

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12d64cpve

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Version Number	Revision Date	Effective Date	Author	Description of Changes
V01.15	22 July 2003	22 July 2003		Mentioned "S12 LRAE" bootloader in Flash section Section Document References: corrected S12 CPU document reference
V01.16	24 Feb. 2004	24 Feb. 2004		Added 3L86D maskset with corresponding Part ID Table Oscillator Characteristics: Added more details for EXTAL pin
V01.17	21 May 2004	21 May 2004		Added 4L86D maskset with corresponding Part ID Table "MC9S12DJ64 Memory Map out of Reset": corrected \$1000 - \$3fff memory in single chip modes to "unimplemented".
V01.18	13 July 2004	13 July 2004		Added MC9S12D32 and MC9S12A32
V01.19	2 Sept. 2004	2 Sept. 2004		Appendix, Table "Oscillator Characteristics": changed item 13 VIH,EXTAL min value from 0.7*VDDPLL to 0.75*VDDPLL item 14 VIL,EXTAL max value from 0.3*VDDPLL to 0.25*VDDPLL
V01.20	6 April 2005	6 April 2005		Table "Assigned Part ID Numbers": added mask set number0M89CTable "NVM Reliability Characteristics": added footnote concerningdata retention

List of Figures

Figure 0-1	Order Partnumber Example15
Figure 1-1	MC9S12DJ64 Block Diagram
Figure 1-2	MC9S12DJ64 Memory Map out of Reset
Figure 1-3	MC9S12D32 Memory Map out of Reset
Figure 2-1	Pin Assignments in 112-pin LQFP for MC9S12DJ64
Figure 2-2	Pin Assignments in 80-pin QFP for MC9S12DJ64 and MC9S12D3253
Figure 2-3	PLL Loop Filter Connections
Figure 2-4	Colpitts Oscillator Connections (PE7=1)
Figure 2-5	Pierce Oscillator Connections (PE7=0)
Figure 2-6	External Clock Connections (PE7=0)
Figure 3-1	Clock Connections
Figure 22-1	Recommended PCB Layout 112LQFP Colpitts Oscillator
Figure 22-2	Recommended PCB Layout for 80QFP Colpitts Oscillator
Figure 22-3	Recommended PCB Layout for 112LQFP Pierce Oscillator
Figure 22-4	Recommended PCB Layout for 80QFP Pierce Oscillator
Figure A-1	ATD Accuracy Definitions 100
Figure A-2	Basic PLL functional diagram 109
Figure A-3	Jitter Definitions
Figure A-4	Maximum bus clock jitter approximation 111
Figure A-5	SPI Master Timing (CPHA = 0)
Figure A-6	SPI Master Timing (CPHA =1) 116
Figure A-7	SPI Slave Timing (CPHA = 0) 117
Figure A-8	SPI Slave Timing (CPHA =1)
Figure A-9	General External Bus Timing 120
Figure B-1	112-pin LQFP mechanical dimensions (case no. 987) 124
Figure B-2	80-pin QFP Mechanical Dimensions (case no. 841B)

- I/O lines with 5V input and drive capability
- 5V A/D converter inputs
- Operation at 50MHz equivalent to 25MHz Bus Speed
- Development support
- Single-wire background debugTM mode (BDM)
- On-chip hardware breakpoints

1.3 Modes of Operation

User modes

- Normal and Emulation Operating Modes
 - Normal Single-Chip Mode
 - Normal Expanded Wide Mode
 - Normal Expanded Narrow Mode
 - Emulation Expanded Wide Mode
 - Emulation Expanded Narrow Mode
- Special Operating Modes
 - Special Single-Chip Mode with active Background Debug Mode
 - Special Test Mode (Freescale **use only**)
 - Special Peripheral Mode (Freescale **use only**)

Low power modes

- Stop Mode
- Pseudo Stop Mode
- Wait Mode

MC9S12DJ64 Device User Guide — V01.20

1.4 Block Diagram

Figure 1-1 shows a block diagram of the MC9S12DJ64 device.

