E·XFL

Intel - EP20K60EQC208-2XN Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	2560
Number of Logic Elements/Cells	2560
Total RAM Bits	32768
Number of I/O	148
Number of Gates	162000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k60eqc208-2xn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Additional APEX 20K Device Feature			Note (1)			
Feature	EP20K300E	EP20K400	EP20K400E	EP20K600E	EP20K1000E	EP20K1500E
Maximum system gates	728,000	1,052,000	1,052,000	1,537,000	1,772,000	2,392,000
Typical gates	300,000	400,000	400,000	600,000	1,000,000	1,500,000
LEs	11,520	16,640	16,640	24,320	38,400	51,840
ESBs	72	104	104	152	160	216
Maximum RAM bits	147,456	212,992	212,992	311,296	327,680	442,368
Maximum macrocells	1,152	1,664	1,664	2,432	2,560	3,456
Maximum user I/O pins	408	502	488	588	708	808

Note to Tables 1 and 2:

 The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates.

Additional Features

- Designed for low-power operation
 - 1.8-V and 2.5-V supply voltage (see Table 3)
 - MultiVolt[™] I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
 - ESB offering programmable power-saving mode

Table 3. APEX 20K Supply Voltages			
Feature	De	vice	
	EP20K100 EP20K200 EP20K400	EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E EP20K1500E	
Internal supply voltage (V _{CCINT})	2.5 V	1.8 V	
MultiVolt I/O interface voltage levels (V _{CCIO})	2.5 V, 3.3 V, 5.0 V	1.8 V, 2.5 V, 3.3 V, 5.0 V (1)	

Note to Table 3:

(1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor.

Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations

- Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions
- NativeLink[™] integration with popular synthesis, simulation, and timing analysis tools
- Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
- Supports popular revision-control software packages including PVCS, Revision Control System (RCS), and Source Code Control System (SCCS)

 Table 4. APEX 20K QFP, BGA & PGA Package Options & I/O Count
 Notes (1), (2)

Device	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP	356-Pin BGA	652-Pin BGA	655-Pin PGA
EP20K30E	92	125				
EP20K60E	92	148	151	196		
EP20K100	101	159	189	252		
EP20K100E	92	151	183	246		
EP20K160E	88	143	175	271		
EP20K200		144	174	277		
EP20K200E		136	168	271	376	
EP20K300E			152		408	
EP20K400					502	502
EP20K400E					488	
EP20K600E					488	
EP20K1000E					488	
EP20K1500E					488	

All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required.

APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy.

After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.

APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations.

The Quartus II software provides NativeLink interfaces to other industrystandard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture. Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs.

If both the rising and falling edges of a clock are used in a LAB, both LABwide clock signals are used.

The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- APEX 20KE devices have four dedicated clocks. (1)
- The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the (2) LAB.
- (3)The SYNCCLR signal can be generated by the local interconnect or global signals.

Figure 13. Product-Term Logic in ESB

Note to Figure 13:

(1) APEX 20KE devices have four dedicated clocks.

Macrocells

APEX 20K macrocells can be configured individually for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register.

Combinatorial logic is implemented in the product terms. The productterm select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as parallel expanders to be used to increase the logic available to another macrocell. One product term can be inverted; the Quartus II software uses this feature to perform DeMorgan's inversion for more efficient implementation of wide OR functions. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Figure 14 shows the APEX 20K macrocell.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Programmable Speed/Power Control

APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo Bit[™] option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.

Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.

I/O Structure

The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently.

The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software.

Table 10. APEX 20K Programmable Delay Chains			
Programmable Delays	Quartus II Logic Option		
Input pin to core delay	Decrease input delay to internal cells		
Input pin to input register delay	Decrease input delay to input register		
Core to output register delay	Decrease input delay to output register		
Output register t_{CO} delay	Increase delay to output pin		

The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices.

The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

Advanced I/O Standard Support

APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II.

For more information on I/O standards supported by APEX 20KE devices, see *Application Note* 117 (*Using Selectable I/O Standards in Altera Devices*).

The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support.

Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks.

Table 18. /	Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1)						
Symbol	Parameter	I/O Standard	-1X Spe	ed Grade	-2X Speed	Grade	Units
			Min	Max	Min	Max	
f _{IN}	Input clock frequency	3.3-V LVTTL	1.5	290	1.5	257	MHz
		2.5-V LVTTL	1.5	281	1.5	250	MHz
		1.8-V LVTTL	1.5	272	1.5	243	MHz
		GTL+	1.5	303	1.5	261	MHz
		SSTL-2 Class I	1.5	291	1.5	253	MHz
		SSTL-2 Class II	1.5	291	1.5	253	MHz
		SSTL-3 Class I	1.5	300	1.5	260	MHz
		SSTL-3 Class II	1.5	300	1.5	260	MHz
		LVDS	1.5	420	1.5	350	MHz

Notes to Tables 17 and 18:

 All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.

- (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK_ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz ð f_{VCO} ð 840 MHz for LVDS mode.

