

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	59
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s12d64f0cfuer

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User Guide	Versi on	Document Order Number
HCS12 CPU Reference Manual	V02	S12CPUV2/D
HCS12 Module Mapping Control (MMC) Block Guide	V04	S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide	V03	S12MEBIV3/D
HCS12 Interrupt (INT) Block Guide	V01	S12INTV1/D
HCS12 Background Debug (BDM) Block Guide	V04	S12BDMV4/D
HCS12 Breakpoint (BKP) Block Guide	V01	S12BKPV1/D
Clock and Reset Generator (CRG) Block User Guide	V04	S12CRGV4/D
Oscillator (OSC) Block User Guide	V02	S12OSCV2/D
Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide	V01	S12ECT16B8CV1/D
Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide	V02	S12ATD10B8CV2/D
Inter IC Bus (IIC) Block User Guide	V02	S12IICV2/D
Asynchronous Serial Interface (SCI) Block User Guide	V02	S12SCIV2/D
Serial Peripheral Interface (SPI) Block User Guide	V02	S12SPIV2/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide	V01	S12PWM8B8CV1/D
64K Byte Flash (FTS64K) Block User Guide	V01	S12FTS64KV1/D
1K Byte EEPROM (EETS1K) Block User Guide	V01	S12EETS1KV1/D
Byte Level Data Link Controller -J1850 (BDLC) Block User Guide	V01	S12BDLCV1/D
Freescale Scalable CAN (MSCAN) Block User Guide	• V02	S12MSCANV2/D
Voltage Regulator (VREG) Block User Guide	V01	S12VREGV1/D
Port Integration Module (PIM_9DJ64) Block User Guide	V01	S12PIM9DJ64V1/D

Table 0-2 Document References

Section 1 Introduction

1.1 Overview

The MC9S12DJ64 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 64K bytes of Flash EEPROM, 4K bytes of RAM, 1K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), one serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, a CAN 2.0 A, B software compatible modules (MSCAN12), and an Inter-IC Bus. The MC9S12DJ64 has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements.

1.2 Features

- HCS12 Core
 - 16-bit HCS12 CPU
 - i. Upward compatible with M68HC11 instruction set
 - ii. Interrupt stacking and programmer's model identical to M68HC11
 - iii. Instruction queue
 - iv. Enhanced indexed addressing
 - MEBI (Multiplexed External Bus Interface)
 - MMC (Module Mapping Control)
 - INT (Interrupt control)
 - BKP (Breakpoints)
 - BDM (Background Debug Mode)
- CRG (low current Colpitts or Pierce oscillator, PLL, reset, clocks, COP watchdog, real time interrupt, clock monitor)
- 8-bit and 4-bit ports with interrupt functionality
 - Digital filtering
 - Programmable rising or falling edge trigger
- Memory
 - 64K Flash EEPROM
 - 1K byte EEPROM

- I/O lines with 5V input and drive capability
- 5V A/D converter inputs
- Operation at 50MHz equivalent to 25MHz Bus Speed
- Development support
- Single-wire background debugTM mode (BDM)
- On-chip hardware breakpoints

1.3 Modes of Operation

User modes

- Normal and Emulation Operating Modes
 - Normal Single-Chip Mode
 - Normal Expanded Wide Mode
 - Normal Expanded Narrow Mode
 - Emulation Expanded Wide Mode
 - Emulation Expanded Narrow Mode
- Special Operating Modes
 - Special Single-Chip Mode with active Background Debug Mode
 - Special Test Mode (Freescale **use only**)
 - Special Peripheral Mode (Freescale **use only**)

Low power modes

- Stop Mode
- Pseudo Stop Mode
- Wait Mode

1.5.1 Detailed Register Map

\$0000 - \$000F

MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0000	PORTA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0001	PORTB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0002	DDRA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0003	DDRB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
¢0004	Beconved	Read:	0	0	0	0	0	0	0	0
J 0004	Reserveu	Write:								
\$0005	Reserved	Read:	0	0	0	0	0	0	0	0
φ000J	Reserved	Write:								
\$0006	Reserved	Read:	0	0	0	0	0	0	0	0
φυυυυ	Reserved	Write:								
\$0007	Reserved	Read:	0	0	0	0	0	0	0	0
	Write:									
\$0008	PORTE	Read: Write:	Bit 7	6	5	4	3	2	Bit 1	Bit 0
\$0009	DDRE	Read: Write:	Bit 7	6	5	4	3	Bit 2	0	0
\$000A	PEAR	Read:	NOACCE	0	PIPOE	NECLK	LSTRE	RDWE	0	0
		Vvrite:				0		0		
\$000B	MODE	Write:	MODC	MODB	MODA	0	IVIS	0	EMK	EME
\$000C	PUCR	Read: Write:	PUPKE	0	0	PUPEE	0	0	PUPBE	PUPAE
\$000D	RDRIV	Read: Write:	RDPK	0	0	RDPE	0	0	RDPB	RDPA
***		Read:	0	0	0	0	0	0	0	
\$000E	EBICIL	Write:								ESIR
#000		Read:	0	0	0	0	0	0	0	0
\$000F	Reserved	Write:								

