

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12d64mpve

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Version Number	Revision Date	Effective Date	Author	Description of Changes
V01.06	20 Aug. 2002	20 Aug. 2002		NVM electricals updated Subsection "Detailed Register Map: Address corrections Preface, Table "Document references": added OSC User Guide New section "Oscillator (OSC) Block Description"
V01.07	20 Sept. 2002	20 Sept. 2002		Electrical Characteristics: -> Section "General": removed preliminary disclaimer ->Table "Supply Current Characteristics": changed max Run IDD from 65mA to 50mA changes max Wait IDD from 40mA to 30mA changed max Stop IDD from 50uA to 100uA Section HCS12 Core Block Description: mentioned alternate clock of BDM to be equivalent to oscillator clock
V01.08	25 Sept. 2002	25 Sept. 2002		Table "5V I/O Characteristics": Corrected Input Leakage Current to +/- 1 uA Section "Part ID assignment": Located on start of next page for better readability
V01.09	10 Oct. 2002	10 Oct. 2002		Added MC9S12A64 derivative to cover sheet and "Derivative Differences" Table Corrected in footnote of Table "PLL Characteristics": f _{OSC} = 4MHz
V01.10	8 Nov. 2002	8 Nov. 2002		Renamed "Preface" section to "Derivative Differences and Document references". Added details for derivatives missing CAN0 and/or BDLC Table "ESD and Latch-up Test Conditions": changed pulse numbers from 3 to 1 Table "ESD and Latch-Up Protection Characteristics": changed parameter classification from C to T Table "5V I/O Characteristics": removed foot note from "Input Leakage Current" Table " Supply Current Characteristics": updated Stop and Pseudo Stop currents
V01.11	24 Jan. 2003	24 Jan. 2003		Subsection "Detailed Register Map": Corrected several entries Subsection "Unsecuring the Microcontroller": Added more details Table "Operating Conditions": improved footnote 1 wording, applied footnote 1 to PLL Supply Voltage.
V01.12	31 Mar. 2003	31 Mar. 2003		Tables "SPI Master/Slave Mode Timing Characteristics: Corrected Operating Frequency Appendix 'NVM, Flash and EEPROM': Replaced 'burst programming' by 'row programming Table "Operating Conditions": corrected minimum bus frequency to 0.25MHz Section "Feature List": ECT features changed to "Four pulse accumulators"
V01.13	20 May 2003	20 May 2003		Replaced references to HCS12 Core Guide by the individual HCS12 Block guides Table "Signal Properties" corrected pull resistor reset state for PE7 and PE4-PE2. Table "Absolute Maximum Ratings" corrected footnote on clamp of TEST pin.
V01.14	10 June 2003	10 June 2003		Added cycle definition to "CPU 12 Block Description". Added register reset values to MMC and MEBI block descriptions. Diagram "Clock Connections": Connect Bus Clock to HCS12 Core

