

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12a64cpve

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• Ports

- The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5, PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0 (see Table 0-1).
- The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a derivative without BDLC (see **Table 0-1**).
- Do not write MODRR1 and MODRR0 Bit of Module Routing Register (PIM_9DJ64 Block User Guide), if using a derivative without CAN0 (see **Table 0-1**).

• Pins not available in 80 pin QFP package

- Port H

In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+\$0262) to \$FF, or enabling the pull resistors by writing a \$FF to the pull enable register (PERH at Base+\$0264).

– Port J[1:0]

Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at Base+\$026C.

– Port K

Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+\$000C. Therefor care must be taken not to clear this bit.

- Port M[7:6]

PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs.

– Port P6

PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.

– Port S[7:4]

PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs.

- PAD[15:8] (ATD1 channels)

Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers!

Document References

The Device User Guide provides information about the MC9S12DJ64 device made up of standard HCS12 blocks and the HCS12 processor core.

This document is part of the customer documentation. A complete set of device manuals also includes all the individual Block Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block Guide. If applicable, special implementation details of the module are given in the block description sections of this document.

See **Table 0-2** for names and versions of the referenced documents throughout the Device User Guide.

MC9S12DJ64 Device User Guide — V01.20

- 4K byte RAM
- Two 8-channel Analog-to-Digital Converters
 - 10-bit resolution
 - External conversion trigger capability
- 1M bit per second, CAN 2.0 A, B software compatible module
 - Five receive and three transmit buffers
 - Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
 - Four separate interrupt channels for Rx, Tx, error and wake-up
 - Low-pass filter wake-up function
 - Loop-back for self test operation
- Enhanced Capture Timer
 - 16-bit main counter with 7-bit prescaler
 - 8 programmable input capture or output compare channels
 - Four 8-bit or two 16-bit pulse accumulators
- 8 PWM channels
 - Programmable period and duty cycle
 - 8-bit 8-channel or 16-bit 4-channel
 - Separate control for each pulse width and duty cycle
 - Center-aligned or left-aligned outputs
 - Programmable clock select logic with a wide range of frequencies
 - Fast emergency shutdown input
 - Usable as interrupt inputs
- Serial interfaces
 - Two asynchronous Serial Communications Interfaces (SCI)
 - Synchronous Serial Peripheral Interface (SPI)
- Byte Data Link Controller (BDLC)
 - SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in Automotive Applications
- Inter-IC Bus (IIC)
 - Compatible with I2C Bus standard
 - Multi-master operation
 - Software programmable for one of 256 different serial clock frequencies
- 112-Pin LQFP or 80 QFP package

\$001F - \$001F

Address \$001F

INT map 2 of 2 (HCS12 Interrupt)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HPRIO Rea Wri	PSEL7	PSEL6	PSEL5	PSEL4	PSEL3	PSEL2	PSEL1	0

\$0020 - \$0027

Reserved

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0020 -	Reserved	Read:	0	0	0	0	0	0	0	0
\$0027	Reserveu	Write:								

\$0028 - \$002F

BKP (HCS12 Breakpoint)

