Intel - EP20K60EQC240-3 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	2560
Number of Logic Elements/Cells	2560
Total RAM Bits	32768
Number of I/O	151
Number of Gates	162000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k60eqc240-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations

- Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions
- NativeLink[™] integration with popular synthesis, simulation, and timing analysis tools
- Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
- Supports popular revision-control software packages including PVCS, Revision Control System (RCS), and Source Code Control System (SCCS)

 Table 4. APEX 20K QFP, BGA & PGA Package Options & I/O Count
 Notes (1), (2)

Device	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP	356-Pin BGA	652-Pin BGA	655-Pin PGA
EP20K30E	92	125				
EP20K60E	92	148	151	196		
EP20K100	101	159	189	252		
EP20K100E	92	151	183	246		
EP20K160E	88	143	175	271		
EP20K200		144	174	277		
EP20K200E		136	168	271	376	
EP20K300E			152		408	
EP20K400					502	502
EP20K400E					488	
EP20K600E					488	
EP20K1000E					488	
EP20K1500E					488	

Feature	APEX 20K Devices	APFX 20KF Devices
32/64-Bit, 33-MHz PCI	grades	Full compliance in -1, -2 speed grades
32/64-Bit, 66-MHz PCI	-	Full compliance in -1 speed grade
MultiVolt I/O	2.5-V or 3.3-V V _{CCIO}	1.8-V, 2.5-V, or 3.3-V V _{CCIO}
	V _{CCIO} selected for device	V _{CCIO} selected block-by-block
	Certain devices are 5.0-V tolerant	5.0-V tolerant with use of external resistor
ClockLock support	Clock delay reduction	Clock delay reduction
	2× and 4× clock multiplication	$m/(n \times v)$ or $m/(n \times k)$ clock multiplication
		Drive ClockLock output off-chip
		External clock feedback
		ClockShift
		LVDS support
		Up to four PLLs
		ClockShift, clock phase adjustment
Dedicated clock and input pins	Six	Eight
I/O standard support	2.5-V, 3.3-V, 5.0-V I/O	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O
	3.3-V PCI	2.5-V I/O
	Low-voltage complementary	3.3-V PCI and PCI-X
	metal-oxide semiconductor	3.3-V Advanced Graphics Port (AGP)
	(LVCMOS)	Center tap terminated (CTT)
	Low-voltage transistor-to-transistor	GTL+
	logic (LVTTL)	LVCMOS
		True-LVDS and LVPECL data pins
		(In EP20K300E and larger devices)
		LVDS and LVPECL signaling (in all BGA
		and FineLine BGA devices)
		LVDS and LVPECL data pins up to
		156 Mbps (III - I speed grade devices)
		SSTL-3 Class Land II
Memory support	Dual-port BAM	CAM
	FIFO	Dual-port BAM
	BAM	FIFO
	BOM	BAM
		ROM

Logic Element

The LE, the smallest unit of logic in the APEX 20K architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack Interconnect routing structures. See Figure 5.

Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE.

Each LE has two outputs that drive the local, MegaLAB, or FastTrack Interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output.

The APEX 20K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure.

Carry Chain

The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higherorder bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20K architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as library of parameterized modules (LPM) and DesignWare functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II software Compiler creates carry chains longer than ten LEs by linking LABs together automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB[™] structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure.

Figure 6 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack Interconnect routing structures.

Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Programmable Speed/Power Control

APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo Bit[™] option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.

Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.

I/O Structure

The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently.

The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay.

Figure 26. APEX 20KE Bidirectional I/O Registers N

Notes to Figure 26:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Figure 29. APEX 20KE I/O Banks

Notes to Figure 29:

- For more information on placing I/O pins in LVDS blocks, refer to the Guidelines for Using LVDS Blocks section in Application Note 120 (Using LVDS in APEX 20KE Devices).
- (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V.

Power Sequencing & Hot Socketing

Because APEX 20K and APEX 20KE devices can be used in a mixedvoltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the V_{CCIO} and V_{CCINT} power supplies may be powered in any order.

