

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	59
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12d32cfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Appendix B Package Information

B.1	General	123
B.2	112-pin LQFP package	124
B.3	80-pin QFP package	125

MC9S12DJ64 Device User Guide — V01.20

- 4K byte RAM
- Two 8-channel Analog-to-Digital Converters
 - 10-bit resolution
 - External conversion trigger capability
- 1M bit per second, CAN 2.0 A, B software compatible module
 - Five receive and three transmit buffers
 - Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
 - Four separate interrupt channels for Rx, Tx, error and wake-up
 - Low-pass filter wake-up function
 - Loop-back for self test operation
- Enhanced Capture Timer
 - 16-bit main counter with 7-bit prescaler
 - 8 programmable input capture or output compare channels
 - Four 8-bit or two 16-bit pulse accumulators
- 8 PWM channels
 - Programmable period and duty cycle
 - 8-bit 8-channel or 16-bit 4-channel
 - Separate control for each pulse width and duty cycle
 - Center-aligned or left-aligned outputs
 - Programmable clock select logic with a wide range of frequencies
 - Fast emergency shutdown input
 - Usable as interrupt inputs
- Serial interfaces
 - Two asynchronous Serial Communications Interfaces (SCI)
 - Synchronous Serial Peripheral Interface (SPI)
- Byte Data Link Controller (BDLC)
 - SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in Automotive Applications
- Inter-IC Bus (IIC)
 - Compatible with I2C Bus standard
 - Multi-master operation
 - Software programmable for one of 256 different serial clock frequencies
- 112-Pin LQFP or 80 QFP package

MC9S12DJ64 Device User Guide — V01.20

1.4 Block Diagram

Figure 1-1 shows a block diagram of the MC9S12DJ64 device.

\$001F - \$001F

Address \$001F

INT map 2 of 2 (HCS12 Interrupt)

Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Read:								0
	Write:	FOEL/	FSELO	FOELD	FOEL4	FOELO	FOELZ	FOELI	

\$0020 - \$0027

Reserved

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0020 -	Reserved	Read:	0	0	0	0	0	0	0	0
\$0027		Write:								

\$0028 - \$002F

BKP (HCS12 Breakpoint)

				-	-					
Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0028	BKDCTO	Read:	BKEN	BKEIIII	BKBUW	BKTAC	0	0	0	0
φ0020	BRECTU	Write:	DREN	DRFULL	BRBDIVI	BRIAG				
¢0020	RKDCT1	Read:	BKUMBH	BKUMBI						
φ0029	BRECH	Write:	DRUNDIT	DRUNDL		DRINDL	DRUKWE	BRUKW	DRINVE	DATAW
¢0024	BKDOY	Read:	0	0	PK0\/5	BKU/4				BKUVU
9002A	DRFUA	Write:			BRUVS	BR0V4	BR0V3	DR0 VZ	BRUVI	BRUVU
\$002B	вкрон	Read:	Bit 15	1/	13	12	11	10	9	Bit 9
φ002D	DRIVIT	Write:	DICTO	14	15	12	11	10	3	Dit O
\$002C	BKDOI	Read:	Bit 7	6	5	1	3	2	1	Bit 0
φ002C	DIVIOL	Write:		0	5	4	5	2	I	Dit U
¢002D	BKD1Y	Read:	0	0	BK1\/5	BK1\//	BK1\/3	BK1\/2	BK1\/1	BK11/0
φ002D	DRITA	Write:			DRIVS	DR1V4	DRIVS	DRTVZ	DRIVI	DRIVU
\$002E	BKD1H	Read:	Bit 15	1/	13	12	11	10	9	Bit 8
φυυze	DREIT	Write:	DICTO	14	15	12	11	10	3	Dit O
\$002E	BKP1I	Read:	Bit 7	6	5	1	3	2	1	Bit 0
ψ0021		Write:					5	2	'	Dit U

\$0030 - \$0031

MMC map 4 of 4 (HCS12 Module Mapping Control)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0030		Read:	0	0	DIVE				DIV1	DIVO
	PPAGE	Write:			PIX5	FIA4	FIAS	FIAZ		FIAU
¢0021	Percentred	Read:	0	0	0	0	0	0	0	0
φυυστ	Reserveu	Write:								