A	N		D:+ 7	D:1-0	Dite	D:4 4	D:+ 0	D:+ 0	D:14	D:1 0
Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0028	BKPCT0	Read:	BKEN	BKFULL	BKBDM	BKTAG	0	0	0	0
Ф 0020	BRECIU	Write:	DREN	DRFULL	DKDDIVI	DRIAG				
\$0029	BKPCT1	Read:	вкомвн	BKOMBL	BK1MBH	BK1MBL	BKORWE	BK0RW	BK1RWE	BK1RW
φ0029	DRECTI	Write:	DRUNDIT	DRUNDL		DRINDL	DRUKWE	BRUKW	DRINVE	DRINW
\$002A	BKP0X	Read:	0	0	BK0V5	BK0V4	BK0V3	BK0V2	BK0V1	BK0V0
900ZA	DRFUX	Write:			BRUVS	BR0V4	BR0V3	BRUVZ	BRUVI	BRUVU
\$002B	BKP0H	Read:	Bit 15	14	13	12	11	10	9	Bit 8
ф002 В	DRI OT	Write:	Dit 15	14	15	12	11	10	9	DILO
\$002C	BKP0L	Read:	Bit 7	6	5	4	3	2	1	Bit 0
φ002C	DRFUL	Write:		0	5	4	5	2	I	BIL U
\$002D	BKP1X	Read:	0	0	BK1V5	BK1V4	BK1V3	BK1V2	BK1V1	BK1V0
9002D	DREIX	Write:			BRIVS	DR1V4	DKTV5	DRTVZ	DRIVI	BRIVU
\$002E	BKP1H	Read:	Bit 15	14	13	12	11	10	9	Bit 8
φ002E		Write:	DILTO	14	13	12		10	9	DILO
\$002F	BKP1L	Read:	Bit 7	6	5	4	3	2	1	Bit 0
φυυ2Γ	DRPIL	Write:		0	5	4	3	2		DILU

\$0030 - \$0031

MMC map 4 of 4 (HCS12 Module Mapping Control)

Address	Name]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0030 PPAGE	Read:	0	0	PIX5	PIX4	PIX3	PIX2	PIX1	PIX0	
	Write:			PIX5	FIA4	FIAS	FIAZ		FIAU	
¢0021	Percented	Read:	0	0	0	0	0	0	0	0
\$0031 Reserved		Write:								

\$0032 - \$0033

MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0032	PORTK	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0033	DDRK	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$00A0 - \$00C7 PW

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00C2	PWMDTY6	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C3	PWMDTY7	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
¢0004	PWMSDN	Read:	PWMIF	PWMIE		PWMLVL	0	PWM7IN	PWM7INL	PWM7ENA
\$00C4	PWWSDN	Write:	PVVIVIIF	PVVIVIE	PWMRSTRT	PVVIVILVL			PVVIVI/INL	PVVIVI/EINA
¢00CF	Decenved	Read:	0	0	0	0	0	0	0	0
\$00C5	Reserved	Write:								
¢0000	Decenved	Read:	0	0	0	0	0	0	0	0
\$00C6	Reserved	Write:								
¢0007	Beconvod	Read:	0	0	0	0	0	0	0	0
\$00C7	Reserved	Write:								

\$00C8 - \$00CF

SCI0 (Asynchronous Serial Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00C8	SCI0BDH	Read:	0	0	0	SBR12	SBR11	SBR10	SBR9	SBR8
φ00 0 0	CONDENT	Write:				OBICIZ	OBIGH	OBICIO	OBIG	OBIG
\$00C9	SCI0BDL	Read:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
		Write:	-			-			-	
\$00CA	SCI0CR1	Read:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
<i>QOOOI (</i>	00100111	Write:	2001.0	00101	nono				• =	
\$00CB	SCI0CR2	Read:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
WOODD	00100112	Write:		TOIL					i wo	ODIX
\$00CC	SCI0SR1	Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
\$00CC	30103111	Write:								
\$00CD	SCI0SR2	Read:	0	0	0	0	0	BRK13	TXDIR	RAF
900CD	30103R2	Write:						DKKIS	IADIK	
\$00CE	SCI0DRH	Read:	R8	Т8	0	0	0	0	0	0
AUDCE	SCIUDRE	Write:		10						
\$00CF	SCI0DRL	Read:	R7	R6	R5	R4	R3	R2	R1	R0
φυυς	SCIUDRL	Write:	T7	T6	T5	T4	T3	T2	T1	T0

\$00D0 - \$00D7

SCI1 (Asynchronous Serial Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00D0	SCI1BDH	Read: Write:	0	0	0	SBR12	SBR11	SBR10	SBR9	SBR8
\$00D1	SCI1BDL	Read: Write:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
\$00D2	SCI1CR1	Read: Write:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
\$00D3	SCI1CR2	Read: Write:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
\$00D4	SCI1SR1	Read: Write:	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF

\$0240 - \$027F

PIM (Port Integration Module)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$024A	DDRS	Read: Write:	DDRS7	DDRS7	DDRS5	DDRS4	DDRS3	DDRS2	DDRS1	DDRS0
\$024B	RDRS	Read:	RDRS7	RDRS6	RDRS5	RDRS4	RDRS3	RDRS2	RDRS1	RDRS0
		Write: Read:								
\$024C	PERS	Write:	PERS7	PERS6	PERS5	PERS4	PERS3	PERS2	PERS1	PERS0
\$024D	PPSS	Read: Write:	PPSS7	PPSS6	PPSS5	PPSS4	PPSS3	PPSS2	PPSS1	PPSS0
\$024E	WOMS	Read: Write:	WOMS7	WOMS6	WOMS5	WOMS4	WOMS3	WOMS2	WOMS1	WOMS0
\$024F	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0250	PTM	Read:	PTM7	PTM6	PTM5	PTM4	PTM3	PTM2	PTM1	PTM0
		Write: Read:	PTIM7	PTIM6	PTIM5	PTIM4	PTIM3	PTIM2	PTIM1	PTIMO
\$0251	PTIM	Write:						1 11112		
\$0252	DDRM	Read: Write:	DDRM7	DDRM7	DDRM5	DDRM4	DDRM3	DDRM2	DDRM1	DDRM0
\$0253	RDRM	Read: Write:	RDRM7	RDRM6	RDRM5	RDRM4	RDRM3	RDRM2	RDRM1	RDRM0
\$0254	PERM	Read: Write:	PERM7	PERM6	PERM5	PERM4	PERM3	PERM2	PERM1	PERM0
\$0255	PPSM	Read: Write:	PPSM7	PPSM6	PPSM5	PPSM4	PPSM3	PPSM2	PPSM1	PPSM0
\$0256	WOMM	Read: Write:	WOMM7	WOMM6	WOMM5	WOMM4	WOMM3	WOMM2	WOMM1	WOMM0
\$0257	MODRR	Read: Write:	0	0	0	MODRR4	0	0	MODRR1	MODRR0
\$0258										
	PTP	Read: Write:	PTP7	PTP6	PTP5	PTP4	PTP3	PTP2	PTP1	PTP0
\$0259	PTP PTIP	Write: Read:	PTP7 PTIP7	PTP6 PTIP6	PTP5 PTIP5	PTP4 PTIP4	PTP3 PTIP3	PTP2 PTIP2	PTP1 PTIP1	PTP0 PTIP0
\$0259	PTIP	Write: Read: Write:	PTIP7	PTIP6	PTIP5	PTIP4	PTIP3	PTIP2	PTIP1	PTIP0
\$0259 \$025A		Write: Read: Write: Read: Write:								
	PTIP	Write: Read: Write: Read:	PTIP7	PTIP6	PTIP5	PTIP4	PTIP3	PTIP2	PTIP1	PTIP0
\$025A	PTIP DDRP	Write: Read: Write: Read: Write: Read:	PTIP7 DDRP7	PTIP6 DDRP7	PTIP5 DDRP5	PTIP4 DDRP4	PTIP3 DDRP3	PTIP2 DDRP2	PTIP1 DDRP1	PTIP0 DDRP0
\$025A \$025B	PTIP DDRP RDRP	Write: Read: Write: Read: Write: Read: Write: Read:	PTIP7 DDRP7 RDRP7	PTIP6 DDRP7 RDRP6	PTIP5 DDRP5 RDRP5	PTIP4 DDRP4 RDRP4	PTIP3 DDRP3 RDRP3	PTIP2 DDRP2 RDRP2	PTIP1 DDRP1 RDRP1	PTIP0 DDRP0 RDRP0
\$025A \$025B \$025C	PTIP DDRP RDRP PERP	Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read:	PTIP7 DDRP7 RDRP7 PERP7	PTIP6 DDRP7 RDRP6 PERP6	PTIP5 DDRP5 RDRP5 PERP5	PTIP4 DDRP4 RDRP4 PERP4	PTIP3 DDRP3 RDRP3 PERP3	PTIP2 DDRP2 RDRP2 PERP2	PTIP1 DDRP1 RDRP1 PERP1	PTIP0 DDRP0 RDRP0 PERP0