List of Tables

Table 0-1 De	erivative Differences	15
Table 0-2 Do	ocument References	17
Table 1-1 De	evice Memory Map for MC9S12DJ64	25
Table 1-2 De	evice Memory Map for MC9S12D32	28
\$0000 - \$0	00F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)	30
\$0010 - \$0	014 MMC map 1 of 4 (HCS12 Module Mapping Control)	30
\$0015 - \$0	016 INT map 1 of 2 (HCS12 Interrupt)	31
\$0017 - \$0	019 Reserved	31
\$001A - \$0	001B Device ID Register (Table 1-4)	31
\$001C - \$0	001D MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-5)	31
\$001E - \$0	001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)	31
\$001F - \$0	001F INT map 2 of 2 (HCS12 Interrupt)	32
\$0020 - \$0	027 Reserved	32
\$0028 - \$0	02F BKP (HCS12 Breakpoint)	32
\$0030 - \$0	031 MMC map 4 of 4 (HCS12 Module Mapping Control)	32
\$0032 - \$0	033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)	32
\$0034 - \$0	03F CRG (Clock and Reset Generator)	33
\$0040 - \$0	07F ECT (Enhanced Capture Timer 16 Bit 8 Channels)	33
\$0080 - \$0	09F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)	36
\$00A0 - \$0	00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel)	37
\$00C8 - \$0	00CF SCI0 (Asynchronous Serial Interface)	39
\$00D0 - \$0	00D7 SCI1 (Asynchronous Serial Interface)	39
\$00D8 - \$0	00DF SPI0 (Serial Peripheral Interface)	40
\$00E0 - \$0	00E7 IIC (Inter IC Bus)	40
\$00E8 - \$0	00EF BDLC (Bytelevel Data Link Controller J1850)	41
\$00F0 - \$0	00FF Reserved	41
\$0100 - \$0	10F Flash Control Register (fts64k)	41
\$0110 - \$0	11B EEPROM Control Register (eets1k)	42
\$011C - \$0	011F Reserved for RAM Control Register	42
\$0120 - \$0	13F ATD1 (Analog to Digital Converter 10 Bit 8 Channel)	43
\$0140 - \$0	17F CAN0 (Freescale Scalable CAN - FSCAN)	44
Table 1-3 De	etailed FSCAN Foreground Receive and Transmit Buffer Layout	45
\$0180 - \$0	23F Reserved	46

MC9S12DJ64 Device User Guide — V01.20

- 4K byte RAM
- Two 8-channel Analog-to-Digital Converters
 - 10-bit resolution
 - External conversion trigger capability
- 1M bit per second, CAN 2.0 A, B software compatible module
 - Five receive and three transmit buffers
 - Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
 - Four separate interrupt channels for Rx, Tx, error and wake-up
 - Low-pass filter wake-up function
 - Loop-back for self test operation
- Enhanced Capture Timer
 - 16-bit main counter with 7-bit prescaler
 - 8 programmable input capture or output compare channels
 - Four 8-bit or two 16-bit pulse accumulators
- 8 PWM channels
 - Programmable period and duty cycle
 - 8-bit 8-channel or 16-bit 4-channel
 - Separate control for each pulse width and duty cycle
 - Center-aligned or left-aligned outputs
 - Programmable clock select logic with a wide range of frequencies
 - Fast emergency shutdown input
 - Usable as interrupt inputs
- Serial interfaces
 - Two asynchronous Serial Communications Interfaces (SCI)
 - Synchronous Serial Peripheral Interface (SPI)
- Byte Data Link Controller (BDLC)
 - SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in Automotive Applications
- Inter-IC Bus (IIC)
 - Compatible with I2C Bus standard
 - Multi-master operation
 - Software programmable for one of 256 different serial clock frequencies
- 112-Pin LQFP or 80 QFP package

