E·XFL

Intel - EP20K60EQC208-2N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	2560
Number of Logic Elements/Cells	2560
Total RAM Bits	32768
Number of I/O	148
Number of Gates	162000
Voltage - Supply	$1.71V \sim 1.89V$
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k60eqc208-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations

- Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions
- NativeLink[™] integration with popular synthesis, simulation, and timing analysis tools
- Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
- Supports popular revision-control software packages including PVCS, Revision Control System (RCS), and Source Code Control System (SCCS)

 Table 4. APEX 20K QFP, BGA & PGA Package Options & I/O Count
 Notes (1), (2)

Device	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP	356-Pin BGA	652-Pin BGA	655-Pin PGA
EP20K30E	92	125				
EP20K60E	92	148	151	196		
EP20K100	101	159	189	252		
EP20K100E	92	151	183	246		
EP20K160E	88	143	175	271		
EP20K200		144	174	277		
EP20K200E		136	168	271	376	
EP20K300E			152		408	
EP20K400					502	502
EP20K400E					488	
EP20K600E					488	
EP20K1000E					488	
EP20K1500E					488	

Logic Element

The LE, the smallest unit of logic in the APEX 20K architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack Interconnect routing structures. See Figure 5.

Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE.

Cascade Chain

With the cascade chain, the APEX 20K architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in.

Figure 7. APEX 20K Cascade Chain

Figure 10. FastTrack Connection to Local Interconnect

Figure 22. ESB in Single-Port Mode Note (1)

Notes to Figure 22:

All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.
 APEX 20KE devices have four dedicated clocks.

Content-Addressable Memory

In APEX 20KE devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it.

CAM is used for high-speed search operations. When searching for data within a RAM block, the search is performed serially. Thus, finding a particular data word can take many cycles. CAM searches all addresses in parallel and outputs the address storing a particular word. When a match is found, a match flag is set high. Figure 23 shows the CAM block diagram.

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.

Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect.

The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices.

Table 20. APEX 20K Boundary-Scan Register Length					
Device	Boundary-Scan Register Length				
EP20K30E	420				
EP20K60E	624				
EP20K100	786				
EP20K100E	774				
EP20K160E	984				
EP20K200	1,176				
EP20K200E	1,164				
EP20K300E	1,266				
EP20K400	1,536				
EP20K400E	1,506				
EP20K600E	1,806				
EP20K1000E	2,190				
EP20K1500E	1 (1)				

Note to Table 20:

(1) This device does not support JTAG boundary scan testing.

Figure 32. APEX 20K AC Test Conditions Note (1)

Note to Figure 32:

Power supply transients can affect AC measurements. Simultaneous transitions of (1) multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.

Operating **Conditions**

Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices.

	Table 20. AT EX 200 0.0 V Toletant Device Absolute Maximum Hatings Notes (1), (2)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CCINT}	Supply voltage	With respect to ground (3)	-0.5	3.6	V					
V _{CCIO}			-0.5	4.6	V					
VI	DC input voltage		-2.0	5.75	V					
I _{OUT}	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	-65	150	°C					
T _{AMB}	Ambient temperature	Under bias	-65	135	°C					
Τ _J	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	°C					
		Ceramic PGA packages, under bias		150	°C					

Table 23. APEX 20K 5.0-V Tolerant Device Absolute Maximum Ratings	Notes (1), (2)
---	----------------

Table 28. APEX 20KE Device Recommended Operating Conditions									
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	1.71 (1.71)	1.89 (1.89)	V				
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V				
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V				
	Supply voltage for output buffers, 1.8-V operation	(3), (4)	1.71 (1.71)	1.89 (1.89)	V				
VI	Input voltage	(5), (6)	-0.5	4.0	V				
Vo	Output voltage		0	V _{CCIO}	V				
TJ	Junction temperature	For commercial use	0	85	°C				
		For industrial use	-40	100	°C				
t _R	Input rise time			40	ns				
t _F	Input fall time			40	ns				

P

For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).*

Table 30. APEX 20KE Device Capacitance Note (15)								
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF			
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF			

Notes to Tables 27 through 30:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

Vin	Max. Duty Cycle
4.0V	100% (DC)
4.1	90%

- 4.2 50%
- 4.3 30%
- 4.4 17%
- 4.5 10%
- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (7) Typical values are for $T_A = 25^\circ$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60.
- (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V.
- (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL.
- (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (13) This value is specified for normal device operation. The value may vary during power-up.
- (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (15) Capacitance is sample-tested only.