\$025A \$025B \$025C \$025D	PTIP DDRP RDRP PERP PPSP	Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read:	PTIP7 DDRP7 RDRP7 PERP7 PPSP7	PTIP6 DDRP7 RDRP6 PERP6 PPSP6	PTIP5 DDRP5 RDRP5 PERP5 PPSP5	PTIP4 DDRP4 RDRP4 PERP4 PPSP4	PTIP3 DDRP3 RDRP3 PERP3 PPSP3	PTIP2 DDRP2 RDRP2 PERP2 PPSP2	PTIP1 DDRP1 RDRP1 PERP1 PPSP1	PTIP0 DDRP0 RDRP0 PERP0 PPSS0
\$025A \$025B \$025C \$025D \$025E	PTIP DDRP RDRP PERP PPSP PIEP	Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Mrite: Read:	PTIP7 DDRP7 RDRP7 PERP7 PPSP7 PIEP7	PTIP6 DDRP7 RDRP6 PERP6 PPSP6 PIEP6	PTIP5 DDRP5 RDRP5 PERP5 PPSP5 PIEP5	PTIP4 DDRP4 RDRP4 PERP4 PPSP4 PIEP4	PTIP3 DDRP3 RDRP3 PERP3 PPSP3 PIEP3	PTIP2 DDRP2 RDRP2 PERP2 PPSP2 PIEP2	PTIP1 DDRP1 RDRP1 PERP1 PPSP1 PIEP1	PTIP0 DDRP0 RDRP0 PERP0 PPSS0 PIEP0
\$025A \$025B \$025C \$025D \$025E \$025F \$0260	PTIP DDRP RDRP PERP PPSP PIEP PIFP PTH	Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read:	PTIP7 DDRP7 RDRP7 PERP7 PPSP7 PIEP7 PIFP7	PTIP6 DDRP7 RDRP6 PERP6 PIEP6 PIFP6	PTIP5 DDRP5 RDRP5 PERP5 PPSP5 PIEP5 PIFP5	PTIP4 DDRP4 RDRP4 PERP4 PPSP4 PIEP4 PIFP4	PTIP3 DDRP3 RDRP3 PERP3 PPSP3 PIEP3 PIFP3	PTIP2 DDRP2 RDRP2 PERP2 PPSP2 PIEP2 PIFP2	PTIP1 DDRP1 RDRP1 PERP1 PPSP1 PIEP1 PIFP1	PTIP0 DDRP0 RDRP0 PERP0 PPSS0 PIEP0 PIFP0
\$025A \$025B \$025C \$025D \$025E \$025F	PTIP DDRP RDRP PERP PPSP PIEP PIFP	Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read:	PTIP7 DDRP7 RDRP7 PERP7 PPSP7 PIEP7 PIFP7 PTH7	PTIP6 DDRP7 RDRP6 PERP6 PPSP6 PIEP6 PIFP6 PTH6	PTIP5 DDRP5 RDRP5 PERP5 PPSP5 PIEP5 PIFP5 PTH5	PTIP4 DDRP4 RDRP4 PERP4 PPSP4 PIEP4 PIFP4 PTH4	PTIP3 DDRP3 RDRP3 PERP3 PPSP3 PIEP3 PIFP3 PTH3	PTIP2 DDRP2 RDRP2 PERP2 PPSP2 PIEP2 PIFP2 PTH2	PTIP1 DDRP1 RDRP1 PERP1 PPSP1 PIEP1 PIFP1 PTH1	PTIP0 DDRP0 RDRP0 PERP0 PPSS0 PIEP0 PIFP0 PTH0

2.3 Detailed Signal Descriptions

2.3.1 EXTAL, XTAL — Oscillator Pins

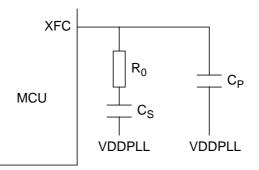
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived from the EXTAL input frequency. XTAL is the crystal output.