SignalTap Embedded Logic Analyzer

APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured.

Table 2	Table 24. APEX 20K 5.0-V Tolerant Device Recommended Operating Conditions Note (2)					
Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CCINT}	Supply voltage for internal logic and input buffers	(4), (5)	2.375 (2.375)	2.625 (2.625)	V	
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(4), (5)	3.00 (3.00)	3.60 (3.60)	V	
	Supply voltage for output buffers, 2.5-V operation	(4), (5)	2.375 (2.375)	2.625 (2.625)	V	
VI	Input voltage	(3), (6)	-0.5	5.75	V	
Vo	Output voltage		0	V _{CCIO}	V	
ТJ	Junction temperature	For commercial use	0	85	°C	
		For industrial use	-40	100	°C	
t _R	Input rise time			40	ns	
t _F	Input fall time			40	ns	

Table 2	Table 25. APEX 20K 5.0-V Tolerant Device DC Operating Conditions (Part 1 of 2) Notes (2), (7), (8)					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		1.7, 0.5 × V _{CCIO} (9)		5.75	V
V _{IL}	Low-level input voltage		-0.5		$0.8, 0.3 \times V_{CCIO}$	V
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>	2.4			V
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>	V _{CCIO} – 0.2			V
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (10)	$0.9 \times V_{CCIO}$			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(10)</i>	2.1			V
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V <i>(10)</i>	2.0			V
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (10)$	1.7			V

Table 2	Table 26. APEX 20K 5.0-V Tolerant Device Capacitance Notes (2), (14)					
Symbol	Parameter	Conditions	Min	Max	Unit	
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF	
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF	
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF	

Notes to Tables 23 through 26:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- All APEX 20K devices are 5.0-V tolerant. (2)
- (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- Numbers in parentheses are for industrial-temperature-range devices. (4)
- Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. (5)
- All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are (6) powered.
- (7)Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ or 3.3 V.
- These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on (8)page 62.
- (9) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 33 on page 68.
- (10) The I_{OH} parameter refers to high-level TTL, PCI or CMOS output current.
- (11) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (12) This value is specified for normal device operation. The value may vary during power-up.
- (13) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO} .
- (14) Capacitance is sample-tested only.

Tables 27 through 30 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KE devices.

Table 2	Table 27. APEX 20KE Device Absolute Maximum Ratings Note (1)					
Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	2.5	V	
V _{CCIO}			-0.5	4.6	V	
VI	DC input voltage		-0.5	4.6	V	
I _{OUT}	DC output current, per pin		-25	25	mA	
T _{STG}	Storage temperature	No bias	-65	150	°C	
T _{AMB}	Ambient temperature	Under bias	-65	135	°C	
Τ _J	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	°C	
		Ceramic PGA packages, under bias		150	°C	

Note to Tables 32 and 33:

(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model.

Table 34. APEX 20KE LE Timing Microparameters			
Symbol	Parameter		
t _{SU}	LE register setup time before clock		
t _H	LE register hold time after clock		
t _{CO}	LE register clock-to-output delay		
t _{LUT}	LUT delay for data-in to data-out		

Table 35. APEX 20KE ESB Timing Microparameters				
Symbol	Parameter			
t _{ESBARC}	ESB Asynchronous read cycle time			
t _{ESBSRC}	ESB Synchronous read cycle time			
t _{ESBAWC}	ESB Asynchronous write cycle time			
t _{ESBSWC}	ESB Synchronous write cycle time			
t _{ESBWASU}	ESB write address setup time with respect to WE			
t _{ESBWAH}	ESB write address hold time with respect to WE			
t _{ESBWDSU}	ESB data setup time with respect to WE			
t _{ESBWDH}	ESB data hold time with respect to WE			
t _{ESBRASU}	ESB read address setup time with respect to RE			
t _{ESBRAH}	ESB read address hold time with respect to RE			
t _{ESBWESU}	ESB WE setup time before clock when using input register			
t _{ESBWEH}	ESB WE hold time after clock when using input register			
t _{ESBDATASU}	ESB data setup time before clock when using input register			
t _{ESBDATAH}	ESB data hold time after clock when using input register			
t _{ESBWADDRSU}	ESB write address setup time before clock when using input			
	registers			
t _{ESBRADDRSU}	ESB read address setup time before clock when using input			
	registers			
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers			
t _{ESBDATACO2}	ESB clock-to-output delay without output registers			
t _{ESBDD}	ESB data-in to data-out delay for RAM mode			
t _{PD}	ESB Macrocell input to non-registered output			
t PTERMSU	ESB Macrocell register setup time before clock			
t _{PTEBMCO}	ESB Macrocell register clock-to-output delay			