\$0010 - \$0014

MMC map 1 of 4 (HCS12 Module Mapping Control)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0010 I		Read:		DAM12	DAM12		0	0		
		Write:	KAIWI 15		INAMITS					
\$0011		Read:	0		DEC12	DEC12	DEC11	0	0	0
	INITEG	Write:		REG14 REG	REGIS	REGIZ	. REGH			

\$0040 - \$007F

Address	Name
\$007C	TC2H (hi)
\$007D	TC2H (lo)
\$007E	TC3H (hi)
\$007F	TC3H (lo)

ECT (Enhanced Capture Timer 16 Bit 8 Channels)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	Bit 15	14	13	12	11	10	9	Bit 8
Write:								
Read:	Bit 7	6	5	4	3	2	1	Bit 0
Write:								
Read:	Bit 15	14	13	12	11	10	9	Bit 8
Write:								
Read:	Bit 7	6	5	4	3	2	1	Bit 0
Write:								

\$0080 - \$009F

ATD0 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0090		Read:	0	0	0	0	0	0	0	0
φ0000	AIDUCILU	Write:								
\$0081		Read:	0	0	0	0	0	0	0	0
φυυυι	AIDOOTET	Write:								
\$0082	ATD0CTL2	Read: Write:	ADPU	AFFC	AWAI	ETRIGLE	ETRIGP	ETRIG	ASCIE	ASCIF
\$0083	ATD0CTL3	Read: Write:	0	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
\$0084	ATD0CTL4	Read: Write:	SRES8	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
\$0085	ATD0CTL5	Read: Write:	DJM	DSGN	SCAN	MULT	0	СС	СВ	CA
\$0086	ATD0STAT0	Read: Write:	SCF	0	ETORF	FIFOR	0	CC2	CC1	CC0
* *** *	_	Read:	0	0	0	0	0	0	0	0
\$0087	Reserved	Write:								
¢0000	ATDOTESTO	Read:	0	0	0	0	0	0	0	0
\$0088 AIDOIESIC	AIDUIESIU	Write:								
\$0080		Read:	0	0	0	0	0	0	0	90
φ0009	AIDUILOII	Write:								50
\$008A	Reserved	Read:	0	0	0	0	0	0	0	0
φοσολί	Received	Write:								
\$008B	ATD0STAT1	Read:	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
÷•••-		Write:	-		-		-	_	_	_
\$008C	Reserved	Read:	0	0	0	0	0	0	0	0
		vvrite:								
\$008D	ATD0DIEN	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$008E	Reserved	Read:	0	0	0	0	0	0	0	0
φ000L	Reserved	Write:								
\$008F	PORTADO	Read:	Bit7	6	5	4	3	2	1	BIT 0
ψυυυι	1 0111100	Write:								
\$0090	ATD0DR0H	Read:	Bit15	14	13	12	11	10	9	Bit8
40000		Write:								
\$0091	ATD0DR0L	Read:	Bit7	Bit6	0	0	0	0	0	0
	Write:									

\$00A0 - \$00C7 PW

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address	Name	1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0000		Read:	D:4 7		5.00		0	0	4	Dit O
\$0002	PVVIVIDIY6	Write:	Bit /	6	Э	4	3	2	1	BITU
\$00C3	PWMDTY7	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
¢0004		Read:				PWMLVL	0	PWM7IN		
φ00C4	PWWSDN	Write:			PWWKSIKI					
¢00CE	Becorved	Read:	0	0	0	0	0	0	0	0
\$00C5	Reserved	Write:								
¢0006	Becorved	Read:	0	0	0	0	0	0	0	0
\$UUC6	Reserved	Write:								
\$00C7	Pacarvad	Read:	0	0	0	0	0	0	0	0
	Reserved	Write:								