2.3.2 RESET — External Reset Pin

An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up state, and an output when an internal MCU function causes a reset.

2.3.3 TEST — Test Pin

This input only pin is reserved for test.


NOTE: The TEST pin must be tied to VSS in all applications.

2.3.4 VREGEN — Voltage Regulator Enable Pin

This input only pin enables or disables the on-chip voltage regulator.

2.3.5 XFC — PLL Loop Filter Pin

PLL loop filter. Please ask your Freescale representative for the interactive application note to compute PLL loop filter elements. Any current leakage on this pin must be avoided.

2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin

The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug communication. In MCU expanded modes of operation when instruction tagging is on, an input low on this pin during the falling edge of E-clock tags the high half of the instruction word being read into the

instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODC bit at the rising edge of $\overline{\text{RESET}}$. This pin has a permanently enabled pull-up device.

2.3.7 PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1

PAD15 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD1. It can act as an external trigger input for the ATD1.

2.3.8 PAD[14:08] / AN[14:08] - Port AD Input Pins ATD1

PAD14 - PAD08 are general purpose input pins and analog inputs AN[6:0] of the analog to digital converter ATD1.

2.3.9 PAD07 / AN07 / ETRIG0 — Port AD Input Pin of ATD0

PAD07 is a general purpose input pin and analog input AN0 of the analog to digital converter ATD0. It can act as an external trigger input for the ATD0.

2.3.10 PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0

PAD06 - PAD00 are general purpose input pins and analog inputs AN[6:0] of the analog to digital converter ATD0.

2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] - Port A I/O Pins

PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus.

2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] - Port B I/O Pins

PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus.

2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7

PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or "free" cycle. This signal will assert when the CPU is not using the bus.

The $\overline{\text{XCLKS}}$ is an input signal which controls whether a crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of $\overline{\text{RESET}}$. If the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce Oscillator. If input is a logic high a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts oscillator circuit on EXTAL and XTAL.

2.3.46 PP3 / KWP3 / PWM3 — Port P I/O Pin 3

PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output.

2.3.47 PP2 / KWP2 / PWM2 — Port P I/O Pin 2

PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output.

2.3.48 PP1 / KWP1 / PWM1 - Port P I/O Pin 1

PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output.

2.3.49 PP0 / KWP0 / PWM0 — Port P I/O Pin 0

PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output.

2.3.50 PS7 / SS0 — Port S I/O Pin 7

PS6 is a general purpose input or output pin. It can be configured as the slave select pin \overline{SS} of the Serial Peripheral Interface 0 (SPI0).

2.3.51 PS6 / SCK0 — Port S I/O Pin 6

PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).

2.3.52 PS5 / MOSI0 — Port S I/O Pin 5

PS5 is a general purpose input or output pin. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).

2.3.53 PS4 / MISO0 — Port S I/O Pin 4

PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).

2.3.54 PS3 / TXD1 — Port S I/O Pin 3

PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 1 (SCI1).

2.3.55 PS2 / RXD1 — Port S I/O Pin 2

PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial Communication Interface 1 (SCI1).

2.3.56 PS1 / TXD0 - Port S I/O Pin 1

PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 0 (SCI0).

2.3.57 PS0 / RXD0 - Port S I/O Pin 0

PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial Communication Interface 0 (SCI0).

2.3.58 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]

PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output compare pins IOC7-IOC0 of the Enhanced Capture Timer (ECT).