Address	Module	Size (Bytes)
\$0000 - \$000F	HCS12 Multiplexed External Bus Interface	16
\$0010 - \$0014	HCS12 Module Mapping Control	5
\$0015 - \$0016	HCS12 Interrupt	2
\$0017 - \$0019	Reserved	3
\$001A - \$001B	Device ID register (PARTID)	2
\$001C - \$001D	HCS12 Module Mapping Control	2
\$001E	HCS12 Multiplexed External Bus Interface	1
\$001F	HCS12 Interrupt	1
\$0020 - \$0027	Reserved	8
\$0028 - \$002F	HCS12 Breakpoint Module	8
\$0030 - \$0031	HCS12 Module Mapping Control	2
\$0032 - \$0033	HCS12 Multiplexed External Bus Interface	2
\$0034 - \$003F	Clock and Reset Generator (PLL, RTI, COP)	12
\$0040 - \$007F	Enhanced Capture Timer 16-bit 8 channels	64
\$0080 - \$009F	Analog to Digital Converter 10-bit 8 channels (ATD0)	32
\$00A0 - \$00C7	Pulse Width Modulator 8-bit 8 channels (PWM)	40
\$00C8 - \$00CF	Serial Communications Interface 0 (SCI0)	8
\$00D0 - \$00D7	Serial Communications Interface 0 (SCI1)	8
\$00D8 - \$00DF	Serial Peripheral Interface (SPI0)	8
\$00E0 - \$00E7	Inter IC Bus	8
\$00E8 - \$00EF	Byte Data Link Controller (BDLC)	8
\$00F0 - \$00FF	Reserved	16
\$0100- \$010F	Flash Control Register	16
\$0110 - \$011B	EEPROM Control Register	12
\$011C - \$011F	Reserved	4
\$0120 - \$013F	Analog to Digital Converter 10-bit 8 channels (ATD1)	32
\$0140 - \$017F	Freescale Scalable Can (CAN0)	
\$0180 - \$023F	Reserved	192
\$0240 - \$027F	Port Integration Module (PIM)	64
\$0280 - \$03FF	Reserved	384
\$0000 - \$07FF	EEPROM array 1k Array mapped twice in the address space	2048
\$0000 - \$0FFF	RAM array, lower half (\$0000-\$07FF not usable)	4096
\$4000 - \$7FFF	16k Fixed Flash EEPROM array (same as array from \$8000 - \$BFFF when ROMHM=0)	16384
\$8000 - \$FFFF	32K Fixed Flash EEPROM array	32768

 Table 1-2
 Device Memory Map for MC9S12D32

64

1.5.1 Detailed Register Map

\$0000 - \$000F

MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0000	PORTA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0001	PORTB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0002	DDRA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0003	DDRB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
¢0004	Beconved	Read:	0	0	0	0	0	0	0	0
J 0004	Reserveu	Write:								
\$0005	Reserved	Read:	0	0	0	0	0	0	0	0
φ000J	Reserved	Write:								
\$0006	Reserved	Read:	0	0	0	0	0	0	0	0
φυυυυ	Reserved	Write:								
\$0007	Reserved	Read:	0	0	0	0	0	0	0	0
QOOOI	rtocorrou	Write:								
\$0008	PORTE	Read: Write:	Bit 7	6	5	4	3	2	Bit 1	Bit 0
\$0009	DDRE	Read: Write:	Bit 7	6	5	4	3	Bit 2	0	0
\$000A	PEAR	Read:	NOACCE	0	PIPOE	NECLK	LSTRE	RDWE	0	0
		Vvrite:				0		0		
\$000B	MODE	Write:	MODC	MODB	MODA	0	IVIS	0	EMK	EME
\$000C	PUCR	Read: Write:	PUPKE	0	0	PUPEE	0	0	PUPBE	PUPAE
\$000D	RDRIV	Read: Write:	RDPK	0	0	RDPE	0	0	RDPB	RDPA
***		Read:	0	0	0	0	0	0	0	
\$000E	EBICIL	Write:								ESIR
#000		Read:	0	0	0	0	0	0	0	0
\$000F	Reserved	Write:								

\$0010 - \$0014

MMC map 1 of 4 (HCS12 Module Mapping Control)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0010		Read:				DAM12		0	0	
90010		Write:	KAIWI 15	NAM14	NAIVI 13	NAIVITZ	NAMITT			
¢0011		Read:	0		DEC12	DEC12	DEC11	0	0	0
φυστι	INITKG	Write:		KEG14	REGIS	REGIZ	REGIT			