\$00C8 - \$00CF

SCI0 (Asynchronous Serial Interface)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0008	SCIOBDH	Read:	0	0	0	SBR12	SBR11	SBR10	SBRG	SBB8
\$0000 0010DD11	SCIUDDII	Write:				ODITIZ	ODITI	ODIVIO	ODING	ODI(0
\$00C9 SCI0BDL	SCI0BDI	Read:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
	Write:	0010	02.10	00110		00110	00112		02110	
\$00CA	SCI0CR1	Read:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
		Write:								
\$00CB	SCI0CR2	Read:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
<i>Q</i>		Write:	=		=					
\$0000	SCI0SP1	Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
φ00CC	501051(1	Write:								
¢000D	SCI0882	Read:	0	0	0	0	0		סומעד	RAF
\$00CD	30103R2	Write:						DKKIS	IADIK	
¢00CE	SCIADBU	Read:	R8	то	0	0	0	0	0	0
\$00CE	SCIUDRE	Write:		10						
\$000F	SCIODRI	Read:	R7	R6	R5	R4	R3	R2	R1	R0
Φ υυς Γ	SCIODRL	Write:	T7	T6	T5	T4	T3	T2	T1	Т0

\$00D0 - \$00D7

SCI1 (Asynchronous Serial Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00D0	SCI1BDH	Read: Write:	0	0	0	SBR12	SBR11	SBR10	SBR9	SBR8
\$00D1	SCI1BDL	Read: Write:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
\$00D2	SCI1CR1	Read: Write:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
\$00D3	SCI1CR2	Read: Write:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
¢00D4	SCI15P1	Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
ψ00D4	SCHSRI	Write:								

Section 2 Signal Description

This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals. It is built from the signal description sections of the Block Guides of the individual IP blocks on the device.

2.1 Device Pinout

The MC9S12DJ64 is available in a 112-pin low profile quad flat pack (LQFP) and in a 80-pin quad flat pack (QFP). The MC9S12D32 is only available in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. **Figure 2-1** and **Figure 2-2** show the pin assignments.

Signals shown in Bold are not available on the 80 Pin Package

Figure 2-1 Pin Assignments in 112-pin LQFP for MC9S12DJ64

Section 5 Resets and Interrupts

5.1 Overview

Consult the Exception Processing section of the CPU12 Reference Manual for information on resets and interrupts.

5.2 Vectors

5.2.1 Vector Table

Table 5-1 lists interrupt sources and vectors in default order of priority.

Vector Address	Interrupt Source	CCR Mask	Local Enable	HPRIO Value to Elevate
\$FFFE, \$FFFF	Reset	None	None	-
\$FFFC, \$FFFD	Clock Monitor fail reset	None	PLLCTL (CME, SCME)	_
\$FFFA, \$FFFB	COP failure reset	None	COP rate select	_
\$FFF8, \$FFF9	Unimplemented instruction trap	None	None	-
\$FFF6, \$FFF7	SWI	None	None	_
\$FFF4, \$FFF5	XIRQ	X-Bit	None	-
\$FFF2, \$FFF3	IRQ	I-Bit	IRQCR (IRQEN)	\$F2
\$FFF0, \$FFF1	Real Time Interrupt	I-Bit	CRGINT (RTIE)	\$F0
\$FFEE, \$FFEF	Enhanced Capture Timer channel 0	I-Bit	TIE (C0I)	\$EE
\$FFEC, \$FFED	Enhanced Capture Timer channel 1	I-Bit	TIE (C1I)	\$EC
\$FFEA, \$FFEB	Enhanced Capture Timer channel 2	I-Bit	TIE (C2I)	\$EA
\$FFE8, \$FFE9	Enhanced Capture Timer channel 3	I-Bit	TIE (C3I)	\$E8
\$FFE6, \$FFE7	Enhanced Capture Timer channel 4	I-Bit	TIE (C4I)	\$E6
\$FFE4, \$FFE5	Enhanced Capture Timer channel 5	I-Bit	TIE (C5I)	\$E4
\$FFE2, \$FFE3	Enhanced Capture Timer channel 6	I-Bit	TIE (C6I)	\$E2
\$FFE0, \$FFE1	Enhanced Capture Timer channel 7	I-Bit	TIE (C7I)	\$E0
\$FFDE, \$FFDF	Enhanced Capture Timer overflow	I-Bit	TSRC2 (TOI)	\$DE
\$FFDC, \$FFDD	Pulse accumulator A overflow	I-Bit	PACTL (PAOVI)	\$DC
\$FFDA, \$FFDB	Pulse accumulator input edge	I-Bit	PACTL (PAI)	\$DA
\$FFD8, \$FFD9	SPI0	I-Bit	SPICR1 (SPIE, SPTIE)	\$D8
\$FFD6, \$FFD7	SCI0	I-Bit	SCICR2 (TIE, TCIE, RIE, ILIE)	\$D6
\$FFD4, \$FFD5	SCI1	I-Bit	SCICR2 (TIE, TCIE, RIE, ILIE)	\$D4
\$FFD2, \$FFD3	ATD0	I-Bit	ATDCTL2 (ASCIE)	\$D2
\$FFD0, \$FFD1	ATD1	I-Bit	ATDCTL2 (ASCIE)	\$D0
\$FFCE, \$FFCF	Port J	I-Bit	PIEJ (PIEJ7, PIEJ6, PIEJ1, PIEJ0)	\$CE
\$FFCC, \$FFCD	Port H	I-Bit	PIEH (PIEH7-0)	\$CC

