.11 | ns | | t <sub>ESBSRC</sub> | | 2.27 | | 3.07 | | 3.86 | ns | | t <sub>ESBAWC</sub> | | 3.19 | | 4.56 | | 5.93 | ns | | t <sub>ESBSWC</sub> | | 3.51 | | 4.62 | | 5.72 | ns | | t <sub>ESBWASU</sub> | 1.46 | | 2.08 | | 2.70 | | ns | | t <sub>ESBWAH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>ESBWDSU</sub> | 1.60 | | 2.29 | | 2.97 | | ns | | t <sub>ESBWDH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>ESBRASU</sub> | 1.61 | | 2.30 | | 2.99 | | ns | | t <sub>ESBRAH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>ESBWESU</sub> | 1.49 | | 2.30 | | 3.11 | | ns | | t <sub>ESBWEH</sub> | 0.00 | | 0.00 | | 0.00 | | ns | | t <sub>ESBDATASU</sub> | -0.01 | | 0.35 | | 0.71 | | ns | | t <sub>ESBDATAH</sub> | 0.13 | | 0.13 | | 0.13 | | ns | | t <sub>ESBWADDRSU</sub> | 0.19 | | 0.62 | | 1.06 | | ns | | t <sub>ESBRADDRSU</sub> | 0.25 | | 0.71 | | 1.17 | | ns | | t <sub>ESBDATACO1</sub> | | 1.01 | | 1.19 | | 1.37 | ns | | t <sub>ESBDATACO2</sub> | | 2.18 | | 3.12 | | 4.05 | ns | | t <sub>ESBDD</sub> | | 3.19 | | 4.56 | | 5.93 | ns | | t <sub>PD</sub> | | 1.57 | | 2.25 | | 2.92 | ns | | t <sub>PTERMSU</sub> | 0.85 | | 1.43 | | 2.01 | | ns | | t <sub>PTERMCO</sub> | | 1.03 | | 1.21 | | 1.39 | ns | | Table 93. EP2 | OK600E f <sub>MAX</sub> | Routing Delays | s | | | | | |--------------------|-------------------------|----------------|--------|----------|---------|---------|------| | Symbol | -1 Spee | d Grade | -2 Spe | ed Grade | -3 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t <sub>F1-4</sub> | | 0.22 | | 0.25 | | 0.26 | ns | | t <sub>F5-20</sub> | | 1.26 | | 1.39 | | 1.52 | ns | | t <sub>F20+</sub> | | 3.51 | | 3.88 | | 4.26 | ns |