2.4 Power Supply Pins

MC9S12DJ64 power and ground pins are described below.

NOTE: All VSS pins must be connected together in the application.

Mnemonic	Pin Number	Nominal	Description
winemonic	112-pin QFP	Voltage	Description
VDD1, 2	13, 65	2.5V	Internal power and ground generated by internal regulator
VSS1, 2	14, 66	0V	internal power and ground generated by internal regulator
VDDR	41	5.0V	External power and ground, supply to pin drivers and internal
VSSR	40	0V	voltage regulator.
VDDX	107	5.0V	External power and ground, supply to pin drivers.
VSSX	106	0V	External power and ground, supply to pirrunvers.
VDDA	83	5.0V	Operating voltage and ground for the analog-to-digital
VSSA	86	0V	converters and the reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently.
VRL	85	0V	Reference voltages for the analog-to-digital converter.
VRH	84	5.0V	

 Table 2-2
 MC9S12DJ64 Power and Ground Connection Summary

2.4.5 VRH, VRL — ATD Reference Voltage Input Pins

VRH and VRL are the reference voltage input pins for the analog to digital converter.

2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL

Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by the internal voltage regulator.

NOTE: No load allowed except for bypass capacitors.

2.4.7 VREGEN — On Chip Voltage Regulator Enable

Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be supplied externally.

Section 10 Analog to Digital Converter (ATD) Block Description

There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DJ64. Consult the ATD_10B8C Block User Guide for information about each Analog to Digital Converter module. When the ATD_10B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*.

Section 11 Inter-IC Bus (IIC) Block Description

Consult the IIC Block User Guide for information about the Inter-IC Bus module.

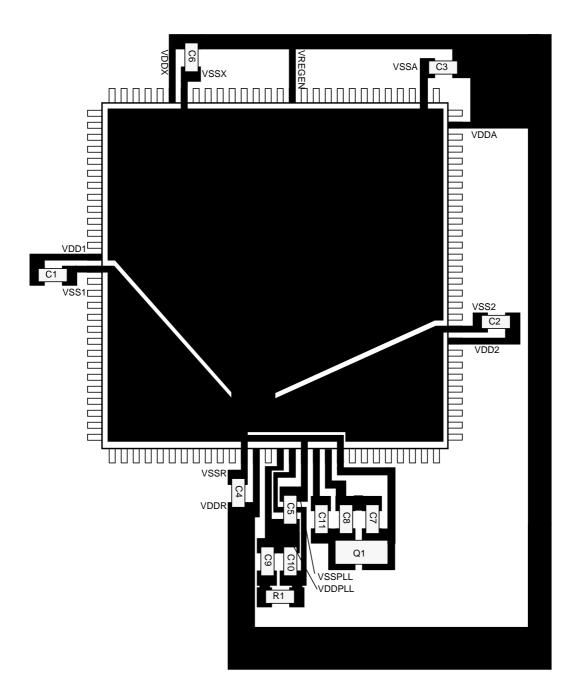
Section 12 Serial Communications Interface (SCI) Block Description

There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DJ64 device. Consult the SCI Block User Guide for information about each Serial Communications Interface module.

Section 13 Serial Peripheral Interface (SPI) Block Description

Consult the SPI Block User Guide for information about each Serial Peripheral Interface module.

Section 14 J1850 (BDLC) Block Description


Consult the BDLC Block User Guide for information about the J1850 module.

Section 15 Pulse Width Modulator (PWM) Block Description

Consult the PWM_8B8C Block User Guide for information about the Pulse Width Modulator module. When the PWM_8B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*.

