Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | HCS12 | | Core Size | 16-Bit | | Speed | 25MHz | | Connectivity | CANbus, I ² C, SCI, SPI | | Peripherals | PWM, WDT | | Number of I/O | 91 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 1K x 8 | | RAM Size | 4K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.35V ~ 5.25V | | Data Converters | A/D 8x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 112-LQFP | | Supplier Device Package | 112-LQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12d64vpver | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Table of Contents** # **Section 1 Introduction** | 1.1 | Overview | 19 | |--------|--|----| | 1.2 | Features | 19 | | 1.3 | Modes of Operation | 21 | | 1.4 | Block Diagram | 22 | | 1.5 | Device Memory Map | 25 | | 1.5.1 | Detailed Register Map | 30 | | 1.6 | Part ID Assignments | 49 | | Secti | ion 2 Signal Description | | | 2.1 | Device Pinout | 51 | | 2.2 | Signal Properties Summary | 53 | | 2.3 | Detailed Signal Descriptions | 56 | | 2.3.1 | EXTAL, XTAL — Oscillator Pins | 56 | | 2.3.2 | RESET — External Reset Pin | | | 2.3.3 | TEST — Test Pin | 56 | | 2.3.4 | VREGEN — Voltage Regulator Enable Pin | 56 | | 2.3.5 | XFC — PLL Loop Filter Pin | 56 | | 2.3.6 | BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin | | | 2.3.7 | PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1 | 57 | | 2.3.8 | PAD[14:08] / AN[14:08] — Port AD Input Pins ATD1 | 57 | | 2.3.9 | PAD07 / AN07 / ETRIG0 — Port AD Input Pin of ATD0 | 57 | | 2.3.10 | | | | 2.3.11 | PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins | 57 | | 2.3.12 | | | | 2.3.13 | | | | 2.3.14 | | | | 2.3.15 | PE5 / MODA / IPIPE0 — Port E I/O Pin 5 | 59 | | 2.3.16 | PE4 / ECLK — Port E I/O Pin 4 | 59 | | 2.3.17 | PE3 / LSTRB / TAGLO — Port E I/O Pin 3 | 59 | | 2.3.18 | | | | 2.3.19 | • | | | 2.3.20 | PE0 / XIRQ — Port E Input Pin 0 | 59 | #### MC9S12DJ64 Device User Guide — V01.20 | 2.3.21 | PH7 / KWH7 — Port H I/O Pin 7 | 59 | |--------|--|----| | 2.3.22 | PH6 / KWH6 — Port H I/O Pin 6 | 60 | | 2.3.23 | PH5 / KWH5 — Port H I/O Pin 5 | 60 | | 2.3.24 | PH4 / KWH4 — Port H I/O Pin 2 | 60 | | 2.3.25 | PH3 / KWH3 — Port H I/O Pin 3 | 60 | | 2.3.26 | PH2 / KWH2 — Port H I/O Pin 2 | 60 | | 2.3.27 | PH1 / KWH1 — Port H I/O Pin 1 | 60 | | 2.3.28 | PH0 / KWH0 — Port H I/O Pin 0 | 60 | | 2.3.29 | PJ7 / KWJ7 / SCL / TXCAN0 — PORT J I/O Pin 7 | 60 | | 2.3.30 | PJ6 / KWJ6 / SDA / RXCAN0 — PORT J I/O Pin 6 | 61 | | 2.3.31 | PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] | 61 | | 2.3.32 | PK7 / ECS / ROMCTL — Port K I/O Pin 7 | | | 2.3.33 | PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] | 61 | | 2.3.34 | PM7 — Port M I/O Pin 7 | | | 2.3.35 | PM6 — Port M I/O Pin 6 | | | 2.3.36 | PM5 / TXCAN0 / SCK0 — Port M I/O Pin 5 | | | 2.3.37 | PM4 / RXCAN0 / MOSI0 — Port M I/O Pin 4 | | | 2.3.38 | PM3 / TXCAN0 / SS0 — Port M I/O Pin 3 | | | 2.3.39 | PM2 / RXCAN0 / MISO0 — Port M I/O Pin 2 | | | 2.3.40 | PM1 / TXCAN0 / TXB — Port M I/O Pin 1 | | | 2.3.41 | PM0 / RXCAN0 / RXB — Port M I/O Pin 0 | | | 2.3.42 | PP7 / KWP7 / PWM7 — Port P I/O Pin 7 | | | 2.3.43 | PP6 / KWP6 / PWM6 — Port P I/O Pin 6 | | | 2.3.44 | PP5 / KWP5 / PWM5 — Port P I/O Pin 5 | | | 2.3.45 | PP4 / KWP4 / PWM4 — Port P I/O Pin 4 | | | 2.3.46 | PP3 / KWP3 / PWM3 — Port P I/O Pin 3 | | | 2.3.47 | PP2 / KWP2 / PWM2 — Port