\$0080 - \$009F

ATD0 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0002		Read:	Bit15	14	13	12	11	10	9	Bit8
4009Z	AIDODITII	Write:								
\$0003		Read:	Bit7	Bit6	0	0	0	0	0	0
φ0000	AIDODITIE	Write:								
\$0094	ATD0DR2H	Read:	Bit15	14	13	12	11	10	9	Bit8
φ000 i	A BOBILEN	Write:								
\$0095		Read:	Bit7	Bit6	0	0	0	0	0	0
φυυυυ	A DODI ZE	Write:								
\$0096	ATD0DR3H	Read:	Bit15	14	13	12	11	10	9	Bit8
φυυυυ	/ I DODITON	Write:								
\$0097		Read:	Bit7	Bit6	0	0	0	0	0	0
4000	ALDODITOL	Write:								
\$0098	ATD0DR4H	Read:	Bit15	14	13	12	11	10	9	Bit8
φυυυυ	UU90 AIDUDR4H	Write:								
\$0099	ATD0DR4I	Read:	Bit7	Bit6	0	0	0	0	0	0
\$0000	, a bobi ci b	Write:								
\$009A	ATD0DR5H	Read:	Bit15	14	13	12	11	10	9	Bit8
<i>Q</i> OOOOOOOOOOOOO		Write:								
\$009B	ATD0DR5I	Read:	Bit7	Bit6	0	0	0	0	0	0
\$000	/	Write:								
\$009C	ATD0DR6H	Read:	Bit15	14	13	12	11	10	9	Bit8
40000		Write:								
\$009D		Read:	Bit7	Bit6	0	0	0	0	0	0
4000D	7112021102	Write:								
\$009E	ATD0DR7H	Read:	Bit15	14	13	12	11	10	9	Bit8
**** L		Write:								
\$009F	ATD0DR7I	Read:	Bit7	Bit6	0	0	0	0	0	0
÷		Write:								

\$00A0 - \$00C7

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Addross	Name		Bit 7	Bit 6	Bit 5	Bit /	Bit 3	Bit 2	Bit 1	Bit 0
Audress	Name	D		Dit U	DIU	Dit 4	DIUS	Dit 2	DICI	Dit U
\$00A0	PWME	Read:	PWME7	PWME6	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0
		write:								
\$0041		Read:								
φουλι		Write:	1102/					11022	11011	
¢0042		Read:								
φυυκz	FWWCLK	Write:	FULNI	FOLNO	FOLNO	FULN4	FULNS	FULNZ	FOLNI	FULKU
¢0040		Read:	0			DOKDO	0			DCKAO
\$00A3	PVVIVIPROLK	Write:		PUNDZ	PUNDI	PCKDU		PCKAZ	PCKAI	PCKAU
COOAAA		Read:			0455	0454	0450		0454	0450
\$00A4	PWWCAE	Write:	CAE7	CAEb	CAES	CAE4	CAE3	CAEZ	CAET	CAEU
00045	DIAMAGTI	Read:	00107	00145	001/00	00104		0507	0	0
\$00A5	PWMCTL	Write:	CON67	CON45	CON23	CON01	PSWAI	PFRZ		
* ~~ ^	PWMTST	Read:	0	0	0	0	0	0	0	0
\$00A6	Test Only	Write:								
* ~~ * -	PWMPRSC	Read:	0	0	0	0	0	0	0	0
\$UUA7	Test Only	Write:								
		Read:			_		-			
\$00A8	PWMSCLA	Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$00A0 - \$00C7 PW

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address	Name	1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0000		Read:	D:4 7	0	5.00		0	0	4	Dit O
\$0002	PVVIVIDIY6	Write:	Bit /	6	5	4	3	2	1	BITU
\$00C3	PWMDTY7	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
¢0004		Read:					0	PWM7IN		
\$00C4	FVIVISDIN	Write:			PWWKSIKI					
¢00CE	Becorved	Read:	0	0	0	0	0	0	0	0
\$00C5	Reserved	Write:								
¢0006	Becorved	Read:	0	0	0	0	0	0	0	0
\$00C0	Reserved	Write:								
\$00C7	Pacarvad	Read:	0	0	0	0	0	0	0	0
φ00C1	Reserved	Write:								