Section 16 Flash EEPROM 64K Block Description

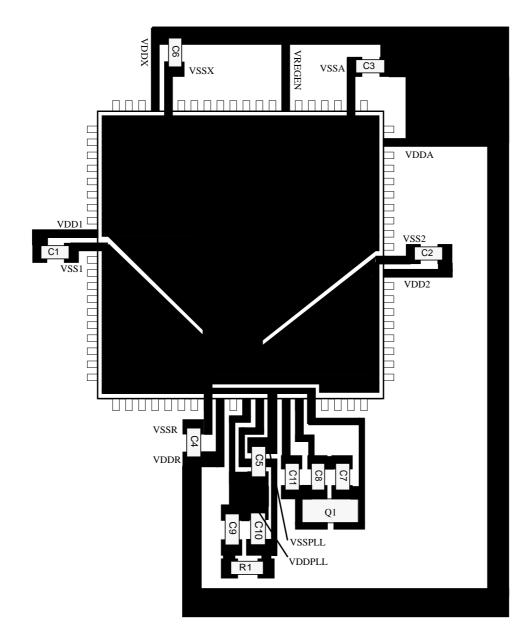


Figure 22-2 Recommended PCB Layout for 80QFP Colpitts Oscillator

A.1.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS5} or V_{DD5}).

Num	Rating	Symbol	Min	Max	Unit
1	I/O, Regulator and Analog Supply Voltage	V _{DD5}	-0.3	6.0	V
2	Digital Logic Supply Voltage ²	V _{DD}	-0.3	3.0	V
3	PLL Supply Voltage ²	V _{DDPLL}	-0.3	3.0	V
4	Voltage difference VDDX to VDDR and VDDA	Δ_{VDDX}	-0.3	0.3	V
5	Voltage difference VSSX to VSSR and VSSA	Δ _{VSSX}	-0.3	0.3	V
6	Digital I/O Input Voltage	V _{IN}	-0.3	6.0	V
7	Analog Reference	V _{RH,} V _{RL}	-0.3	6.0	V
8	XFC, EXTAL, XTAL inputs	V _{ILV}	-0.3	3.0	V
9	TEST input	V _{TEST}	-0.3	10.0	V
10	Instantaneous Maximum Current Single pin limit for all digital I/O pins ³	I _D	-25	+25	mA
11	Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL ⁴	I _{DL}	-25	+25	mA
12	Instantaneous Maximum Current Single pin limit for TEST ⁵	I _{DT}	-0.25	0	mA
13	Storage Temperature Range	T _{stg}	- 65	155	°C

Table A-1	Absolute	Maximum	Ratings ¹
-----------	----------	---------	----------------------

NOTES:

1. Beyond absolute maximum ratings device might be damaged.

2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source.

3. All digital I/O pins are internally clamped to V_{SSX} and V_{DDX} , V_{SSR} and V_{DDR} or V_{SSA} and V_{DDA} . 4. Those pins are internally clamped to V_{SSPLL} and V_{DDPLL} . 5. This pin is clamped low to V_{SSR} , but not clamped high. This pin must be tied low in applications.

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	т	Thermal Resistance LQFP112, single sided PCB ²	θ_{JA}	-	-	54	°C/W
2	т	Thermal Resistance LQFP112, double sided PCB with 2 internal planes ³	θ_{JA}	_	-	41	°C/W
3	Т	Junction to Board LQFP112	θ_{JB}	-	_	31	°C/W
4	т	Junction to Case LQFP112	θ _{JC}	-	-	11	°C/W
5	т	Junction to Package Top LQFP112	Ψ_{JT}	-	-	2	°C/W
6	т	Thermal Resistance QFP 80, single sided PCB	θ_{JA}	-	-	51	°C/W
7	т	Thermal Resistance QFP 80, double sided PCB with 2 internal planes	θ_{JA}	-	-	41	°C/W
8	т	Junction to Board QFP80	θ_{JB}	-	-	27	°C/W
9	т	Junction to Case QFP80	θ _{JC}	-	-	14	°C/W
10	Т	Junction to Package Top QFP80	Ψ_{JT}	_	-	3	°C/W

 Table A-5 Thermal Package Characteristics¹

NOTES:

1. The values for thermal resistance are achieved by package simulations

2. PC Board according to EIA/JEDEC Standard 51-3

3. PC Board according to EIA/JEDEC Standard 51-7

A.1.9 I/O Characteristics

This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances.