\$0032 - \$0033

MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0032	PORTK	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0033	DDRK	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$00A0 - \$00C7 PW

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address	Name	1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0000		Read:	D:4 7		5.00		0	0	4	Dit O
\$0002	PVVIVIDIY6	Write:	Bit /	6	5	4	3	2	1	BITU
\$00C3	PWMDTY7	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C4		Read:					0	PWM7IN		
	PWWSDN	Write:			PWWKSIKI					
¢00CE	Becorved	Read:	0	0	0	0	0	0	0	0
\$00C5	Reserved	Write:								
¢0006	Pererved	Read:	0	0	0	0	0	0	0	0
\$00C0	Reserved	Write:								
\$00C7	Pacarvad	Read:	0	0	0	0	0	0	0	0
φ00C1	Reserved	Write:								

\$00C8 - \$00CF

SCI0 (Asynchronous Serial Interface)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0008	SCIOBDH	Read:	0	0	0	SBR12	SBR11	SBR10	SBRG	SBB8
ψ0000	SCIUDDII	Write:				ODITIZ	ODITI	ODIVIO	ODING	ODI(0
\$00C9	SCI0BDI	Read:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
<i>Q</i>0000	0010222	Write:	0010	02.10	00110		00110	00112	0.0.1	00110
\$00CA	SCI0CR1	Read:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
		Write:								
\$00CB	SCI0CR2	Read:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
900CB	00100112	Write:	=		=					
\$0000	SCI0SP1	Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
φ00CC	501051(1	Write:								
¢000D	SCI0882	Read:	0	0	0	0	0		סומעד	RAF
\$00CD	30103R2	Write:						DKKIS	IADIK	
¢00CE	SCIADBU	Read:	R8	то	0	0	0	0	0	0
\$00CE	SCIUDRE	Write:		10						
¢00CE	SCIODRI	Read:	R7	R6	R5	R4	R3	R2	R1	R0
Φ υυς Γ	SCIUDRL	Write:	T7	T6	T5	T4	T3	T2	T1	Т0

\$00D0 - \$00D7

SCI1 (Asynchronous Serial Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00D0	SCI1BDH	Read: Write:	0	0	0	SBR12	SBR11	SBR10	SBR9	SBR8
\$00D1	SCI1BDL	Read: Write:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
\$00D2	SCI1CR1	Read: Write:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
\$00D3	SCI1CR2	Read: Write:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
\$0004	SCI15P1	Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
ψ00D4	SCHORT	Write:								

Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ድ በ172	Extended ID CAN0TIDR2	Read: Write:	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7
φ0172	Standard ID	Read: Write:								
\$0173	Extended ID CAN0TIDR3	Read: Write:	ID6	ID5	ID4	ID3	ID2	ID1	ID0	RTR
\$0174 C	Standard ID	Read: Write:								
\$0174- \$017B	CAN0TDSR0 - CAN0TDSR7	Read: Write:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
\$017C	CAN0TDLR	Read: Write:					DLC3	DLC2	DLC1	DLC0
\$017D	CAN0TTBPR	Read: Write:	PRIO7	PRIO6	PRIO5	PRIO4	PRIO3	PRIO2	PRIO1	PRIO0
\$017E	CANOTTORH	Read:	TSR15	TSR14	TSR13	TSR12	TSR11	TSR10	TSR9	TSR8
ψυτις		Write:								
\$017F	CANOTTSRI	Read:	TSR7	TSR6	TSR5	TSR4	TSR3	TSR2	TSR1	TSR0
ψυτη	GANGTIONE	Write:								

\$0180 - \$023F

Reserved

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0180 - Res	Peconyod	Read:	0	0	0	0	0	0	0	0
\$023F	Reserved	Write:								