For more information, please refer to the "Power Sequencing Considerations" section in the *Configuring APEX 20KE & APEX 20KC Devices* chapter of the *Configuration Devices Handbook*.

Signals can be driven into APEX 20K devices before and during power-up without damaging the device. In addition, APEX 20K devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20K and APEX 20KE devices operate as specified by the user.

APEX 20KE devices also support the MultiVolt I/O interface feature. The APEX 20KE VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels are sometime with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KE device is 5.0-V tolerant with the addition of a resistor.

Table 13 summarizes APEX 20KE MultiVolt I/O support.

Table 13. APEX 20KE MultiVolt I/O Support Note (1)									
V _{CCIO} (V)		Input Siç	jnals (V)			Output S	ignals (V)		
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0	
1.8	\checkmark	\checkmark	\checkmark		\checkmark				
2.5	\checkmark	\checkmark	>			\checkmark			
3.3	\checkmark	\checkmark	\checkmark	(2)			✓(3)		

Notes to Table 13:

 The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case.

(2) An APEX 20KE device can be made 5.0-V tolerant with the addition of an external resistor. You also need a PCI clamp and series resistor.

(3) When V_{CCIO} = 3.3 V, an APEX 20KE device can drive a 2.5-V device with 3.3-V tolerant inputs.

ClockLock & ClockBoost Features

APEX 20K devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20K devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20K device's high-speed clock to provide significant improvements in system performance and band-width. Devices with an X-suffix on the ordering code include the ClockLock circuit.

The ClockLock and ClockBoost features in APEX 20K devices are enabled through the Quartus II software. External devices are not required to use these features.

Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2)								
Symbol	Parameter	Min	Max	Unit				
t _{SKEW}	Skew delay between related ClockLock/ClockBoost-generated clocks		500	ps				
t _{JITTER}	Jitter on ClockLock/ClockBoost-generated clock (5)		200	ps				
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps				

Notes to Table 15:

- (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz.
- (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time.
- (4) The jitter specification is measured under long-term observation.
- (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps.

Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices.

Symbol	Parameter	Min	Max	Unit
f _{OUT}	Output frequency	25	170	MHz
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	170	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	80	MHz
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	34	MHz
t _{OUTDUTY}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1)		25,000 (2)	PPM
t _R	Input rise time		5	ns
t _F	Input fall time		5	ns
t _{LOCK}	Time required for ClockLock/ ClockBoost to acquire lock (3)		10	μs
t _{SKEW}	Skew delay between related ClockLock/ ClockBoost- generated clock	500	500	ps
t _{JITTER}	Jitter on ClockLock/ ClockBoost-generated clock (4)		200	ps
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps

Table 16. APEX 20K ClockLock & ClockBoost Parameters for -2 Speed Grade Devices

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration.

Table 19. APEX 20K JTAG Instructions					
JTAG Instruction	Description				
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer.				
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.				
BYPASS (1)	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.				
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.				
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.				
ICR Instructions	Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster [™] or ByteBlasterMV [™] download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor.				
SignalTap Instructions (1)	Monitors internal device operation with the SignalTap embedded logic analyzer.				

able 19 APFX 20K .ITAG Instruction

Note to Table 19:

(1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions.

P

For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).*

Table 30. APEX 20KE Device Capacitance Note (15)								
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF			
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF			

Notes to Tables 27 through 30:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

Vin	Max. Duty Cycle
4.0V	100% (DC)
4.1	90%

- 4.2 50%
- 4.3 30%
- 4.4 17%
- 4.5 10%
- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (7) Typical values are for $T_A = 25^\circ$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60.
- (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V.
- (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL.
- (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (13) This value is specified for normal device operation. The value may vary during power-up.
- (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (15) Capacitance is sample-tested only.

Figure 33 shows the relationship between $\rm V_{CCIO}$ and $\rm V_{CCINT}$ for 3.3-V PCI compliance on APEX 20K devices.

Figure 34 shows the typical output drive characteristics of APEX 20K devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compatible with the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). 5-V tolerant APEX 20K devices in the -1 speed grade are 5-V PCI compliant over all operating conditions.

Altera Corporation

All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum driver strength.

Figure 36 shows the f_{MAX} timing model for APEX 20K devices.