\$0040 - \$007F

ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$004A	TCTL3	Read: Write:	EDG7B	EDG7A	EDG6B	EDG6A	EDG5B	EDG5A	EDG4B	EDG4A
\$004B	TCTL4	Read: Write:	EDG3B	EDG3A	EDG2B	EDG2A	EDG1B	EDG1A	EDG0B	EDG0A
\$004C	TIE	Read: Write:	C7I	C6I	C5I	C4I	C3I	C2I	C1I	COI
\$004D	TSCR2	Read: Write:	тоі	0	0	0	TCRE	PR2	PR1	PR0
\$004E	TFLG1	Read: Write:	C7F	C6F	C5F	C4F	C3F	C2F	C1F	C0F
\$004F	TFLG2	Read: Write:	TOF	0	0	0	0	0	0	0
\$0050	TC0 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0051	TC0 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0052	TC1 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0053	TC1 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0054	TC2 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0055	TC2 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0056	TC3 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0057	TC3 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0058	TC4 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0059	TC4 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005A	TC5 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005B	TC5 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005C	TC6 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005D	TC6 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005E	TC7 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005F	TC7 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0060	PACTL	Read: Write:	0	PAEN	PAMOD	PEDGE	CLK1	CLK0	PAOVI	PAI
\$0061	PAFLG	Read: Write:	0	0	0	0	0	0	PAOVF	PAIF
\$0062	PACN3 (hi)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0120 - \$013F

ATD1 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0120		Read:	0	0	0	0	0	0	0	0
ψ0120	AIDIOILO	Write:								
\$0121	ATD1CTI 1	Read:	0	0	0	0	0	0	0	0
φ0121	7.1010121	Write:								
\$0122	ATD1CTL2	Read: Write:	ADPU	AFFC	AWAI	ETRIGLE	ETRIGP	ETRIG	ASCIE	ASCIF
\$0123	ATD1CTL3	Read: Write:	0	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
\$0124	ATD1CTL4	Read: Write:	SRES8	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
\$0125	ATD1CTL5	Read: Write:	DJM	DSGN	SCAN	MULT	0	СС	СВ	CA
\$0126	ATD1STAT0	Read: Write:	SCF	0	ETORF	FIFOR	0	CC2	CC1	CC0
		Read [.]	0	0	0	0	0	0	0	0
\$0127	Reserved	Write:		•						<u> </u>
\$0128	ATD1TEST0	Read: Write:	0	0	0	0	0	0	0	0
\$0129	ATD1TEST1	Read:	0	0	0	0	0	0	0	SC
		Read	0	0	0	0	0	0	0	0
\$012A	Reserved	Write:	0	0	0	0	0	0	0	0
\$012B	ATD1STAT1	Read: Write:	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
¢0400	Decembed	Read:	0	0	0	0	0	0	0	0
\$012C	Reserved	Write:								
\$012D	ATD1DIEN	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$012E	Reserved	Read:	0	0	0	0	0	0	0	0
ΨUIZL	iteseiveu	Write:								
\$012F	PORTAD1	Read:	Bit7	6	5	4	3	2	1	BIT 0
•••		Write:	D 1:45			1.0			-	54.6
\$0130	ATD1DR0H	Read:	Bit15	14	13	12	11	10	9	Bit8
		Pood:	Dit7	Bit6	0	0	0	0	0	0
\$0131	ATD1DR0L	Writo	Biti	Bito	0	0	0	0	0	0
		Read:	Bit15	14	13	12	11	10	9	Bit8
\$0132	ATD1DR1H	Write:	Ditto	17	10	12	11	10		Dito
© 0400		Read:	Bit7	Bit6	0	0	0	0	0	0
\$0133	AIDIDRIL	Write:								
¢0134		Read:	Bit15	14	13	12	11	10	9	Bit8
φ0134	AIDIDIZII	Write:								
\$0135	ATD1DR2L	Read:	Bit7	Bit6	0	0	0	0	0	0
40.00		Write:							_	
\$0136	ATD1DR3H	Read:	Bit15	14	13	12	11	10	9	Bit8
		vvrite:	Dit7	Dite	0	0	0	0	0	0
\$0137	ATD1DR3L	Kead: Write	DIL/	סונט	U	0	U	U	U	0
		Read	Bit15	14	13	12	11	10	9	Bit8
\$0138	ATD1DR4H	Write:	2							2.10

Figure 2-2 Pin Assignments in 80-pin QFP for MC9S12DJ64 and MC9S12D32

2.2 Signal Properties Summary

Table 2-1 summarizes the pin functionality. Signals shown in **bold** are not available in the 80 pin package.

2.3.22 PH6 / KWH6 - Port H I/O Pin 6

PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.23 PH5 / KWH5 — Port H I/O Pin 5

PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.24 PH4 / KWH4 -- Port H I/O Pin 2

PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.25 PH3 / KWH3 — Port H I/O Pin 3

PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.26 PH2 / KWH2 — Port H I/O Pin 2

PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.27 PH1 / KWH1 — Port H I/O Pin 1

PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.28 PH0 / KWH0 — Port H I/O Pin 0

PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.29 PJ7 / KWJ7 / SCL / TXCAN0 - PORT J I/O Pin 7

PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the serial clock pin SCL of the IIC module. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0).

2.3.30 PJ6 / KWJ6 / SDA / RXCAN0 - PORT J I/O Pin 6

PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the serial data pin SDA of the IIC module. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0).