Figure 33 shows the relationship between $\rm V_{CCIO}$ and $\rm V_{CCINT}$ for 3.3-V PCI compliance on APEX 20K devices.

Figure 35 shows the output drive characteristics of APEX 20KE devices.

Note to Figure 35:(1) These are transient (AC) currents.

Timing Model

The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Figure 39. ESB Synchronous Timing Waveforms

ESB Synchronous Write (ESB Output Registers Used)

Figure 40 shows the timing model for bidirectional I/O pin timing.

Table 41. EP20K	Table 41. EP20K200 f _{MAX} Timing Parameters							
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		ed Grade	Units	
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.5		0.6		0.8		ns	
t _H	0.7		0.8		1.0		ns	
t _{CO}		0.3		0.4		0.5	ns	
t _{LUT}		0.8		1.0		1.3	ns	
t _{ESBRC}		1.7		2.1		2.4	ns	
t _{ESBWC}		5.7		6.9		8.1	ns	
t _{ESBWESU}	3.3		3.9		4.6		ns	
t _{ESBDATASU}	2.2		2.7		3.1		ns	
t _{ESBDATAH}	0.6		0.8		0.9		ns	
t _{ESBADDRSU}	2.4		2.9		3.3		ns	
t _{ESBDATACO1}		1.3		1.6		1.8	ns	
t _{ESBDATACO2}		2.6		3.1		3.6	ns	
t _{ESBDD}		2.5		3.3		3.6	ns	
t _{PD}		2.5		3.0		3.6	ns	
t _{PTERMSU}	2.3		2.7		3.2		ns	
t _{PTERMCO}		1.5		1.8		2.1	ns	
t _{F1-4}		0.5		0.6		0.7	ns	
t _{F5-20}		1.6		1.7		1.8	ns	
t _{F20+}		2.2		2.2		2.3	ns	
t _{CH}	2.0		2.5		3.0		ns	
t _{CL}	2.0		2.5		3.0		ns	
t _{CLRP}	0.3		0.4		0.4		ns	
t _{PREP}	0.4		0.5		0.5		ns	
t _{ESBCH}	2.0		2.5		3.0		ns	
t _{ESBCL}	2.0		2.5		3.0		ns	
t _{ESBWP}	1.6		1.9		2.2		ns	
t _{ESBRP}	1.0		1.3		1.4		ns	

Table 43. EP20K100 External Timing Parameters									
Symbol	-1 Spe	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade			
	Min	Мах	Min	Max	Min	Max			
t _{INSU} (1)	2.3		2.8		3.2		ns		
t _{INH} (1)	0.0		0.0		0.0		ns		
t _{OUTCO} (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns		
t _{INSU} (2)	1.1		1.2		-		ns		
t _{INH} (2)	0.0		0.0		-		ns		
t _{OUTCO} (2)	0.5	2.7	0.5	3.1	_	4.8	ns		

Table 44. EP20K100 External Bidirectional Timing Parameters								
Symbol	-1 Spe	ed Grade	-2 Spe	-2 Speed Grade		-3 Speed Grade		
	Min	Мах	Min	Max	Min	Max		
t _{INSUBIDIR} (1)	2.3		2.8		3.2		ns	
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns	
t _{OUTCOBIDIR}	2.0	4.5	2.0	4.9	2.0	6.6	ns	
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns	
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns	
t _{INSUBIDIR} (2)	1.0		1.2		-		ns	
t _{inhbidir} (2)	0.0		0.0		-		ns	
toutcobidir <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns	
t _{XZBIDIR} (2)		4.3		5.0		-	ns	
t _{ZXBIDIR} (2)		4.3		5.0		-	ns	