P I/O Pin 2 | | | 2.3.48 | PP1 / KWP1 / PWM1 — Port P I/O Pin 1 | | | 2.3.49 | PP0 / KWP0 / PWM0 — Port P I/O Pin 0 | | | 2.3.50 | PS7 / SS0 — Port S I/O Pin 7 | | | 2.3.51 | PS6 / SCK0 — Port S I/O Pin 6 | | | 2.3.52 | PS5 / MOSI0 — Port S I/O Pin 5 | | | 2.3.53 | PS4 / MISO0 — Port S I/O Pin 4 | | | 2.3.54 | PS3 / TXD1 — Port S I/O Pin 3 | | | 2.3.55 | PS2 / RXD1 — Port S I/O Pin 2 | | | 2.3.56 | PS1 / TXD0 — Port S I/O Pin 1 | 64 | Figure 1-2 MC9S12DJ64 Memory Map out of Reset #### \$0010 - \$0014 ### MMC map 1 of 4 (HCS12 Module Mapping Control) | Address | Name | |---------|----------| | \$0012 | INITEE | | \$0013 | MISC | | \$0014 | Reserved | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|--------|--------|-------------|-------| | Read: | EE15 | EE14 | EE13 | EE12 | EE11 | 0 | 0 | EEON | | Write: | EE13 | CC14 | EEIS | LLIZ | CEII | | | LLON | | Read: | 0 | 0 | 0 | 0 | EXSTR1 | EXSTR0 | | ROMON | | Write: | | | | | EXSIKI | EXSTRU | KOIVII IIVI | KOMON | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | #### \$0015 - \$0016 #### INT map 1 of 2 (HCS12 Interrupt) | Address | Name | |---------|-------| | \$0015 | ITCR | | \$0016 | ITEST | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-----------------|-------|-------|-------|----------|-------|-------|-------|-------| | Read: | 0 | 0 | 0 | WRINT | ADR3 | ADR2 | ADR1 | ADR0 | | Write: | | | | VVIXIINI | כועא | ADINZ | ADIXI | ADINO | | Read:
Write: | INTE | INTC | INTA | INT8 | INT6 | INT4 | INT2 | INT0 | #### \$0017 - \$0019 #### Reserved | Address | Name | |----------|----------| | \$0017 - | Posoryo | | \$0019 | Reserved | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|-------|-------|-------|-------| | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | #### \$001A - \$001B # **Device ID Register (Table 1-4)** | Address | ivame | |---------|---------| | \$001A | PARTIDH | | \$001B | PARTIDL | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|-------|-------|-------|-------| | Read: | ID15 | ID14 | ID13 | ID12 | ID11 | ID10 | ID9 | ID8 | | Write: | | | | | | | | | | Read: | ID7 | ID6 | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 | | Write: | | | | | | | | | # \$001C - \$001D MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-5) | Address | Name | |---------|---------| | \$001C | MEMSIZ0 | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|---------|---------|---------|---------|-------|---------|---------|---------| | Read: | reg_sw0 | 0 | eep_sw1 | eep_sw0 | 0 | ram_sw2 | ram_sw1 | ram_sw0 | | Write: | | | | | | | | | | Read: | rom_sw1 | rom_sw0 | 0 | 0 | 0 | 0 | pag_sw1 | pag_sw0 | | Write: | | | | | | | | | \$001D MEMSIZ1 #### \$001E - \$001E # MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) | Address | Name | |---------|-------| | \$001E | INTCR | | | L | |-----------------|---| | Read: | | | Read:
Write: | L | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-----|-------|--------|-------|-------|-------|-------|-------|-------| | ıd: | IRQE | IRQEN | 0 | 0 | 0 | 0 | 0 | 0 | | te: | INQL | INQLIN | | | | | | | # \$00A0 - \$00C7 # **PWM (Pulse Width Modulator 8 Bit 8 Channel)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|-----------------------|---------------------------|------------|--------|--------|--------|--------|-------|-------|------------| | \$00A9 | PWMSCLB | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00AA | PWMSCNTA
Test Only | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00AB | PWMSCNTB
Test Only | Write:
Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00AC | PWMCNT0 | Read:
Write: | Bit 7 | 6
0 | 5
0 | 4
0 | 3
0 | 2 | 1 0 | Bit 0 | | \$00AD | PWMCNT1 | Read:
Write: | Bit 7 | 6 | 5
0 | 4
0 | 3 | 2 | 1 0 | Bit 0 | | \$00AE | PWMCNT2 | Read:
Write: | Bit 7 | 6 | 5
0 | 4
0 | 3 | 2 | 1 0 | Bit 0 | | \$00AF | PWMCNT3 | Read:
Write: | Bit 7
0 | 6 | 5 | 4 0 | 3 | 2 | 1 0 | Bit 0 | | \$00B0 | PWMCNT4 | Read:
Write: | Bit 7 | 6 | 5 | 4 0 | 3 | 2 | 1 0 | Bit 0 | | \$00B1 | PWMCNT5 | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00B2 | PWMCNT6 | Write:
Read: | 0
Bit 7 | 0
6 | 0
5 | 0
4 | 0
3 | 0 2 | 0 | 0
Bit 0 | | \$00B3 | PWMCNT7 | Write:
Read: | 0
Bit 7 | 0
6 | 0
5 | 0
4 | 3 | 2 | 0 | 0
Bit 0 | | | | Write:
Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00B4 | PWMPER0 | Write:
Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00B5 | PWMPER1 | Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00B6 | PWMPER2 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00B7 | PWMPER3 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00B8 | PWMPER4 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00B9 | PWMPER5 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BA | PWMPER6 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BB | PWMPER7 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BC | PWMDTY0 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BD | PWMDTY1 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BE | PWMDTY2 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BF | PWMDTY3 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00C0 | PWMDTY4 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00C1 | PWMDTY5 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | # \$00A0 - \$00C7 # **PWM (Pulse Width Modulator 8 Bit 8 Channel)** | Address | Name | |---------|----------| | \$00C2 | PWMDTY6 | | \$00C3 | PWMDTY7 | | \$00C4 | PWMSDN | | \$00C5 | Reserved | | \$00C6 | Reserved | | \$00C7 | Reserved | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-----------------|----------|----------|-----------|-----------|-------|--------|---------------|--------------| | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | Read: | PWMIF | PWMIE | PWMRSTRT | PWMLVL | 0 | PWM7IN | PWM7INL | PWM7ENA | | Write: | FVVIVIIF | FVVIVIIE | PWINKSIKI | FVVIVILVL | | | F VVIVI/ IINL | F WIVIT LINA | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | ### \$00C8 - \$00CF # **SCI0 (Asynchronous Serial Interface)** | Address | Name | |---------|---------| | \$00C8 | SCI0BDH | | \$00C9 | SCI0BDL | | \$00CA | SCI0CR1 | | \$00CB | SCI0CR2 | | \$00CC | SCI0SR1 | | \$00CD | SCI0SR2 | | \$00CE | SCI0DRH | | \$00CF | SCI0DRL | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-----------------|-------|---------|-------|-------|-------|-------|-------|-------| | Read: | 0 | 0 | 0 | SBR12 | SBR11 | SBR10 | SBR9 | SBR8 | | Write: | | | | SDK12 | SDKII | SBK10 | SDK9 | SDRO | | Read:
Write: | SBR7 | SBR6 | SBR5 | SBR4 | SBR3 | SBR2 | SBR1 | SBR0 | | Read:
Write: | LOOPS | SCISWAI | RSRC | М | WAKE | ILT | PE | PT | | Read:
Write: | TIE | TCIE | RIE | ILIE | TE | RE | RWU | SBK | | Read: | TDRE | TC | RDRF | IDLE | OR | NF | FE | PF | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | BRK13 | TXDIR | RAF | | Write: | | | | | | DKKIS | IVDIK | | | Read: | R8 | Т8 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | 10 | | | | | | | | Read: | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | | Write: | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | # \$00D0 - \$00D7 # **SCI1 (Asynchronous Serial Interface)** | Address | Name | |---------|---------| | \$00D0 | SCI1BDH | | \$00D1 | SCI1BDL | | \$00D2 | SCI1CR1 | | \$00D3 | SCI1CR2 | | \$00D4 | SCI1SR1 | | [| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|--------|---------|-------|--------|-------|-------|-------|-------| | Read: | 0 | 0 | 0 | SBR12 | SBR11 | SBR10 | SBR9 | SBR8 | | Write: | | | | SBK 12 | SBKTT | 36110 | SBK9 | SDNO | | Read: | SBR7 | SBR6 | SBR5 | SBR4 | SBR3 | SBR2 | SBR1 | SBR0 | | Write: | SBKI | SBRO | SBKS | SBN4 | SDKS | SBNZ | SBKT | SBRU | | Read: | LOOPS | SCISWAI | RSRC | М | WAKE | ILT | PE | PT | | Write: | LOOI 3 | SCISWAI | NONC | IVI | WAIL | ILI | ı L | I I | | Read: | TIE | TCIE | RIE | ILIE | TE | RE | RWU | SBK | | Write: | IIL | TOIL | IXIL | ILIL | _ | I\L | 17770 | SDIX | | Read: | TDRE | TC | RDRF | IDLE | OR | NF | FE | PF | | Write: | | | | | | | | | # \$00D0 - \$00D7 # **SCI1 (Asynchronous Serial Interface)** | Address | Name | |---------|---------| | \$00D5 | SCI1SR2 | | \$00D6 | SCI1DRH | | \$00D7 | SCI1DRI | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|-------|-------|-------|-------| | Read: | 0 | 0 | 0 | 0 | 0 | BRK13 | TXDIR | RAF | | Write: | | | | | | DKKIS | IADIK | | | Read: | R8 | Т8 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | 10 | | | | | | | | Read: | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | | Write: | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | # \$00D8 - \$00DF # **SPI0 (Serial Peripheral Interface)** | Address | Name | |---------|----------| | \$00D8 | SPI0CR1 | | \$00D9 | SPI0CR2 | | \$00DA | SPI0BR | | \$00DB | SPI0SR | | \$00DC | Reserved | | \$00DD | SPI0DR | | \$00DE | Reserved | | \$00DF | Reserved | | _ | | | | | | | | | |-----------------|-------|-------|-------|-----------|---------|-------|---------|-------| | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | Read:
Write: | SPIE | SPE | SPTIE | MSTR | CPOL | СРНА | SSOE | LSBFE | | Read: | 0 | 0 | 0 | MODFEN | BIDIROE | 0 | SPISWAI | SPC0 | | Write: | | | | INIODELIN | BIDIKOL | | SFISWAI | 3500 | | Read: | 0 | SPPR2 | SPPR1 | SPPR0 | 0 | SPR2 | SPR1 | SPR0 | | Write: | | SFFNZ | SEEKI | SFFRU | | SFRZ | SEKT | SFRU | | Read: | SPIF | 0 | SPTEF | MODF | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read:
Write: | Bit7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit0 | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | # \$00E0 - \$00E7 # IIC (Inter IC Bus) | Address | Name | |---------|----------| | \$00E0 | IBAD | | \$00E1 | IBFD | | \$00E2 | IBCR | | \$00E3 | IBSR | | \$00E4 | IBDR | | \$00E5 | Reserved | | \$00E6 | Reserved | | \$00E7 | Reserved | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-----------------|-------|-------|---------|-------|-------|-------|-------|---------| | Read:
Write: | ADR7 | ADR6 | ADR5 | ADR4 | ADR3 | ADR2 | ADR1 | 0 | | Read:
Write: | IBC7 | IBC6 | IBC5 | IBC4 | IBC3 | IBC2 | IBC1 | IBC0 | | Read: | IBEN | IBIE | MS/SL | TX/RX | TXAK | 0 | 0 | IBSWAI | | Write: | IDEN | IDIE | IVIO/OL | IA/NA | IAAN | RSTA | | IDSVVAI | | Read: | TCF | IAAS | IBB | IBAL | 0 | SRW | IBIF | RXAK | | Write: | | | | IDAL | | | IDIF | | | Read:
Write: | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D 0 | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | # \$0240 - \$027F # **PIM (Port Integration Module)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |----------|-----------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------| | \$0263 | RDRH | Read:
Write: | RDRH7 | RDRH6 | RDRH5 | RDRH4 | RDRH3 | RDRH2 | RDRH1 | RDRH0 | | \$0264 | PERH | Read:
Write: | PERH7 | PERH6 | PERH5 | PERH4 | PERH3 | PERH2 | PERH1 | PERH0 | | \$0265 | PPSH | Read:
Write: | PPSH7 | PPSH6 | PPSH5 | PPSH4 | PPSH3 | PPSH2 | PPSH1 | PPSH0 | | \$0266 | PIEH | Read:
Write: | PIEH7 | PIEH6 | PIEH5 | PIEH4 | PIEH3 | PIEH2 | PIEH1 | PIEH0 | | \$0267 | PIFH | Read:
Write: | PIFH7 | PIFH6 | PIFH5 | PIFH4 | PIFH3 | PIFH2 | PIFH1 | PIFH0 | | \$0268 | PTJ | Read:
Write: | PTJ7 | PTJ6 | 0 | 0 | 0 | 0 | PTJ1 | PTJ0 | | \$0269 | PTIJ | Read: | PTIJ7 | PTIJ6 | 0 | 0 | 0 | 0 | PTIJ1 | PTIJ0 | | * | | Write: | | | | | | | | | | \$026A | DDRJ | Read:
Write: | DDRJ7 | DDRJ7 | 0 | 0 | 0 | 0 | DDRJ1 | DDRJ0 | | \$026B | RDRJ | Read:
Write: | RDRJ7 | RDRJ6 | 0 | 0 | 0 | 0 | RDRJ1 | RDRJ0 | | \$026C | PERJ | Read:
Write: | PERJ7 | PERJ6 | 0 | 0 | 0 | 0 | PERJ1 | PERJ0 | | \$026D | PPSJ | Read:
Write: | PPSJ7 | PPSJ6 | 0 | 0 | 0 | 0 | PPSJ1 | PPSJ0 | | \$026E | PIEJ | Read: | PIEJ7 | PIEJ6 | 0 | 0 | 0 | 0 | PIEJ1 | PIEJ0 | | Ψ0202 | 0 | Write: | | | | | | | •. | | | \$026F | PIFJ | Read:
Write: | PIFJ7 | PIFJ6 | 0 | 0 | 0 | 0 | PIFJ1 | PIFJ0 | | \$0270 - | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$027F | V6261 AGO | Write: | | | | | | | | | # \$0280 - \$03FF # Reserved | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |----------|----------|--------|-------|-------|-------|-------|-------|-------|-------|-------| | \$0280 - | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$03FF | Reserved | Write: | | | | | | | | | # **Section 2 Signal Description** This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals. It is built from the signal description sections of the Block Guides of the individual IP blocks on the device. # 2.1 Device Pinout The MC9S12DJ64 is available in a 112-pin low profile quad flat pack (LQFP) and in a 80-pin quad flat pack (QFP). The MC9S12D32 is only available in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. **Figure 2-1** and **Figure 2-2** show the pin assignments. #### 2.3.30 PJ6 / KWJ6 / SDA / RXCAN0 — PORT J I/O Pin 6 PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the serial data pin SDA of the IIC module. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). ### 2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. #### 2.3.32 PK7 / ECS / ROMCTL — Port K I/O Pin 7 PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used as the emulation chip select output (\overline{ECS}). During MCU expanded modes of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of \overline{RESET} , the state of this pin is latched to the ROMON bit. For a complete list of modes refer to **4.2 Chip Configuration Summary**. # 2.3.33 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins provide the expanded address XADDR[19:14] for the external bus. #### 2.3.34 PM7 — Port M I/O Pin 7 PM7 is a general purpose input or output pin. #### 2.3.35 PM6 — Port M I/O Pin 6 PM6 is a general purpose input or output pin. #### 2.3.36 PM5 / TXCAN0 / SCK0 — Port M I/O Pin 5 PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0). #### 2.3.37 PM4 / RXCAN0 / MOSI0 — Port M I/O Pin 4 PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial Peripheral Interface 0 (SPI0). Table 4-2 Clock Selection Based on PE7 | PE7 = XCLKS | Description | |-------------|---| | 0 | Pierce Oscillator/external clock selected | **Table 4-3 Voltage Regulator VREGEN** | VREGEN Description | | | | | | |--------------------|--|--|--|--|--| | 1 | Internal Voltage Regulator enabled | | | | | | | Internal Voltage Regulator disabled, VDD1,2 and VDDPLL must be supplied externally with 2.5V | | | | | # 4.3 Security The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows: - Protection of the contents of FLASH, - Protection of the contents of EEPROM, - Operation in single-chip mode, - Operation from external memory with internal FLASH and EEPROM disabled. The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters stored in EEPROM. # 4.3.1 Securing the Microcontroller Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part. The security byte resides in a portion of the Flash array. Check the Flash Block User Guide for more details on the security configuration. # 4.3.2 Operation of the Secured Microcontroller #### 4.3.2.1 Normal Single Chip Mode This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked. (M) MOTOROLA # 6.4 HCS12 Interrupt (INT) Block Description Consult the INT Block Guide for information on the HCS12 Interrupt module. # 6.5 HCS12 Background Debug (BDM) Block Description Consult the BDM Block Guide for information on the HCS12 Background Debug module. # 6.5.1 Device-specific information When the BDM Block Guide refers to alternate clock this is equivalent to Oscillator Clock. # 6.6 HCS12 Breakpoint (BKP) Block Description Consult the BKP Block Guide for information on the HCS12 Breakpoint module. # Section 7 Clock and Reset Generator (CRG) Block Description Consult the CRG Block User Guide for information about the Clock and Reset Generator module. # 7.1 Device-specific information The Low Voltage Reset feature of the CRG is not available on this device. # **Section 8 Oscillator (OSC) Block Description** Consult the OSC Block User Guide for information about the Oscillator module. # 8.1 Device-specific information The XCLKS input signal is active low (see 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7). # **Section 9 Enhanced Capture Timer (ECT) Block Description** Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer module. When the ECT_16B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*. (M) MOTOROLA # A.1.6 ESD Protection and Latch-up Immunity All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. | Model | Description | Symbol | Value | Unit | |------------|---|--------|-------------|------| | | Series Resistance | R1 | 1500 | Ohm | | | Storage Capacitance | С | 100 | pF | | Human Body | Number of Pulse per pin positive negative | - | -
1
1 | | | | Series Resistance | R1 | 0 | Ohm | | | Storage Capacitance | С | 200 | pF | | Machine | Number of Pulse per pin positive negative | - | -
3
3 | | | Lotob up | Minimum input voltage limit | | -2.5 | V | | Latch-up | Maximum input voltage limit | | 7.5 | V | Table A-2 ESD and Latch-up Test Conditions Table A-3 ESD and Latch-Up Protection Characteristics | Num | С | Rating | Symbol | Min | Max | Unit | |-----|---|--|------------------|--------------|-----|------| | 1 | Т | Human Body Model (HBM) | V _{HBM} | 2000 | - | V | | 2 | Т | Machine Model (MM) | V _{MM} | 200 | - | V | | 3 | Т | Charge Device Model (CDM) | V _{CDM} | 500 | - | V | | 4 | Т | Latch-up Current at T _A = 125°C positive negative | I _{LAT} | +100
-100 | - | mA | | 5 | Т | Latch-up Current at T _A = 27°C positive negative | I _{LAT} | +200
-200 | - | mA | # A.1.7 Operating Conditions This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data. (M) MOTOROLA Table A-5 Thermal Package Characteristics¹ | Num | С | Rating | Symbol | Min | Тур | Max | Unit | |-----|---|--|-------------------|-----|-----|-----|------| | 1 | Т | Thermal Resistance LQFP112, single sided PCB ² | θ_{JA} | _ | _ | 54 | °C/W | | 2 | Т | Thermal Resistance LQFP112, double sided PCB with 2 internal planes ³ | $\theta_{\sf JA}$ | _ | _ | 41 | °C/W | | 3 | Т | Junction to Board LQFP112 | $\theta_{\sf JB}$ | - | - | 31 | °C/W | | 4 | Т | Junction to Case LQFP112 | $\theta_{\sf JC}$ | _ | _ | 11 | °C/W | | 5 | Т | Junction to Package Top LQFP112 | Ψ_{JT} | _ | _ | 2 | °C/W | | 6 | Т | Thermal Resistance QFP 80, single sided PCB | θ_{JA} | _ | _ | 51 | °C/W | | 7 | Т | Thermal Resistance QFP 80, double sided PCB with 2 internal planes | θ_{JA} | - | - | 41 | °C/W | | 8 | Т | Junction to Board QFP80 | θ_{JB} | _ | _ | 27 | °C/W | | 9 | Т | Junction to Case QFP80 | $\theta_{\sf JC}$ | _ | _ | 14 | °C/W | | 10 | Т | Junction to Package Top QFP80 | Ψ_{JT} | - | _ | 3 | °C/W | #### NOTES: - 1. The values for thermal resistance are achieved by package simulations - 2. PC Board according to EIA/JEDEC Standard 51-3 - 3. PC Board according to EIA/JEDEC Standard 51-7 #### A.1.9 I/O Characteristics This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances. # A.2.3 ATD accuracy **Table A-10** specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance. #### Table A-10 ATD Conversion Performance Conditions are shown in Table A-4 unless otherwise noted $V_{REF} = V_{RH} - V_{RL} = 5.12V$. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV $f_{ATDCLK} = 2.0MHz$ | Num | С | Rating | Symbol | Min | Тур | Max | Unit | |-----|---|------------------------------------|--------|------|------|-----|--------| | 1 | Р | 10-Bit Resolution | LSB | | 5 | | mV | | 2 | Р | 10-Bit Differential Nonlinearity | DNL | -1 | | 1 | Counts | | 3 | Р | 10-Bit Integral Nonlinearity | INL | -2.5 | ±1.5 | 2.5 | Counts | | 4 | Р | 10-Bit Absolute Error ¹ | AE | -3 | ±2.0 | 3 | Counts | | 5 | Р | 8-Bit Resolution | LSB | | 20 | | mV | | 6 | Р | 8-Bit Differential Nonlinearity | DNL | -0.5 | | 0.5 | Counts | | 7 | Р | 8-Bit Integral Nonlinearity | INL | -1.0 | ±0.5 | 1.0 | Counts | | 8 | Р | 8-Bit Absolute Error ¹ | AE | -1.5 | ±1.0 | 1.5 | Counts | #### NOTES: For the following definitions see also **Figure A-1**. Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps. $$DNL(i) = \frac{V_i - V_{i-1}}{1LSB} - 1$$ The Integral Non-Linearity (INL) is defined as the sum of all DNLs: $$INL(n) = \sum_{i=1}^{n} DNL(i) = \frac{V_n - V_0}{1LSB} - n$$ ^{1.} These values include the quantization error which is inherently 1/2 count for any A/D converter. # A.3.2 NVM Reliability The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures. The failure rates for data retention and program/erase cycling are specified at the operating conditions noted. The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed. Table A-12 NVM Reliability Characteristics | Condit | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | | |--------|--|---|---------------------|---------|-----|-----|--------|--|--| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | | | 1 | С | Data Retention at an average junction temperature of $T_{Javg} = 85^{\circ}C^{1}$ | t _{NVMRET} | 15 | | | Years | | | | 2 | С | Flash number of Program/Erase cycles | n _{FLPE} | 10,000 | | | Cycles | | | | 3 | С | EEPROM number of Program/Erase cycles (–40°C \leq T _J \leq 0°C) | n _{EEPE} | 10,000 | | | Cycles | | | | 4 | С | EEPROM number of Program/Erase cycles $(0^{\circ}\text{C} < \text{T}_{\text{J}} \le 140^{\circ}\text{C})$ | n _{EEPE} | 100,000 | | | Cycles | | | #### NOTES: ^{1.} Total time at the maximum guaranteed device operating temperature <= 1 year #### A.5.1.5 Pseudo Stop and Wait Recovery The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After t_{wrs} the CPU starts fetching the interrupt vector. #### A.5.2 Oscillator The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce oscillator/external clock depends on the \overline{XCLKS} signal which is sampled during reset. Pierce oscillator/external clock mode allows the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. t_{CQOUT} specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up time t_{UPOSC} . The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency t_{CMFA} . Table A-15 Oscillator Characteristics | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | | |--|---|--|------------------------|--------------------------|----------------|--------------------------|------|--| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | | 1a | С | Crystal oscillator range (Colpitts) | fosc | 0.5 | | 16 | MHz | | | 1b | С | Crystal oscillator range (Pierce) ¹ | fosc | 0.5 | | 40 | MHz | | | 2 | Р | Startup Current | iosc | 100 | | | μΑ | | | 3 | С | Oscillator start-up time (Colpitts) | t _{UPOSC} | | 8 ² | 100 ³ | ms | | | 4 | D | Clock Quality check time-out | t _{CQOUT} | 0.45 | | 2.5 | S | | | 5 | Р | Clock Monitor Failure Assert Frequency | f _{CMFA} | 50 | 100 | 200 | KHz | | | 6 | Р | External square wave input frequency ⁴ | f _{EXT} | 0.5 | | 50 | MHz | | | 7 | D | External square wave pulse width low | t _{EXTL} | 9.5 | | | ns | | | 8 | D | External square wave pulse width high | t _{EXTH} | 9.5 | | | ns | | | 9 | D | External square wave rise time | t _{EXTR} | | | 1 | ns | | | 10 | D | External square wave fall time | t _{EXTF} | | | 1 | ns | | | 11 | D | Input Capacitance (EXTAL, XTAL pins) | C _{IN} | | 7 | | pF | | | 12 | С | DC Operating Bias in Colpitts Configuration on EXTAL Pin | V _{DCBIAS} | | 1.1 | | V | | | 13 | Р | EXTAL Pin Input High Voltage ⁴ | V _{IH,EXTAL} | 0.75*V _{DDPLL} | | | V | | | | Т | EXTAL Pin Input High Voltage ⁴ | V _{IH,EXTAL} | | | V _{DDPLL} + 0.3 | V | | | 14 | Р | EXTAL Pin Input Low Voltage ⁴ | V _{IL,EXTAL} | | | 0.25*V _{DDPLL} | V | | | | Т | EXTAL Pin Input Low Voltage ⁴ | V _{IL,EXTAL} | V _{DDPLL} - 0.3 | | | V | | | 15 | С | EXTAL Pin Input Hysteresis ⁴ | V _{HYS,EXTAL} | | 250 | | mV | |