2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]

PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.32 PK7 / ECS / ROMCTL — Port K I/O Pin 7

PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used as the emulation chip select output ($\overline{\text{ECS}}$). During MCU expanded modes of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of $\overline{\text{RESET}}$, the state of this pin is latched to the ROMON bit. For a complete list of modes refer to **4.2 Chip Configuration Summary**.

2.3.33 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]

PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins provide the expanded address XADDR[19:14] for the external bus.

2.3.34 PM7 — Port M I/O Pin 7

PM7 is a general purpose input or output pin.

2.3.35 PM6 — Port M I/O Pin 6

PM6 is a general purpose input or output pin.

2.3.36 PM5 / TXCAN0 / SCK0 — Port M I/O Pin 5

PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).

2.3.37 PM4 / RXCAN0 / MOSI0 - Port M I/O Pin 4

PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial Peripheral Interface 0 (SPI0).

NOTE: For devices assembled in 80-pin QFP packages all non-bonded out pins should be configured as outputs after reset in order to avoid current drawn from floating inputs. Refer to **Table 2-1** for affected pins.

5.3.2 Memory

Refer to **Table 1-1** for locations of the memories depending on the operating mode after reset.

The RAM array is not automatically initialized out of reset.

A.1.6 ESD Protection and Latch-up Immunity

All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ohm
	Storage Capacitance	С	100	pF
Human Body	Number of Pulse per pin positive negative	-	- 1 1	
	Series Resistance	R1	0	Ohm
	Storage Capacitance	С	200	pF
Machine	Number of Pulse per pin positive negative	-	- 3 3	
	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

 Table A-2 ESD and Latch-up Test Conditions

 Table A-3 ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	Т	Human Body Model (HBM)	V _{HBM}	2000	-	V
2	т	Machine Model (MM)	V _{MM}	200	-	V
3	т	Charge Device Model (CDM)	V _{CDM}	500	-	V
4	т	Latch-up Current at T _A = 125°C positive negative	I _{LAT}	+100 -100	-	mA
5	т	Latch-up Current at T _A = 27°C positive negative	I _{LAT}	+200 -200	-	mA

A.1.7 Operating Conditions

This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data.

A.1.10.1 Measurement Conditions

All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.

A.1.10.2 Additional Remarks

In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads.

Conai	lions	s are snown in Table A-4 unless otherwise noted					1
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Run supply currents Single Chip, Internal regulator enabled	I _{DD5}			50	mA
2	P P	Wait Supply current All modules enabled, PLL on only RTI enabled ¹	I _{DDW}			30 5	mA
3	CPCCPCPCP	Pseudo Stop Current (RTI and COP disabled) ^{1, 2} -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C	I _{DDPS}		370 400 450 550 600 650 800 850 1200	500 1600 2100 5000	μΑ
4	с с с с с с с с с с с с с с с с с с с	Pseudo Stop Current (RTI and COP enabled) ^{1, 2} -40°C 27°C 70°C 85°C 105°C 125°C 140°C	I _{DDPS}		570 600 650 750 850 1200 1500		μΑ
5	C P C C P C P C P C P	Stop Current ² -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C	I _{DDS}		12 25 100 130 160 200 350 400 600	100 1200 1700 5000	μΑ

Table A-7 Supply Current Characteristics

A.3 NVM, Flash and EEPROM

NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM.

A.3.1 NVM timing

The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency f_{NVMOSC} is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured.

The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as f_{NVMOP} .

The minimum program and erase times shown in **Table A-11** are calculated for maximum f_{NVMOP} and maximum f_{bus} . The maximum times are calculated for minimum f_{NVMOP} and a f_{bus} of 2MHz.

A.3.1.1 Single Word Programming

The programming time for single word programming is dependent on the bus frequency as a well as on the frequency f_{NVMOP} and can be calculated according to the following formula.

$$t_{swpgm} = 9 \cdot \frac{1}{f_{NVMOP}} + 25 \cdot \frac{1}{f_{bus}}$$

A.3.1.2 Row Programming

This applies only to the Flash where up to 32 words in a row can be programmed consecutively by keeping the command pipeline filled. The time to program a consecutive word can be calculated as:

$$t_{bwpgm} = 4 \cdot \frac{1}{f_{NVMOP}} + 9 \cdot \frac{1}{f_{bus}}$$

The time to program a whole row is:

Row programming is more than 2 times faster than single word programming.

A.3.1.3 Sector Erase

Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:

A.4 Voltage Regulator

The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external DC load is allowed.