Figure 37 shows the f_{MAX} timing model for APEX 20KE devices. These parameters can be used to estimate f_{MAX} for multiple levels of logic. Quartus II software timing analysis should be used for more accurate timing information.

Table 39. APEX 20KE External Bidirectional Timing Parameters Note (1)						
Symbol	Parameter	Conditions				
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at LAB adjacent Input Register					
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at LAB adjacent Input Register					
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE output register	C1 = 10 pF				
t _{XZBIDIR}	Synchronous Output Enable Register to output buffer disable delay	C1 = 10 pF				
t _{ZXBIDIR}	Synchronous Output Enable Register output buffer enable delay	C1 = 10 pF				
t _{INSUBIDIRPLL}	Setup time for bidirectional pins with PLL clock at LAB adjacent Input Register					
t _{INHBIDIRPLL}	Hold time for bidirectional pins with PLL clock at LAB adjacent Input Register					
^t OUTCOBIDIRPLL	Clock-to-output delay for bidirectional pins with PLL clock at IOE output register	C1 = 10 pF				
t _{XZBIDIRPLL}	Synchronous Output Enable Register to output buffer disable delay with PLL	C1 = 10 pF				
t _{ZXBIDIRPLL}	Synchronous Output Enable Register output buffer enable delay with PLL	C1 = 10 pF				

Note to Tables 38 and 39:

Г

(1) These timing parameters are sample-tested only.

Table 64. EP20K100E Minimum Pulse Width Timing Parameters								
Symbol	-	1	-	-2		-3		
	Min	Max	Min	Max	Min	Max		
t _{CH}	2.00		2.00		2.00		ns	
t _{CL}	2.00		2.00		2.00		ns	
t _{CLRP}	0.20		0.20		0.20		ns	
t _{PREP}	0.20		0.20		0.20		ns	
t _{ESBCH}	2.00		2.00		2.00		ns	
t _{ESBCL}	2.00		2.00		2.00		ns	
t _{ESBWP}	1.29		1.53		1.66		ns	
t _{ESBRP}	1.11		1.29		1.41		ns	

Table 65. EP20K100E External Timing Parameters								
Symbol	ıl -1 -2 -3		}	Unit				
	Min	Max	Min	Max	Min	Max		
t _{INSU}	2.23		2.32		2.43		ns	
t _{INH}	0.00		0.00		0.00		ns	
t _{outco}	2.00	4.86	2.00	5.35	2.00	5.84	ns	
t _{INSUPLL}	1.58		1.66		-		ns	
t _{INHPLL}	0.00		0.00		-		ns	
t _{outcopll}	0.50	2.96	0.50	3.29	-	-	ns	

Table 66. EP20K100E External Bidirectional Timing Parameters									
Symbol	-	1	-	2	-	-3	Unit		
	Min	Max	Min	Max	Min	Max			
t _{insubidir}	2.74		2.96		3.19		ns		
t _{inhbidir}	0.00		0.00		0.00		ns		
t _{outcobidir}	2.00	4.86	2.00	5.35	2.00	5.84	ns		
t _{XZBIDIR}		5.00		5.48		5.89	ns		
t _{ZXBIDIR}		5.00		5.48		5.89	ns		
t _{insubidirpll}	4.64		5.03		-		ns		
t _{inhbidirpll}	0.00		0.00		-		ns		
t _{outcobidirpll}	0.50	2.96	0.50	3.29	-	-	ns		
t _{xzbidirpll}		3.10		3.42		-	ns		
t _{ZXBIDIRPLL}		3.10		3.42		-	ns		

Tables 67 through 72 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K160E APEX 20KE devices.