A.2 ATD Characteristics

This section describes the characteristics of the analog to digital converter.

A.2.1 ATD Operating Characteristics

The **Table A-8** shows conditions under which the ATD operates.

The following constraints exist to obtain full-scale, full range results:

 $V_{SSA} \le V_{RL} \le V_{IN} \le V_{RH} \le V_{DDA}$. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped.

Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	D	Reference Potential Low High	V _{RL} V _{RH}	V _{SSA} V _{DDA} /2		V _{DDA} /2 V _{DDA}	V V
2	С	Differential Reference Voltage ¹	$V_{RH}-V_{RL}$	4.50	5.00	5.25	V
3	D	ATD Clock Frequency	f _{ATDCLK}	0.5		2.0	MHz
4	D	ATD 10-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}		14 7		28 14	Cycles μs
5	D	ATD 8-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}	N _{CONV8} T _{CONV8}	12 6		26 13	Cycles μs
6	D	Recovery Time (V _{DDA} =5.0 Volts)	t _{REC}			20	μs
7	Р	Reference Supply current 2 ATD blocks on	I _{REF}			0.750	mA
8	Ρ	Reference Supply current 1 ATD block on	I _{REF}			0.375	mA

Table A-8	ATD	Operating	Characteristics
-----------	-----	-----------	-----------------

NOTES:

1. Full accuracy is not guaranteed when differential voltage is less than 4.50V

2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks.

A.2.2 Factors influencing accuracy

Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD.

A.2.2.1 Source Resistance:

Due to the input pin leakage current as specified in **Table A-6** in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R_S

MC9S12DJ64 Device User Guide — V01.20

specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance is allowed.

A.2.2.2 Source Capacitance

When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage $\leq 1LSB$, then the external filter capacitor, $C_f \geq 1024 * (C_{INS}-C_{INN})$.

A.2.2.3 Current Injection

There are two cases to consider.

- 1. A current is injected into the channel being converted. The channel being stressed has conversion values of 3FF (FF in 8-bit mode) for analog inputs greater than V_{RH} and 000 for values less than V_{RL} unless the current is higher than specified as disruptive condition.
- 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance.

The additional input voltage error on the converted channel can be calculated as $V_{ERR} = K * R_S * I_{INJ}$, with I_{INJ} being the sum of the currents injected into the two pins adjacent to the converted channel.

Condit	Conditions are shown in Table A-4 unless otherwise noted						
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	С	Max input Source Resistance	R _S	-	-	1	KΩ
2	т	Total Input Capacitance Non Sampling Sampling	C _{INN} C _{INS}			10 22	pF
3	С	Disruptive Analog Input Current	I _{NA}	-2.5		2.5	mA
4	С	Coupling Ratio positive current injection	K _p			10 ⁻⁴	A/A
5	С	Coupling Ratio negative current injection	K _n			10 ⁻²	A/A

Table A-9 ATD Electrical Characteristics

A.7 SPI

A.7.1 Master Mode

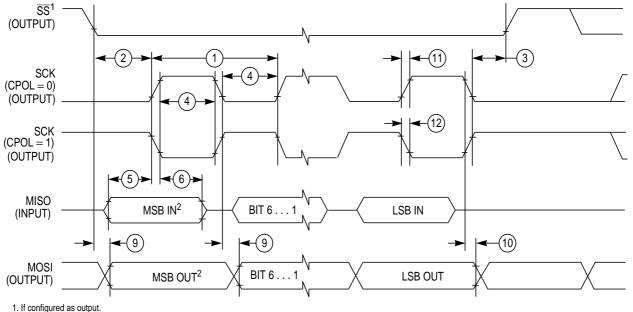


Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-18.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure A-5 SPI Master Timing (CPHA = 0)