\$00C8 - \$00CF

SCI0 (Asynchronous Serial Interface)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0008	SCIOBDH	Read:	0	0	0	SBR12	SBR11	SBR10	SBRG	SBB8
ψ0000	SCIUDDII	Write:				ODITIZ	ODITI	ODIVIO	ODING	ODI(0
\$00C9	SCI0BDI	Read:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
<i>Q</i>0000	0010222	Write:	0010	02.10	00110		00110	00112	0.0.1	00110
\$00CA	SCI0CR1	Read:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
		Write:								
\$00CB	SCI0CR2	Read:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
<i>Q</i>	001001.2	Write:	=		=					
\$0000	SCI0SP1	Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
φ00CC	501051(1	Write:								
¢000D	SCI0882	Read:	0	0	0	0	0		סומעד	RAF
\$00CD	30103R2	Write:						DKKIS	IADIK	
¢00CE	SCIADBU	Read:	R8	то	0	0	0	0	0	0
\$00CE	SCIUDRE	Write:		10						
¢00CE	SCIODRI	Read:	R7	R6	R5	R4	R3	R2	R1	R0
Φ υυς Γ	SCIUDRL	Write:	T7	T6	T5	T4	T3	T2	T1	Т0

\$00D0 - \$00D7

SCI1 (Asynchronous Serial Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00D0	SCI1BDH	Read: Write:	0	0	0	SBR12	SBR11	SBR10	SBR9	SBR8
\$00D1	SCI1BDL	Read: Write:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
\$00D2	SCI1CR1	Read: Write:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
\$00D3	SCI1CR2	Read: Write:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
\$0004	SCI15P1	Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
ψ00D4	SCHORT	Write:								

\$0120 - \$013F

ATD1 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0120		Read:	0	0	0	0	0	0	0	0
ψ0120	AIDIOILO	Write:								
\$0121	ATD1CTI 1	Read:	0	0	0	0	0	0	0	0
φ01 <u>2</u> 1	7.1010121	Write:								
\$0122	ATD1CTL2	Read: Write:	ADPU	AFFC	AWAI	ETRIGLE	ETRIGP	ETRIG	ASCIE	ASCIF
\$0123	ATD1CTL3	Read: Write:	0	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
\$0124	ATD1CTL4	Read: Write:	SRES8	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
\$0125	ATD1CTL5	Read: Write:	DJM	DSGN	SCAN	MULT	0	СС	СВ	CA
\$0126	ATD1STAT0	Read: Write:	SCF	0	ETORF	FIFOR	0	CC2	CC1	CC0
		Read [.]	0	0	0	0	0	0	0	0
\$0127	Reserved	Write:		•						<u> </u>
\$0128	ATD1TEST0	Read: Write:	0	0	0	0	0	0	0	0
\$0129	ATD1TEST1	Read:	0	0	0	0	0	0	0	SC
		Read	0	0	0	0	0	0	0	0
\$012A	Reserved	Write:	0	0	0	0	0	0	0	0
\$012B	ATD1STAT1	Read: Write:	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
¢0400	Decembed	Read:	0	0	0	0	0	0	0	0
\$012C	Reserved	Write:								
\$012D	ATD1DIEN	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$012E	Reserved	Read:	0	0	0	0	0	0	0	0
ΨUIZL	iteseiveu	Write:								
\$012F	PORTAD1	Read:	Bit7	6	5	4	3	2	1	BIT 0
•••		Write:	D 1:45			1.0			-	54.6
\$0130	ATD1DR0H	Read:	Bit15	14	13	12	11	10	9	Bit8
		Pood:	Dit7	Bit6	0	0	0	0	0	0
\$0131	ATD1DR0L	Writo	Biti	Bito	0	0	0	0	0	0
		Read:	Bit15	14	13	12	11	10	9	Bit8
\$0132	ATD1DR1H	Write:	Ditto	17	10	12	11	10		Dito
© 0400		Read:	Bit7	Bit6	0	0	0	0	0	0
\$0133	AIDIDRIL	Write:								
¢0134		Read:	Bit15	14	13	12	11	10	9	Bit8
φ0134	AIDIDIZII	Write:								
\$0135	ATD1DR2L	Read:	Bit7	Bit6	0	0	0	0	0	0
40.00		Write:							_	
\$0136	ATD1DR3H	Read:	Bit15	14	13	12	11	10	9	Bit8
		vvrite:	Dit7	Dite	0	0	0	0	0	0
\$0137	ATD1DR3L	Kead: Write	DIL/	סונט	U	0	U	0	U	0
		Read	Bit15	14	13	12	11	10	9	Bit8
\$0138	ATD1DR4H	Write:	2							2.10