Table 45. EP20K200 External Timing Parameters									
Symbol	Symbol -1 Speed Grade		-2 Speed Grade		-3 Spee	-3 Speed Grade			
	Min	Max	Min	Мах	Min	Мах			
t _{INSU} (1)	1.9		2.3		2.6		ns		
t _{INH} (1)	0.0		0.0		0.0		ns		
t _{OUTCO} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns		
t _{INSU} (2)	1.1		1.2		-		ns		
t _{INH} (2)	0.0		0.0		-		ns		
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns		

Table 50. EP20k	Table 50. EP20K30E f _{MAX} ESB Timing Microparameters										
Symbol		-1		-2		-3					
	Min	Max	Min	Max	Min	Max					
t _{ESBARC}		2.03		2.86		4.24	ns				
t _{ESBSRC}		2.58		3.49		5.02	ns				
t _{ESBAWC}		3.88		5.45		8.08	ns				
t _{ESBSWC}		4.08		5.35		7.48	ns				
t _{ESBWASU}	1.77		2.49		3.68		ns				
t _{ESBWAH}	0.00		0.00		0.00		ns				
t _{ESBWDSU}	1.95		2.74		4.05		ns				
t _{ESBWDH}	0.00		0.00		0.00		ns				
t _{ESBRASU}	1.96		2.75		4.07		ns				
t _{ESBRAH}	0.00		0.00		0.00		ns				
t _{ESBWESU}	1.80		2.73		4.28		ns				
t _{ESBWEH}	0.00		0.00		0.00		ns				
t _{ESBDATASU}	0.07		0.48		1.17		ns				
t _{ESBDATAH}	0.13		0.13		0.13		ns				
t _{ESBWADDRSU}	0.30		0.80		1.64		ns				
t _{ESBRADDRSU}	0.37		0.90		1.78		ns				
t _{ESBDATACO1}		1.11		1.32		1.67	ns				
t _{ESBDATACO2}		2.65		3.73		5.53	ns				
t _{ESBDD}		3.88		5.45		8.08	ns				
t _{PD}		1.91		2.69		3.98	ns				
t _{PTERMSU}	1.04		1.71		2.82		ns				
t _{PTERMCO}		1.13		1.34		1.69	ns				

Table 51. EP20K30E f_{MAX} Routing Delays

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.24		0.27		0.31	ns
t _{F5-20}		1.03		1.14		1.30	ns
t _{F20+}		1.42		1.54		1.77	ns

Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices.

Table 55. EP20K60E f _{MAX} LE Timing Microparameters												
Symbol		-1	-2		-3		Unit					
	Min	Max	Min	Max	Min	Max						
t _{SU}	0.17		0.15		0.16		ns					
t _H	0.32		0.33		0.39		ns					
t _{CO}		0.29		0.40		0.60	ns					
t _{LUT}		0.77		1.07		1.59	ns					

Table 64. EP20K100E Minimum Pulse Width Timing Parameters											
Symbol	-	1	-	-2		3	Unit				
	Min	Max	Min	Max	Min	Max					
t _{CH}	2.00		2.00		2.00		ns				
t _{CL}	2.00		2.00		2.00		ns				
t _{CLRP}	0.20		0.20		0.20		ns				
t _{PREP}	0.20		0.20		0.20		ns				
t _{ESBCH}	2.00		2.00		2.00		ns				
t _{ESBCL}	2.00		2.00		2.00		ns				
t _{ESBWP}	1.29		1.53		1.66		ns				
t _{ESBRP}	1.11		1.29		1.41		ns				

Table 65. EP20K100E External Timing Parameters												
Symbol	ol -1			-2	-3	-3						
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.23		2.32		2.43		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	4.86	2.00	5.35	2.00	5.84	ns					
t _{INSUPLL}	1.58		1.66		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	2.96	0.50	3.29	-	-	ns					