\$0240 - \$027F

PIM (Port Integration Module)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0240	PTT	Read: Write:	PTT7	PTT6	PTT5	PTT4	PTT3	PTT2	PTT1	PTT0
\$02/1	DTIT	Read:	PTIT7	PTIT6	PTIT5	PTIT4	PTIT3	PTIT2	PTIT1	PTIT0
φυΖ41	FIII	Write:								
\$0242	DDRT	Read: Write:	DDRT7	DDRT7	DDRT5	DDRT4	DDRT3	DDRT2	DDRT1	DDRT0
\$0243	RDRT	Read: Write:	RDRT7	RDRT6	RDRT5	RDRT4	RDRT3	RDRT2	RDRT1	RDRT0
\$0244	PERT	Read: Write:	PERT7	PERT6	PERT5	PERT4	PERT3	PERT2	PERT1	PERT0
\$0245	PPST	Read: Write:	PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0
\$0246	Reserved	Read:	0	0	0	0	0	0	0	0
φ02 4 0	Reserveu	Write:								
\$02 <i>1</i> 7	Recorved	Read:	0	0	0	0	0	0	0	0
ψυΖ41	Reserved	Write:								
\$0248	PTS	Read:	PTS7	PTS6	PTS5	PTS/	PTS3	PTS2	PTS1	PTSO
ψ0 2 1 0	110	Write:	1107	1100	1100	1 104	1100	1102	1 101	1100
\$0249	PTIS	Read:	PTIS7	PTIS6	PTIS5	PTIS4	PTIS3	PTIS2	PTIS1	PTIS0
	110	Write:								

Figure 2-2 Pin Assignments in 80-pin QFP for MC9S12DJ64 and MC9S12D32

2.2 Signal Properties Summary

Table 2-1 summarizes the pin functionality. Signals shown in **bold** are not available in the 80 pin package.

* Due to the nature of a translated ground Colpitts oscillator a DC voltage bias is applied to the crystal

Please contact the crystal manufacturer for crystal DC bias conditions and recommended capacitor value C_{DC} .

Figure 2-4 Colpitts Oscillator Connections (PE7=1)

* Rs can be zero (shorted) when used with higher frequency crystals. Refer to manufacturer's data.

Figure 2-5 Pierce Oscillator Connections (PE7=0)

Figure 2-6 External Clock Connections (PE7=0)

2.3.22 PH6 / KWH6 - Port H I/O Pin 6

PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.23 PH5 / KWH5 — Port H I/O Pin 5

PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.24 PH4 / KWH4 -- Port H I/O Pin 2

PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.25 PH3 / KWH3 — Port H I/O Pin 3

PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.26 PH2 / KWH2 — Port H I/O Pin 2

PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.27 PH1 / KWH1 — Port H I/O Pin 1

PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.28 PH0 / KWH0 — Port H I/O Pin 0

PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.29 PJ7 / KWJ7 / SCL / TXCAN0 - PORT J I/O Pin 7

PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the serial clock pin SCL of the IIC module. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0).

Mnomonio	Pin Number	Nominal	Description				
witternottic	112-pin QFP	Voltage	Description				
VDDPLL	43	2.5V	Provides operating voltage and ground for the Phased-Locked				
VSSPLL	45	0V	Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.				
VREGEN	97	5.0V	Internal Voltage Regulator enable/disable				

2.4.1 VDDX, VSSX — Power & Ground Pins for I/O Drivers

External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

VDDX and VSSX are the supplies for Ports J, K, M, P, T and S.

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator

External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

VDDR and VSSR are the supplies for Ports A, B, E and H.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins

Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground.

NOTE: No load allowed except for bypass capacitors.

2.4.4 VDDA, VSSA — Power Supply Pins for ATD0/ATD1 and VREG

VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the two analog to digital converters. It also provides the reference for the internal voltage regulator. This allows the supply voltage to ATD0/ATD1 and the reference voltage to be bypassed independently.