 Table A-13
 Voltage Regulator Recommended Load Capacitances

Rating	Symbol	Min	Тур	Мах	Unit
Load Capacitance on VDD1, 2	C _{LVDD}		220		nF
Load Capacitance on VDDPLL	C _{LVDDfcPLL}		220		nF

MC9S12DJ64 Device User Guide — V01.20

This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent.

Condit	Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max	Unit	
1	Р	Self Clock Mode frequency	f _{SCM}	1		5.5	MHz	
2	D	VCO locking range	f _{VCO}	8		50	MHz	
3	D	Lock Detector transition from Acquisition to Tracking mode	$ \Delta_{trk} $	3		4	%1	
4	D	Lock Detection	$ \Delta_{Lock} $	0		1.5	% ¹	
5	D	Un-Lock Detection	Δ _{unl}	0.5		2.5	% ¹	
6	D	Lock Detector transition from Tracking to Acquisition mode	∆ _{unt}	6		8	%1	
7	С	PLLON Total Stabilization delay (Auto Mode) ²	t _{stab}		0.5		ms	
8	D	PLLON Acquisition mode stabilization delay ²	t _{acq}		0.3		ms	
9	D	PLLON Tracking mode stabilization delay ²	t _{al}		0.2		ms	
10	D	Fitting parameter VCO loop gain	K ₁		-100		MHz/V	
11	D	Fitting parameter VCO loop frequency	f ₁		60		MHz	
12	D	Charge pump current acquisition mode	i _{ch}		38.5		μΑ	
13	D	Charge pump current tracking mode	i _{ch}		3.5		μΑ	
14	С	Jitter fit parameter 1 ²	j ₁			1.1	%	
15	С	Jitter fit parameter 2 ²	j ₂			0.13	%	

Table A-16	PLL	Characteristics
------------	-----	-----------------

NOTES:

1. % deviation from target frequency

2. $f_{OSC} = 4MHz$, $f_{BUS} = 25MHz$ equivalent $f_{VCO} = 50MHz$: REFDV = #\$03, SYNR = #\$018, Cs = 4.7nF, Cp = 470pF, Rs = 10K\Omega.

Condit	tions	s are shown in Table A-4 unless otherwise noted, C_{Lc}	_{DAD} = 50pF				
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Frequency of operation (E-clock)	f _o	0		25.0	MHz
2	Р	Cycle time	t _{cyc}	40			ns
3	D	Pulse width, E low	PW _{EL}	19			ns
4	D	Pulse width, E high ¹	PW _{EH}	19			ns
5	D	Address delay time	t _{AD}			8	ns
6	D	Address valid time to E rise $(PW_{EL}-t_{AD})$	t _{AV}	11			ns
7	D	Muxed address hold time	t _{MAH}	2			ns
8	D	Address hold to data valid	t _{AHDS}	7			ns
9	D	Data hold to address	t _{DHA}	2			ns
10	D	Read data setup time	t _{DSR}	13			ns
11	D	Read data hold time	t _{DHR}	0			ns
12	D	Write data delay time	t _{DDW}			7	ns
13	D	Write data hold time	t _{DHW}	2			ns
14	D	Write data setup time ¹ (PW _{EH} -t _{DDW})	t _{DSW}	12			ns
15	D	Address access time ¹ (t _{cyc} –t _{AD} –t _{DSR})	t _{ACCA}	19			ns
16	D	E high access time ¹ (PW _{EH} -t _{DSR})	t _{ACCE}	6			ns
17	D	Non-multiplexed address delay time	t _{NAD}			6	ns
18	D	Non-muxed address valid to E rise (PW_{EL} - t_{NAD})	t _{NAV}	15			ns
19	D	Non-multiplexed address hold time	t _{NAH}	2			ns
20	D	Chip select delay time	t _{CSD}			16	ns
21	D	Chip select access time ¹ (t_{cyc} - t_{CSD} - t_{DSR})	t _{ACCS}	11			ns
22	D	Chip select hold time	t _{CSH}	2			ns
23	D	Chip select negated time	t _{CSN}	8			ns
24	D	Read/write delay time	t _{RWD}			7	ns
25	D	Read/write valid time to E rise (PW _{EL} -t _{RWD})	t _{RWV}	14			ns
26	D	Read/write hold time	t _{RWH}	2			ns
27	D	Low strobe delay time	t _{LSD}			7	ns
28	D	Low strobe valid time to E rise (PW _{EL} -t _{LSD})	t _{LSV}	14			ns
29	D	Low strobe hold time	t _{LSH}	2			ns
30	D	NOACC strobe delay time	t _{NOD}			7	ns
31	D	NOACC valid time to E rise (PW _{EL} -t _{NOD})	t _{NOV}	14			ns

Table A-20 Expanded Bus Timing Characteristics

User Guide End Sheet