Table 67. EP20K160E f _{MAX} LE Timing Microparameters										
Symbol		-1	-2 -3		Unit					
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.22		0.24		0.26		ns			
t _H	0.22		0.24		0.26		ns			
t _{CO}		0.25		0.31		0.35	ns			
t _{LUT}		0.69		0.88		1.12	ns			

APEX 20K Programmable Logic Device Family Data Sheet

Table 87. EP20K400E f _{MAX} Routing Delays									
Symbol	-1 Spe	ed Grade	-2 Spe	ed Grade	-3 Spee	-3 Speed Grade			
	Min	Max	Min	Max	Min	Max			
t _{F1-4}		0.25		0.25		0.26	ns		
t _{F5-20}		1.01		1.12		1.25	ns		
t _{F20+}		3.71		3.92		4.17	ns		

Symbol	-1 Spee	-1 Speed Grade		d Grade	-3 Speed	Unit	
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.36		2.22		2.35		ns
t _{CL}	1.36		2.26		2.35		ns
t _{CLRP}	0.18		0.18		0.19		ns
t _{PREP}	0.18		0.18		0.19		ns
t _{ESBCH}	1.36		2.26		2.35		ns
t _{ESBCL}	1.36		2.26		2.35		ns
t _{ESBWP}	1.17		1.38		1.56		ns
t _{ESBRP}	0.94		1.09		1.25		ns

Table 89. EP20K400E External Timing Parameters										
Symbol	-1 Speed Grade		-2 Spee	ed Grade	-3 Spee	Unit				
	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.51		2.64		2.77		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	5.25	2.00	5.79	2.00	6.32	ns			
t _{insupll}	3.221		3.38		-		ns			
t _{INHPLL}	0.00		0.00		-		ns			
t _{outcopll}	0.50	2.25	0.50	2.45	-	-	ns			

Г

Table 90. EP20K400E External Bidirectional Timing Parameters										
Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	ed Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{insubidir}	2.93		3.23		3.44		ns			
t _{inhbidir}	0.00		0.00		0.00		ns			
t _{outcobidir}	2.00	5.25	2.00	5.79	2.00	6.32	ns			
t _{XZBIDIR}		5.95		6.77		7.12	ns			
t _{zxbidir}		5.95		6.77		7.12	ns			
t _{insubidirpll}	4.31		4.76		-		ns			
t _{inhbidirpll}	0.00		0.00		-		ns			
t _{outcobidirpll}	0.50	2.25	0.50	2.45	-	-	ns			
t _{xzbidirpll}		2.94		3.43		-	ns			
t _{ZXBIDIRPLL}		2.94		3.43		-	ns			

Tables 91 through 96 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K600E APEX 20KE devices.

Table 91. EP20K600E f _{MAX} LE Timing Microparameters									
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	Unit			
	Min	Max	Min	Max	Min	Max			
t _{SU}	0.16		0.16		0.17		ns		
t _H	0.29		0.33		0.37		ns		
t _{CO}		0.65		0.38		0.49	ns		
t _{LUT}		0.70		1.00		1.30	ns		

Т

APEX 20K Programmable Logic Device Family Data Sheet

Table 99. EP20K1000E f _{MAX} Routing Delays									
Symbol	-1 Spe	ed Grade	-2 Spe	ed Grade	-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{F1-4}		0.27		0.27		0.27	ns		
t _{F5-20}		1.45		1.63		1.75	ns		
t _{F20+}		4.15		4.33		4.97	ns		

Table 100. El	Table 100. EP20K1000E Minimum Pulse Width Timing Parameters									
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed	peed Grade				
	Min	Max	Min	Max	Min	Max				
t _{CH}	1.25		1.43		1.67		ns			
t _{CL}	1.25		1.43		1.67		ns			
t _{CLRP}	0.20		0.20		0.20		ns			
t _{PREP}	0.20		0.20		0.20		ns			
t _{ESBCH}	1.25		1.43		1.67		ns			
t _{ESBCL}	1.25		1.43		1.67		ns			
t _{ESBWP}	1.28		1.51		1.65		ns			
t _{ESBRP}	1.11		1.29		1.41		ns			

Table 101. EP20K1000E External Timing Parameters										
Symbol	-1 Spee	-1 Speed Grade		ed Grade	-3 Spee	-3 Speed Grade				
	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.70		2.84		2.97		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	5.75	2.00	6.33	2.00	6.90	ns			
t _{INSUPLL}	1.64		2.09		-		ns			
t _{INHPLL}	0.00		0.00		-		ns			
t _{outcopll}	0.50	2.25	0.50	2.99	-	-	ns			