Pin Name Function1	Pin Name Function2	Pin Name Function3	Pin Name Function4	Powered by	Internal Pull Resistor		Description
					CTRL	Reset State	- Description
EXTAL XTAI		—		VDDPLL VDDR N.A. VDDX VDDPLL	None	None	Oscillator Pins
RESET							External Reset
TEST		_					Test Input
VREGEN			_				Voltage Regulator Enable Input
XFC							PLL Loop Filter
BKGD	TAGHI	MODC		VDDR	Always Up	Up	Background Debug, Tag High, Mode Input
PAD15	AN15	ETRIG1	_	VDDA	None	None	Port AD Input, Analog Input AN7 of ATD1, External Trigger Input of ATD1
PAD[14:08]	AN[14:08]	_	_				Port AD Inputs, Analog Inputs AN[6:0] of ATD1
PAD07	AN07	ETRIG0	_				Port AD Input, Analog Input AN7 of ATD0, External Trigger Input of ATD0
PAD[06:00]	AN[06:00]	_					Port AD Inputs, Analog Inputs AN[6:0] of ATD0
PA[7:0]	ADDR[15:8]/ DATA[15:8]	_		VDDR	PUCR/ PUPAE	Disabled	Port A I/O, Multiplexed Address/Data
PB[7:0]	ADDR[7:0]/ DATA[7:0]	_			PUCR/ PUPBE		Port B I/O, Multiplexed Address/Data
PE7	NOACC	XCLKS	_		PUCR/ PUPEE	Mode depen- dant ¹	Port E I/O, Access, Clock Select
PE6	IPIPE1	MODB	_		While RESET p	SET pin is	Port E I/O, Pipe Status, Mode Input
PE5	IPIPE0	MODA			low: Down		Port E I/O, Pipe Status, Mode Input
PE4	ECLK	—	—		PUCR/ PUPEE	Mode depen- dant ¹	Port E I/O, Bus Clock Output
PE3	LSTRB	TAGLO	—				Port E I/O, Byte Strobe, Tag Low
PE2	R/W	—	—				Port E I/O, R/\overline{W} in expanded modes
PE1	IRQ	—	—			Up	Port E Input, Maskable Interrupt
PE0	XIRQ	—	—				Port E Input, Non Maskable Interrupt
PH7	KWH7	—	—		PERH/ PPSH	Disabled	Port H I/O, Interrupt
PH6	KWH6	—	—				Port H I/O, Interrupt
PH5	KWH5	—	—				Port H I/O, Interrupt
PH4	KWH4	—	—				Port H I/O, Interrupt
PH3	KWH3						Port H I/O, Interrupt
PH2	KWH2						Port H I/O, Interrupt
PH1	KWH1		_				Port H I/O, Interrupt
PH0	KWH0						Port H I/O. Interrupt

Table 2-1 Signal Properties

2.3.46 PP3 / KWP3 / PWM3 — Port P I/O Pin 3

PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output.

2.3.47 PP2 / KWP2 / PWM2 — Port P I/O Pin 2

PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output.

2.3.48 PP1 / KWP1 / PWM1 - Port P I/O Pin 1

PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output.

2.3.49 PP0 / KWP0 / PWM0 — Port P I/O Pin 0

PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output.

2.3.50 PS7 / SS0 — Port S I/O Pin 7

PS6 is a general purpose input or output pin. It can be configured as the slave select pin \overline{SS} of the Serial Peripheral Interface 0 (SPI0).

2.3.51 PS6 / SCK0 — Port S I/O Pin 6

PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).