Table 4-2 Clock Selection Based on PE7

PE7 = XCLKS	Description		
0	Pierce Oscillator/external clock selected		

Table 4-3 Voltage Regulator VREGEN

VREGEN	Description			
1 Internal Voltage Regulator enabled				
0	Internal Voltage Regulator disabled, VDD1,2 and VDDPLL must be supplied externally with 2.5V			

4.3 Security

The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows:

- Protection of the contents of FLASH,
- Protection of the contents of EEPROM,
- Operation in single-chip mode,
- Operation from external memory with internal FLASH and EEPROM disabled.

The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters stored in EEPROM.

4.3.1 Securing the Microcontroller

Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part.

The security byte resides in a portion of the Flash array.

Check the Flash Block User Guide for more details on the security configuration.

4.3.2 Operation of the Secured Microcontroller

4.3.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked.

NOTE: For devices assembled in 80-pin QFP packages all non-bonded out pins should be configured as outputs after reset in order to avoid current drawn from floating inputs. Refer to **Table 2-1** for affected pins.

5.3.2 Memory

Refer to **Table 1-1** for locations of the memories depending on the operating mode after reset.

The RAM array is not automatically initialized out of reset.

6.4 HCS12 Interrupt (INT) Block Description

Consult the INT Block Guide for information on the HCS12 Interrupt module.

6.5 HCS12 Background Debug (BDM) Block Description

Consult the BDM Block Guide for information on the HCS12 Background Debug module.

6.5.1 Device-specific information

When the BDM Block Guide refers to *alternate clock* this is equivalent to *Oscillator Clock*.

6.6 HCS12 Breakpoint (BKP) Block Description

Consult the BKP Block Guide for information on the HCS12 Breakpoint module.

Section 7 Clock and Reset Generator (CRG) Block Description

Consult the CRG Block User Guide for information about the Clock and Reset Generator module.

7.1 Device-specific information

The Low Voltage Reset feature of the CRG is not available on this device.

Section 8 Oscillator (OSC) Block Description

Consult the OSC Block User Guide for information about the Oscillator module.

8.1 Device-specific information

The XCLKS input signal is active low (see 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7).

Section 9 Enhanced Capture Timer (ECT) Block Description

Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer module. When the ECT_16B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*.

A.1.6 ESD Protection and Latch-up Immunity

All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ohm
	Storage Capacitance	С	100	pF
Human Body	Number of Pulse per pin positive negative	-	- 1 1	
	Series Resistance	R1	0	Ohm
	Storage Capacitance	С	200	pF
Machine	Number of Pulse per pin positive negative	-	- 3 3	
	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

 Table A-2 ESD and Latch-up Test Conditions

 Table A-3 ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	Т	Human Body Model (HBM)	V _{HBM}	2000	-	V
2	т	Machine Model (MM)	V _{MM}	200	-	V
3	т	Charge Device Model (CDM)	V _{CDM}	500	-	V
4	т	Latch-up Current at T _A = 125°C positive negative	I _{LAT}	+100 -100	-	mA
5	т	Latch-up Current at T _A = 27°C positive negative	I _{LAT}	+200 -200	-	mA

A.1.7 Operating Conditions

This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data.

A.5.1.5 Pseudo Stop and Wait Recovery

The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After t_{wrs} the CPU starts fetching the interrupt vector.

A.5.2 Oscillator

The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce oscillator/external clock depends on the $\overline{\text{XCLKS}}$ signal which is sampled during reset. Pierce oscillator/external clock mode allows the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. t_{CQOUT} specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up time t_{UPOSC}. The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency f_{CMFA}.