Table 66. EP20K100E External Bidirectional Timing Parameters											
Symbol	-	1	-	2	-	Unit					
	Min	Max	Min	Max	Min	Max					
t _{insubidir}	2.74		2.96		3.19		ns				
t _{inhbidir}	0.00		0.00		0.00		ns				
t _{outcobidir}	2.00	4.86	2.00	5.35	2.00	5.84	ns				
t _{XZBIDIR}		5.00		5.48		5.89	ns				
t _{ZXBIDIR}		5.00		5.48		5.89	ns				
t _{insubidirpll}	4.64		5.03		-		ns				
t _{inhbidirpll}	0.00		0.00		-		ns				
t _{outcobidirpll}	0.50	2.96	0.50	3.29	-	-	ns				
t _{xzbidirpll}		3.10		3.42		-	ns				
t _{ZXBIDIRPLL}		3.10		3.42		-	ns				

Table 98. EP20K1000E f _{MAX} ESB Timing Microparameters											
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		d Grade	Unit				
	Min	Max	Min	Max	Min	Max					
t _{ESBARC}		1.78		2.02		1.95	ns				
t _{ESBSRC}		2.52		2.91		3.14	ns				
t _{ESBAWC}		3.52		4.11		4.40	ns				
t _{ESBSWC}		3.23		3.84		4.16	ns				
t _{ESBWASU}	0.62		0.67		0.61		ns				
t _{ESBWAH}	0.41		0.55		0.55		ns				
t _{ESBWDSU}	0.77		0.79		0.81		ns				
t _{ESBWDH}	0.41		0.55		0.55		ns				
t _{ESBRASU}	1.74		1.92		1.85		ns				
t _{ESBRAH}	0.00		0.01		0.23		ns				
t _{ESBWESU}	2.07		2.28		2.41		ns				
t _{ESBWEH}	0.00		0.00		0.00		ns				
t _{ESBDATASU}	0.25		0.27		0.29		ns				
t _{ESBDATAH}	0.13		0.13		0.13		ns				
t _{ESBWADDRSU}	0.11		0.04		0.11		ns				
t _{ESBRADDRSU}	0.14		0.11		0.16		ns				
t _{ESBDATACO1}		1.29		1.50		1.63	ns				
t _{ESBDATACO2}		2.55		2.99		3.22	ns				
t _{ESBDD}		3.12		3.57		3.85	ns				
t _{PD}		1.84		2.13		2.32	ns				
t _{PTERMSU}	1.08		1.19		1.32		ns				
t _{PTERMCO}		1.31		1.53		1.66	ns				

Г

٦

Table 102. EP20K1000E External Bidirectional Timing Parameters											
Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spec	Unit					
	Min	Max	Min	Max	Min	Max					
t _{insubidir}	3.22		3.33		3.51		ns				
t _{inhbidir}	0.00		0.00		0.00		ns				
toutcobidir	2.00	5.75	2.00	6.33	2.00	6.90	ns				
t _{XZBIDIR}		6.31		7.09		7.76	ns				
t _{ZXBIDIR}		6.31		7.09		7.76	ns				
t _{INSUBIDIRPL} L	3.25		3.26				ns				
t _{inhbidirpll}	0.00		0.00				ns				
t _{outcobidirpll}	0.50	2.25	0.50	2.99			ns				
t _{XZBIDIRPLL}		2.81		3.80			ns				
t _{ZXBIDIRPLL}		2.81		3.80			ns				

Tables 103 through 108 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1500E APEX 20KE devices.

Table 103. EP20K1500E f _{MAX} LE Timing Microparameters												
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit					
	Min	Max	Min	Max	Min	Max						
t _{SU}	0.25		0.25		0.25		ns					
t _H	0.25		0.25		0.25		ns					
t _{CO}		0.28		0.32		0.33	ns					
t _{LUT}		0.80		0.95		1.13	ns					

Т