Table 39. APEX 20KE External Bidirectional Timing Parameters Note (1)						
Symbol	Parameter	Conditions				
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at LAB adjacent Input Register					
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at LAB adjacent Input Register					
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE output C1 = 10 pF register					
t _{XZBIDIR}	Synchronous Output Enable Register to output buffer disable delay	C1 = 10 pF				
t _{ZXBIDIR}	Synchronous Output Enable Register output buffer enable delay	C1 = 10 pF				
t _{INSUBIDIRPLL}	Setup time for bidirectional pins with PLL clock at LAB adjacent Input Register					
t _{INHBIDIRPLL}	Hold time for bidirectional pins with PLL clock at LAB adjacent Input Register					
^t OUTCOBIDIRPLL	IRPLL Clock-to-output delay for bidirectional pins with PLL clock at IOE output C1 = 10 register					
t _{XZBIDIRPLL}	Synchronous Output Enable Register to output buffer disable delay with C1 = 10 p PLL					
t _{ZXBIDIRPLL}	Synchronous Output Enable Register output buffer enable delay with PLL C1 = 10 pl					

Note to Tables 38 and 39:

Г

(1) These timing parameters are sample-tested only.

Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices.

Table 55. EP20K60E f _{MAX} LE Timing Microparameters								
Symbol	nbol -1			-2		-3		
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.17		0.15		0.16		ns	
t _H	0.32		0.33		0.39		ns	
t _{CO}		0.29		0.40		0.60	ns	
t _{LUT}		0.77		1.07		1.59	ns	

Table 62. EP20K100E f _{MAX} ESB Timing Microparameters							
Symbol	-	1		-2	-;	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.61		1.84		1.97	ns
t _{ESBSRC}		2.57		2.97		3.20	ns
t _{ESBAWC}		0.52		4.09		4.39	ns
t _{ESBSWC}		3.17		3.78		4.09	ns
t _{ESBWASU}	0.56		6.41		0.63		ns
t _{ESBWAH}	0.48		0.54		0.55		ns
t _{ESBWDSU}	0.71		0.80		0.81		ns
t _{ESBWDH}	.048		0.54		0.55		ns
t _{ESBRASU}	1.57		1.75		1.87		ns
t _{ESBRAH}	0.00		0.00		0.20		ns
t _{ESBWESU}	1.54		1.72		1.80		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.16		-0.20		-0.20		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.12		0.08		0.13		ns
t _{ESBRADDRSU}	0.17		0.15		0.19		ns
t _{ESBDATACO1}		1.20		1.39		1.52	ns
t _{ESBDATACO2}		2.54		2.99		3.22	ns
t _{ESBDD}		3.06		3.56		3.85	ns
t _{PD}		1.73		2.02		2.20	ns
t _{PTERMSU}	1.11		1.26		1.38		ns
t _{PTERMCO}		1.19		1.40		1.08	ns

Table 63. EP20K100E f _{MAX} Routing Delays							
Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.24		0.27		0.29	ns
t _{F5-20}		1.04		1.26		1.52	ns
t _{F20+}		1.12		1.36		1.86	ns

Table 78. EP20K200E External Bidirectional Timing Parameters							
Symbol		·1	-	2	-	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.81		3.19		3.54		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	5.12	2.00	5.62	2.00	6.11	ns
t _{xzbidir}		7.51		8.32		8.67	ns
t _{ZXBIDIR}		7.51		8.32		8.67	ns
t _{insubidirpll}	3.30		3.64		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
t _{outcobidirpll}	0.50	3.01	0.50	3.36	-	-	ns
t _{xzbidirpll}		5.40		6.05		-	ns
t _{ZXBIDIRPLL}		5.40		6.05		-	ns

Tables 79 through 84 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K300E APEX 20KE devices.

Table 79. EP20K300E f _{MAX} LE Timing Microparameters							
Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.16		0.17		0.18		ns
t _H	0.31		0.33		0.38		ns
t _{CO}		0.28		0.38		0.51	ns
t _{LUT}		0.79		1.07		1.43	ns

Tables 97 through 102 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices.

Table 97. EP20K1000E f _{MAX} LE Timing Microparameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed	Unit		
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.25		0.25		0.25		ns	
t _H	0.25		0.25		0.25		ns	
t _{CO}		0.28		0.32		0.33	ns	
t _{LUT}		0.80		0.95		1.13	ns	

Table 106. EP20K1500E Minimum Pulse Width Timing Parameters							
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed	Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.28		1.51		1.65		ns
t _{ESBRP}	1.11		1.29		1.41		ns

Table 107. EP20K1500E External Timing Parameters							
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		l Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	3.09		3.30		3.58		ns
t _{INH}	0.00		0.00		0.00		ns
tоитсо	2.00	6.18	2.00	6.81	2.00	7.36	ns
tINSUPLL	1.94		2.08		-		ns
t _{INHPLL}	0.00		0.00		-		ns
t outcopll	0.50	2.67	0.50	2.99	-	-	ns

SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up.

Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 111. Data Sources for Configuration					
Configuration Scheme	Data Source				
Configuration device	EPC1, EPC2, EPC16 configuration devices				
Passive serial (PS)	MasterBlaster or ByteBlasterMV download cable or serial data source				
Passive parallel asynchronous (PPA)	Parallel data source				
Passive parallel synchronous (PPS)	Parallel data source				
JTAG	MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File				

For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes

to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation