

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12d64vpve

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

\$0240 -	\$027F PIM (Port Integration Module)	46								
\$0280 -	\$03FF Reserved	48								
Table 1-4	Assigned Part ID Numbers									
Table 1-5	Memory size registers									
Table 2-1	Signal Properties	54								
Table 2-2	MC9S12DJ64 Power and Ground Connection Summary	64								
Table 4-1	1ode Selection									
Table 4-2	lock Selection Based on PE769									
Table 4-3	Voltage Regulator VREGEN	70								
Table 5-1	Interrupt Vector Locations	73								
Table 22-1	Suggested External Component Values	81								
Table A-1	Absolute Maximum Ratings	89								
Table A-2	ESD and Latch-up Test Conditions	90								
Table A-3	ESD and Latch-Up Protection Characteristics	90								
Table A-4	Operating Conditions	91								
Table A-5	Thermal Package Characteristics	93								
Table A-6	5V I/O Characteristics	94								
Table A-7	Supply Current Characteristics	95								
Table A-8	ATD Operating Characteristics	97								
Table A-9	ATD Electrical Characteristics	98								
Table A-10	ATD Conversion Performance	99								
Table A-11	NVM Timing Characteristics	102								
Table A-12	NVM Reliability Characteristics	103								
Table A-13	Voltage Regulator Recommended Load Capacitances	105								
Table A-14	Startup Characteristics	107								
Table A-15	Oscillator Characteristics	108								
Table A-16	PLL Characteristics	112								
Table A-17	MSCAN Wake-up Pulse Characteristics	113								
Table A-18	SPI Master Mode Timing Characteristics	116								
Table A-19	SPI Slave Mode Timing Characteristics	118								
Table A-20	Expanded Bus Timing Characteristics	121								

• Ports

- The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5, PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0 (see Table 0-1).
- The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a derivative without BDLC (see **Table 0-1**).
- Do not write MODRR1 and MODRR0 Bit of Module Routing Register (PIM_9DJ64 Block User Guide), if using a derivative without CAN0 (see **Table 0-1**).

• Pins not available in 80 pin QFP package

- Port H

In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+\$0262) to \$FF, or enabling the pull resistors by writing a \$FF to the pull enable register (PERH at Base+\$0264).

– Port J[1:0]

Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at Base+\$026C.

– Port K

Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+\$000C. Therefor care must be taken not to clear this bit.

- Port M[7:6]

PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs.

– Port P6

PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.

– Port S[7:4]

PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs.

- PAD[15:8] (ATD1 channels)

Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers!

Document References

The Device User Guide provides information about the MC9S12DJ64 device made up of standard HCS12 blocks and the HCS12 processor core.

This document is part of the customer documentation. A complete set of device manuals also includes all the individual Block Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block Guide. If applicable, special implementation details of the module are given in the block description sections of this document.

See **Table 0-2** for names and versions of the referenced documents throughout the Device User Guide.

User Guide	Versi on	Document Order Number
HCS12 CPU Reference Manual	V02	S12CPUV2/D
HCS12 Module Mapping Control (MMC) Block Guide	V04	S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide	V03	S12MEBIV3/D
HCS12 Interrupt (INT) Block Guide	V01	S12INTV1/D
HCS12 Background Debug (BDM) Block Guide	V04	S12BDMV4/D
HCS12 Breakpoint (BKP) Block Guide	V01	S12BKPV1/D
Clock and Reset Generator (CRG) Block User Guide	V04	S12CRGV4/D
Oscillator (OSC) Block User Guide	V02	S12OSCV2/D
Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide	V01	S12ECT16B8CV1/D
Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide	V02	S12ATD10B8CV2/D
Inter IC Bus (IIC) Block User Guide	V02	S12IICV2/D
Asynchronous Serial Interface (SCI) Block User Guide	V02	S12SCIV2/D
Serial Peripheral Interface (SPI) Block User Guide	V02	S12SPIV2/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide	V01	S12PWM8B8CV1/D
64K Byte Flash (FTS64K) Block User Guide	V01	S12FTS64KV1/D
1K Byte EEPROM (EETS1K) Block User Guide	V01	S12EETS1KV1/D
Byte Level Data Link Controller -J1850 (BDLC) Block User Guide	V01	S12BDLCV1/D
Freescale Scalable CAN (MSCAN) Block User Guide	• V02	S12MSCANV2/D
Voltage Regulator (VREG) Block User Guide	V01	S12VREGV1/D
Port Integration Module (PIM_9DJ64) Block User Guide	V01	S12PIM9DJ64V1/D

Table 0-2 Document References

\$0080 - \$009F

ATD0 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0002		Read:	Bit15	14	13	12	11	10	9	Bit8
4009Z	AIDODITII	Write:								
\$0003		Read:	Bit7	Bit6	0	0	0	0	0	0
φ0000	AIDODITIE	Write:								
\$0094	ATD0DR2H	Read:	Bit15	14	13	12	11	10	9	Bit8
φ000 i	A BOBILEN	Write:								
\$0095		Read:	Bit7	Bit6	0	0	0	0	0	0
φυυυυ	A DODI ZE	Write:								
\$0096	ATD0DR3H	Read:	Bit15	14	13	12	11	10	9	Bit8
φυυυυ	/ I DODITON	Write:								
\$0097		Read:	Bit7	Bit6	0	0	0	0	0	0
4000	ALDODITOL	Write:								
\$0098	ATD0DR4H	Read:	Bit15	14	13	12	11	10	9	Bit8
φυυυυ		Write:								
\$0099	ATD0DR4I	Read:	Bit7	Bit6	0	0	0	0	0	0
\$0000	, a bobi ci b	Write:								
\$009A	ATD0DR5H	Read:	Bit15	14	13	12	11	10	9	Bit8
<i>Q</i> OOOOOOOOOOOOO		Write:								
\$009B	ATD0DR5I	Read:	Bit7	Bit6	0	0	0	0	0	0
\$000	/	Write:								
\$009C	ATD0DR6H	Read:	Bit15	14	13	12	11	10	9	Bit8
40000		Write:								
\$009D		Read:	Bit7	Bit6	0	0	0	0	0	0
4000D	NUCCO ALDUDROL	Write:								
\$009E	ATD0DR7H	Read:	Bit15	14	13	12	11	10	9	Bit8
**** L		Write:								
\$009F	ATD0DR7I	Read:	Bit7	Bit6	0	0	0	0	0	0
÷		Write:								

\$00A0 - \$00C7

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Addross	Name		Bit 7	Bit 6	Bit 5	Bit /	Bit 3	Bit 2	Bit 1	Bit 0
Audress	Name	D		Dit U	DIU	Dit 4	DIUS	Dit 2	DICI	Dit U
\$00A0	PWME	Read:	PWME7	PWME6	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0
		write:								
\$0041		Read:								
φουλι		Write:	1102/					11022	11011	
¢0042		Read:								
φυυκz	FWWCLK	Write:	FULNI	FOLNO	FOLNO	FULN4	FULNS	FULNZ	FOLNI	FULKU
¢0040		Read:	0			DOKDO	0			DCKAO
\$00A3	AS PWWPRCLK	Write:		FUNDZ	FUNDI	FORDU		PCKAZ	PCKAI	
COOAAA		Read:			0455	0454	0450		0454	0450
\$00A4	PWWCAE	Write:	CAE7	CAEb	CAES	CAE4	CAE3	CAEZ	CAET	CAEU
00045	DIAMAGTI	Read:	d:		0.01100	00104	DOMAN		0	0
\$00A5	PWMCTL	Write:	CON67	CON45	CON23	CON01	PSWAI	PFRZ		
* ~~ ^	PWMTST	Read:	0	0	0	0	0	0	0	0
\$00A6	Test Only	Write:								
* ~~ * -	PWMPRSC	Read:	0	0	0	0	0	0	0	0
\$UUA7	Test Only	Write:								
		Read:			_		-			
\$00A8	PWMSCLA	Write:	Bit 7	6	5	4	3	2	1	Bit 0

Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ድ በ172	Extended ID CAN0TIDR2	Read: Write:	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7
φ0172	Standard ID	Read: Write:								
\$0173	Extended ID CAN0TIDR3	Read: Write:	ID6	ID5	ID4	ID3	ID2	ID1	ID0	RTR
φυττσ	Standard ID	Read: Write:								
\$0174- \$017B	CAN0TDSR0 - CAN0TDSR7	Read: Write:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
\$017C	CAN0TDLR	Read: Write:					DLC3	DLC2	DLC1	DLC0
\$017D	CAN0TTBPR	Read: Write:	PRIO7	PRIO6	PRIO5	PRIO4	PRIO3	PRIO2	PRIO1	PRIO0
\$017E	CANOTTORH	Read:	TSR15	TSR14	TSR13	TSR12	TSR11	TSR10	TSR9	TSR8
ψυτις		Write:								
\$017F	CANOTTSRI	Read:	TSR7	TSR6	TSR5	TSR4	TSR3	TSR2	TSR1	TSR0
ψυτη	GANGTIONE	Write:								

\$0180 - \$023F

Reserved

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0180 -	Peconyod	Read:	0	0	0	0	0	0	0	0
\$023F	Reserveu	Write:								

\$0240 - \$027F

PIM (Port Integration Module)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0240	PTT	Read: Write:	PTT7	PTT6	PTT5	PTT4	PTT3	PTT2	PTT1	PTT0
\$02/1	DTIT	Read:	PTIT7	PTIT6	PTIT5	PTIT4	PTIT3	PTIT2	PTIT1	PTIT0
φυ241	FIII	Write:								
\$0242	DDRT	Read: Write:	DDRT7	DDRT7	DDRT5	DDRT4	DDRT3	DDRT2	DDRT1	DDRT0
\$0243	RDRT	Read: Write:	RDRT7	RDRT6	RDRT5	RDRT4	RDRT3	RDRT2	RDRT1	RDRT0
\$0244	PERT	Read: Write:	PERT7	PERT6	PERT5	PERT4	PERT3	PERT2	PERT1	PERT0
\$0245	PPST	Read: Write:	PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0
¢0246	Percented	Read:	0	0	0	0	0	0	0	0
φ02 4 0	Reserveu	Write:								
\$02 <i>1</i> 7	Reserved	Read:	0	0	0	0	0	0	0	0
φυΖ47	Reserveu	Write:								
\$0248	PTS	Read:	PTS7	PTS6	PTS5	PTS/	PTS3	PTS2	PTS1	PTSO
QU240 FIS	Write:	1157	1150	1155	1154	1100	1152	1151	1150	
\$0249	PTIS	Read:	PTIS7	PTIS6	PTIS5	PTIS4	PTIS3	PTIS2	PTIS1	PTIS0
\$0249 PTIS	1 110	Write:								

\$0240 - \$027F

PIM (Port Integration Module)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0263	RDRH	Read: Write:	RDRH7	RDRH6	RDRH5	RDRH4	RDRH3	RDRH2	RDRH1	RDRH0
\$0264	PERH	Read: Write:	PERH7	PERH6	PERH5	PERH4	PERH3	PERH2	PERH1	PERH0
\$0265	PPSH	Read: Write:	PPSH7	PPSH6	PPSH5	PPSH4	PPSH3	PPSH2	PPSH1	PPSH0
\$0266	PIEH	Read: Write:	PIEH7	PIEH6	PIEH5	PIEH4	PIEH3	PIEH2	PIEH1	PIEH0
\$0267	PIFH	Read: Write:	PIFH7	PIFH6	PIFH5	PIFH4	PIFH3	PIFH2	PIFH1	PIFH0
\$0268	PTJ	Read: Write:	PTJ7	PTJ6	0	0	0	0	PTJ1	PTJ0
\$026Q	DTU	Read:	PTIJ7	PTIJ6	0	0	0	0	PTIJ1	PTIJ0
ψ0203	1 113	Write:								
\$026A	DDRJ	Read: Write:	DDRJ7	DDRJ7	0	0	0	0	DDRJ1	DDRJ0
\$026B	RDRJ	Read: Write:	RDRJ7	RDRJ6	0	0	0	0	RDRJ1	RDRJ0
\$026C	PERJ	Read: Write:	PERJ7	PERJ6	0	0	0	0	PERJ1	PERJ0
\$026D	PPSJ	Read: Write:	PPSJ7	PPSJ6	0	0	0	0	PPSJ1	PPSJ0
\$026E	PIEJ	Read: Write:	PIEJ7	PIEJ6	0	0	0	0	PIEJ1	PIEJ0
\$026F	PIFJ	Read: Write:	PIFJ7	PIFJ6	0	0	0	0	PIFJ1	PIFJ0
\$0270 -	Reserved	Read:	0	0	0	0	0	0	0	0
\$027F	Reserveu	Write:								

\$0280 - \$03FF

Reserved

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0280 -	Pererved	Read:	0	0	0	0	0	0	0	0
\$03FF	Reserved	Write:								

1.6 Part ID Assignments

The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses \$001A and \$001B after reset). The read-only value is a unique part ID for each revision of the chip. **Table 1-4** shows the assigned part ID number.

Device	Mask Set Number	Part ID ¹
MC9S12DJ64	0L86D	\$0200
MC9S12DJ64	1L86D	\$0201
MC9S12DJ64	2L86D	\$0201 ²
MC9S12DJ64	3L86D	\$0203
MC9S12DJ64	4L86D	\$0204
MC9S12DJ64	0M89C	\$0204

Table 1-4 Assigned Part ID Numbers

NOTES:

1. The coding is as follows:

Bit 15-12: Major family identifier

Bit 11-8: Minor family identifier

Bit 7-4: Major mask set revision number including FAB transfers

Bit 3-0: Minor - non full - mask set revision

2. 1L86D is identical to 2L86D except improved ESD performance on 2L86D

The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses \$001C and \$001D after reset). **Table 1-5** shows the read-only values of these registers. Refer to HCS12 Module Mapping Control (MMC) Block Guide for further details.

Table 1-5 Memory size registers

Register name	Value
MEMSIZ0	\$11
MEMSIZ1	\$80

Figure 2-2 Pin Assignments in 80-pin QFP for MC9S12DJ64 and MC9S12D32

2.2 Signal Properties Summary

Table 2-1 summarizes the pin functionality. Signals shown in **bold** are not available in the 80 pin package.

2.3.22 PH6 / KWH6 - Port H I/O Pin 6

PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.23 PH5 / KWH5 — Port H I/O Pin 5

PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.24 PH4 / KWH4 -- Port H I/O Pin 2

PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.25 PH3 / KWH3 — Port H I/O Pin 3

PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.26 PH2 / KWH2 — Port H I/O Pin 2

PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.27 PH1 / KWH1 — Port H I/O Pin 1

PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.28 PH0 / KWH0 — Port H I/O Pin 0

PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.29 PJ7 / KWJ7 / SCL / TXCAN0 - PORT J I/O Pin 7

PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the serial clock pin SCL of the IIC module. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0).

Table 4-2 Clock Selection Based on PE7

PE7 = XCLKS	Description			
0	Pierce Oscillator/external clock selected			

Table 4-3 Voltage Regulator VREGEN

VREGEN	Description			
1	Internal Voltage Regulator enabled			
0	Internal Voltage Regulator disabled, VDD1,2 and VDDPLL must be supplied externally with 2.5V			

4.3 Security

The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows:

- Protection of the contents of FLASH,
- Protection of the contents of EEPROM,
- Operation in single-chip mode,
- Operation from external memory with internal FLASH and EEPROM disabled.

The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters stored in EEPROM.

4.3.1 Securing the Microcontroller

Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part.

The security byte resides in a portion of the Flash array.

Check the Flash Block User Guide for more details on the security configuration.

4.3.2 Operation of the Secured Microcontroller

4.3.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked.

6.4 HCS12 Interrupt (INT) Block Description

Consult the INT Block Guide for information on the HCS12 Interrupt module.

6.5 HCS12 Background Debug (BDM) Block Description

Consult the BDM Block Guide for information on the HCS12 Background Debug module.

6.5.1 Device-specific information

When the BDM Block Guide refers to *alternate clock* this is equivalent to *Oscillator Clock*.

6.6 HCS12 Breakpoint (BKP) Block Description

Consult the BKP Block Guide for information on the HCS12 Breakpoint module.

Section 7 Clock and Reset Generator (CRG) Block Description

Consult the CRG Block User Guide for information about the Clock and Reset Generator module.

7.1 Device-specific information

The Low Voltage Reset feature of the CRG is not available on this device.

Section 8 Oscillator (OSC) Block Description

Consult the OSC Block User Guide for information about the Oscillator module.

8.1 Device-specific information

The XCLKS input signal is active low (see 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7).

Section 9 Enhanced Capture Timer (ECT) Block Description

Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer module. When the ECT_16B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*.

MC9S12DJ64 Device User Guide — V01.20

VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection.

NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.

A.1.3 Pins

There are four groups of functional pins.

A.1.3.1 5V I/O pins

Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD and the RESET pins. The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently.

A.1.3.2 Analog Reference

This group is made up by the VRH and VRL pins.

A.1.3.3 Oscillator

The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL.

A.1.3.4 TEST

This pin is used for production testing only.

A.1.3.5 VREGEN

This pin is used to enable the on chip voltage regulator.

A.1.4 Current Injection

Power supply must maintain regulation within operating V_{DD5} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD5}$) is greater than I_{DD5} , the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.

Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Ρ	Input High Voltage	V _{IH}	0.65*V _{DD5}	-	V _{DD5} + 0.3	V
2	Ρ	Input Low Voltage	V _{IL}	V _{SS5} - 0.3	-	0.35*V _{DD5}	V
3	С	Input Hysteresis	V _{HYS}		250		mV
4	Ρ	Input Leakage Current (pins in high impedance input mode) $V_{in} = V_{DD5} \text{ or } V_{SS5}$	l _{in}	-1	-	1	μΑ
5	Ρ	Output High Voltage (pins in output mode) Partial Drive I _{OH} = −2mA Full Drive I _{OH} = −10mA	V _{OH}	V _{DD5} – 0.8	-	-	V
6	Ρ	Output Low Voltage (pins in output mode) Partial Drive I _{OL} = +2mA Full Drive I _{OL} = +10mA	V _{OL}	-	-	0.8	V
7	Р	Internal Pull Up Device Current, tested at V _{IL} Max.	I _{PUL}	-	-	-130	μA
8	с	Internal Pull Up Device Current, tested at V _{IH} Min.	I _{PUH}	-10	-	-	μA
9	Р	Internal Pull Down Device Current, tested at V _{IH} Min.	I _{PDH}	-	-	130	μA
10	с	Internal Pull Down Device Current, tested at V _{IL} Max.	I _{PDL}	10	-	-	μA
11	D	Input Capacitance	C _{in}		6	-	pF
12	т	Injection current ¹ Single Pin limit Total Device Limit. Sum of all injected currents	I _{ICS} I _{ICP}	-2.5 -25	-	2.5 25	mA
13	P	Port H, J, P Interrupt Input Pulse filtered ²	t _{pign}			3	μs
14	Ρ	Port H, J, P Interrupt Input Pulse passed ²	t _{pval}	10			μs

Table A-6 5V I/O Characteristics

NOTES:

1. Refer to Section A.1.4 Current Injection, for more details

2. Parameter only applies in STOP or Pseudo STOP mode.

A.1.10 Supply Currents

This section describes the current consumption characteristics of the device as well as the conditions for the measurements.

A.2 ATD Characteristics

This section describes the characteristics of the analog to digital converter.

A.2.1 ATD Operating Characteristics

The **Table A-8** shows conditions under which the ATD operates.

The following constraints exist to obtain full-scale, full range results:

 $V_{SSA} \le V_{RL} \le V_{IN} \le V_{RH} \le V_{DDA}$. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped.

Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	D	Reference Potential Low High	V _{RL} V _{RH}	V _{SSA} V _{DDA} /2		V _{DDA} /2 V _{DDA}	V V
2	С	Differential Reference Voltage ¹	V _{RH} -V _{RL}	4.50	5.00	5.25	V
3	D	ATD Clock Frequency	f _{ATDCLK}	0.5		2.0	MHz
4	D	ATD 10-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}	N _{CONV10} T _{CONV10}	14 7		28 14	Cycles μs
5	D	ATD 8-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}	N _{CONV8} T _{CONV8}	12 6		26 13	Cycles µs
6	D	Recovery Time (V _{DDA} =5.0 Volts)	t _{REC}			20	μs
7	Р	Reference Supply current 2 ATD blocks on	I _{REF}			0.750	mA
8	Ρ	Reference Supply current 1 ATD block on	I _{REF}			0.375	mA

Table A-8	ATD	Operating	Characteristics
			•••••••

NOTES:

1. Full accuracy is not guaranteed when differential voltage is less than 4.50V

2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks.

A.2.2 Factors influencing accuracy

Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD.

A.2.2.1 Source Resistance:

Due to the input pin leakage current as specified in **Table A-6** in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R_S

MC9S12DJ64 Device User Guide — V01.20

The phase detector relationship is given by:

$$K_{\Phi} = -|i_{ch}| \cdot K_{V} = 316.7 \text{Hz}/\Omega$$

i_{ch} is the current in tracking mode.

The loop bandwidth f_C should be chosen to fulfill the Gardner's stability criteria by <u>at least</u> a factor of 10, typical values are 50. $\zeta = 0.9$ ensures a good transient response.

$$f_{C} < \frac{2 \cdot \zeta \cdot f_{ref}}{\pi \cdot \left(\zeta + \sqrt{1 + \zeta^{2}}\right)} \frac{1}{10} \rightarrow f_{C} < \frac{f_{ref}}{4 \cdot 10}; (\zeta = 0.9)$$
$$f_{C} < 25 \text{kHz}$$

And finally the frequency relationship is defined as

$$n = \frac{f_{VCO}}{f_{ref}} = 2 \cdot (synr + 1) = 50$$

With the above values the resistance can be calculated. The example is shown for a loop bandwidth $f_C=10kHz$:

$$R = \frac{2 \cdot \pi \cdot n \cdot f_{C}}{K_{\Phi}} = 2^{*} \pi^{*} 50^{*} 10 \text{kHz} / (316.7 \text{Hz} / \Omega) = 9.9 \text{k} \Omega = ~10 \text{k} \Omega$$

The capacitance C_s can now be calculated as:

$$C_s = \frac{2 \cdot \zeta^2}{\pi \cdot f_C \cdot R} \approx \frac{0.516}{f_C \cdot R}; (\zeta = 0.9) = 5.19 \text{nF} = -4.7 \text{nF}$$

The capacitance C_p should be chosen in the range of:

$$C_{s}/20 \le C_{p} \le C_{s}/10$$
 $C_{p} = 470 pF$

A.5.3.2 Jitter Information

The basic functionality of the PLL is shown in **Figure A-2**. With each transition of the clock f_{cmp} , the deviation from the reference clock f_{ref} is measured and input voltage to the VCO is adjusted accordingly. The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in **Figure A-3**.

A.8 External Bus Timing

A timing diagram of the external multiplexed-bus is illustrated in **Figure A-9** with the actual timing values shown on table **Table A-20**. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle.

A.8.1 General Muxed Bus Timing

The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs.

B.2 112-pin LQFP package