Condit	ions	s are shown in Table A-4 unless otherwise noted				,	
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1a	С	Crystal oscillator range (Colpitts)	f _{OSC}	0.5		16	MHz
1b	С	Crystal oscillator range (Pierce) ¹	fosc	0.5		40	MHz
2	Р	Startup Current	iosc	100			μA
3	С	Oscillator start-up time (Colpitts)	t _{UPOSC}		8 ²	100 ³	ms
4	D	Clock Quality check time-out	t _{CQOUT}	0.45		2.5	S
5	Р	Clock Monitor Failure Assert Frequency	f _{CMFA}	50	100	200	KHz
6	Р	External square wave input frequency ⁴	f _{EXT}	0.5		50	MHz
7	D	External square wave pulse width low	t _{EXTL}	9.5			ns
8	D	External square wave pulse width high	t _{EXTH}	9.5			ns
9	D	External square wave rise time	t _{EXTR}			1	ns
10	D	External square wave fall time	t _{EXTF}			1	ns
11	D	Input Capacitance (EXTAL, XTAL pins)	C _{IN}		7		pF
12	с	DC Operating Bias in Colpitts Configuration on EXTAL Pin	V _{DCBIAS}		1.1		V
13	Р	EXTAL Pin Input High Voltage ⁴	V _{IH,EXTAL}	0.75*V _{DDPLL}			V
	т	EXTAL Pin Input High Voltage ⁴	V _{IH,EXTAL}			V _{DDPLL} + 0.3	V
14	Р	EXTAL Pin Input Low Voltage ⁴	V _{IL,EXTAL}			0.25*V _{DDPLL}	V
	Т	EXTAL Pin Input Low Voltage ⁴	V _{IL,EXTAL}	V _{DDPLL} - 0.3			V
15	С	EXTAL Pin Input Hysteresis ⁴	V _{HYS,EXTAL}		250		mV

Table A-15 Oscillator Characteristics

NOTES:

- 1. Depending on the crystal a damping series resistor might be necessary
- 2. $f_{osc} = 4MHz$, C = 22pF.
- 3. Maximum value is for extreme cases using high Q, low frequency crystals
- 4. Only valid if Pierce oscillator/external clock mode is selected

A.5.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL's Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode.

A.5.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

Figure A-2 Basic PLL functional diagram

The following procedure can be used to calculate the resistance and capacitance values using typical values for K_1 , f_1 and i_{ch} from **Table A-16**.

The grey boxes show the calculation for $f_{VCO} = 50$ MHz and $f_{ref} = 1$ MHz. E.g., these frequencies are used for $f_{OSC} = 4$ MHz and a 25MHz bus clock.

The VCO Gain at the desired VCO frequency is approximated by:

$$K_V = K_1 \cdot e^{\frac{(f_1 - f_{vco})}{K_1 \cdot 1V}} = -100 \cdot e^{\frac{(60 - 50)}{-100}} = -90.48 MHz/V$$

MC9S12DJ64 Device User Guide — V01.20

This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent.

Condit	Conditions are shown in Table A-4 unless otherwise noted						
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Ρ	Self Clock Mode frequency	f _{SCM}	1		5.5	MHz
2	D	VCO locking range	f _{VCO}	8		50	MHz
3	D	Lock Detector transition from Acquisition to Tracking mode	$ \Delta_{trk} $	3		4	%1
4	D	Lock Detection	$ \Delta_{Lock} $	0		1.5	% ¹
5	D	Un-Lock Detection	Δ _{unl}	0.5		2.5	% ¹
6	D	Lock Detector transition from Tracking to Acquisition mode	∆ _{unt}	6		8	%1
7	С	PLLON Total Stabilization delay (Auto Mode) ²	t _{stab}		0.5		ms
8	D	PLLON Acquisition mode stabilization delay ²	t _{acq}		0.3		ms
9	D	PLLON Tracking mode stabilization delay ²	t _{al}		0.2		ms
10	D	Fitting parameter VCO loop gain	K ₁		-100		MHz/V
11	D	Fitting parameter VCO loop frequency	f ₁		60		MHz
12	D	Charge pump current acquisition mode	i _{ch}		38.5		μΑ
13	D	Charge pump current tracking mode	i _{ch}		3.5		μΑ
14	С	Jitter fit parameter 1 ²	j ₁			1.1	%
15	С	Jitter fit parameter 2 ²	j ₂			0.13	%

Table A-16 PLI	_ Characteristics
----------------	-------------------

NOTES:

1. % deviation from target frequency

2. $f_{OSC} = 4MHz$, $f_{BUS} = 25MHz$ equivalent $f_{VCO} = 50MHz$: REFDV = #\$03, SYNR = #\$018, Cs = 4.7nF, Cp = 470pF, Rs = 10K\Omega.