2.3.52 PS5 / MOSI0 — Port S I/O Pin 5

PS5 is a general purpose input or output pin. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).

2.3.53 PS4 / MISO0 — Port S I/O Pin 4

PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).

2.3.54 PS3 / TXD1 — Port S I/O Pin 3

PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 1 (SCI1).

Mnemonic	Pin Number	Nominal	Description			
	112-pin QFP	Voltage				
VDDPLL	43	2.5V	Provides operating voltage and ground for the Phased-Locked			
VSSPLL	45	0V	Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.			
VREGEN	97	5.0V	Internal Voltage Regulator enable/disable			

2.4.1 VDDX, VSSX — Power & Ground Pins for I/O Drivers

External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

VDDX and VSSX are the supplies for Ports J, K, M, P, T and S.

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator

External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

VDDR and VSSR are the supplies for Ports A, B, E and H.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins

Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground.

NOTE: No load allowed except for bypass capacitors.

2.4.4 VDDA, VSSA — Power Supply Pins for ATD0/ATD1 and VREG

VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the two analog to digital converters. It also provides the reference for the internal voltage regulator. This allows the supply voltage to ATD0/ATD1 and the reference voltage to be bypassed independently.

2.4.5 VRH, VRL — ATD Reference Voltage Input Pins

VRH and VRL are the reference voltage input pins for the analog to digital converter.

2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL

Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by the internal voltage regulator.

NOTE: No load allowed except for bypass capacitors.

2.4.7 VREGEN — On Chip Voltage Regulator Enable

Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be supplied externally.

MC9S12DJ64 Device User Guide — V01.20

Consult the FTS64K Block User Guide for information about the flash module.

The "S12 LRAE" is a generic Load RAM and Execute (LRAE) program which will be programmed into the flash memory of this device during manufacture. This LRAE program will provide greater programming flexibility to the end users by allowing the device to be programmed directly using CAN or SCI after it is assembled on the PCB. Use of the LRAE program is at the discretion of the end user and, if not required, it must simply be erased prior to flash programming. For more details of the S12 LRAE and its implementation, please see the S12 LREA Application Note (AN2546/D).

It is planned that most HC9S12 devices manufactured after Q1 of 2004 will be shipped with the S12 LRAE programmed in the Flash . Exact details of the changeover (ie blank to programmed) for each product will be communicated in advance via GPCN and will be traceable by the customer via datecode marking on the device.

Please contact Freescale SPS Sales if you have any additional questions.

Section 17 EEPROM 1K Block Description

Consult the EETS1K Block User Guide for information about the EEPROM module.

Section 18 RAM Block Description

This module supports single-cycle misaligned word accesses.

Section 19 MSCAN Block Description

Consult the MSCAN Block User Guide for information about the Freescale Scalable CAN Module.

Section 20 Port Integration Module (PIM) Block Description

Consult the PIM_9DJ64 Block User Guide for information about the Port Integration Module.

Section 21 Voltage Regulator (VREG) Block Description

Consult the VREG Block User Guide for information about the dual output linear voltage regulator.

Section 22 Printed Circuit Board Layout Proposals

Figure 22-4 Recommended PCB Layout for 80QFP Pierce Oscillator

MC9S12DJ64 Device User Guide — V01.20

VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection.

NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.

A.1.3 Pins

There are four groups of functional pins.

A.1.3.1 5V I/O pins

Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD and the RESET pins. The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently.

A.1.3.2 Analog Reference

This group is made up by the VRH and VRL pins.

A.1.3.3 Oscillator

The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL.

A.1.3.4 TEST

This pin is used for production testing only.

A.1.3.5 VREGEN

This pin is used to enable the on chip voltage regulator.

A.1.4 Current Injection

Power supply must maintain regulation within operating V_{DD5} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD5}$) is greater than I_{DD5} , the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.

Figure A-9 General External Bus Timing

B.2 112-pin LQFP package

FINAL PAGE OF 128 PAGES