Table 5-1 Interrupt Vector Locations

MC9S12DJ64 Device User Guide — V01.20

\$FFCA, \$FFCB	Modulus Down Counter underflow	I-Bit	MCCTL (MCZI)	\$CA
\$FFC8, \$FFC9	Pulse Accumulator B Overflow	I-Bit	PBCTL (PBOVI)	\$C8
\$FFC6, \$FFC7	CRG PLL lock	I-Bit	CRGINT (LOCKIE)	\$C6
\$FFC4, \$FFC5	CRG Self Clock Mode	I-Bit	CRGINT (SCMIE)	\$C4
\$FFC2, \$FFC3	BDLC	I-Bit	DLCBCR1 (IE)	\$C2
\$FFC0, \$FFC1	IIC Bus	I-Bit	IBCR (IBIE)	\$C0
\$FFBE, \$FFBF	Peserved	I-Bit	Posonvod	\$BE
\$FFBC, \$FFBD	- Reserved	I-Bit	- Reserveu	\$BC
\$FFBA, \$FFBB	EEPROM	I-Bit	ECNFG (CCIE, CBEIE)	\$BA
\$FFB8, \$FFB9	FLASH	I-Bit	FCNFG (CCIE, CBEIE)	\$B8
\$FFB6, \$FFB7	CAN0 wake-up	I-Bit	CANRIER (WUPIE)	\$B6
\$FFB4, \$FFB5	CAN0 errors	I-Bit	CANRIER (CSCIE, OVRIE)	\$B4
\$FFB2, \$FFB3	CAN0 receive	I-Bit	CANRIER (RXFIE)	\$B2
\$FFB0, \$FFB1	CAN0 transmit	I-Bit	CANTIER (TXEIE2-TXEIE0)	\$B0
\$FFAE, \$FFAF		I-Bit		\$AE
\$FFAC, \$FFAD		I-Bit		\$AC
\$FFAA, \$FFAB		I-Bit	-	\$AA
\$FFA8, \$FFA9		I-Bit		\$A8
\$FFA6, \$FFA7		I-Bit		\$A6
\$FFA4, \$FFA5		I-Bit		\$A4
\$FFA2, \$FFA3		I-Bit		\$A2
\$FFA0, \$FFA1	Reserved	I-Bit	Reserved	\$A0
\$FF9E, \$FF9F	Reserved	I-Bit	Reserved	\$9E
\$FF9C, \$FF9D		I-Bit		\$9C
\$FF9A, \$FF9B		I-Bit		\$9A
\$FF98, \$FF99		I-Bit		\$98
\$FF96, \$FF97		I-Bit		\$96
\$FF94, \$FF95		I-Bit		\$94
\$FF92, \$FF93		I-Bit	-	\$92
\$FF90, \$FF91		I-Bit		\$90
\$FF8E, \$FF8F	Port P	I-Bit	PIEP (PIEP7-0)	\$8E
\$FF8C, \$FF8D	PWM Emergency Shutdown	I-Bit	PWMSDN (PWMIE)	\$8C
\$FF80 to \$FF8B		Rese	erved	

5.3 Effects of Reset

When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the respective module Block User Guides for register reset states.

5.3.1 I/O pins

Refer to the HCS12 Multiplexed External Bus Interface (MEBI) Block Guide for mode dependent pin configuration of port A, B, E and K out of reset.

Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.

6.4 HCS12 Interrupt (INT) Block Description

Consult the INT Block Guide for information on the HCS12 Interrupt module.

6.5 HCS12 Background Debug (BDM) Block Description

Consult the BDM Block Guide for information on the HCS12 Background Debug module.

6.5.1 Device-specific information

When the BDM Block Guide refers to *alternate clock* this is equivalent to *Oscillator Clock*.

6.6 HCS12 Breakpoint (BKP) Block Description

Consult the BKP Block Guide for information on the HCS12 Breakpoint module.

Section 7 Clock and Reset Generator (CRG) Block Description

Consult the CRG Block User Guide for information about the Clock and Reset Generator module.

7.1 Device-specific information

The Low Voltage Reset feature of the CRG is not available on this device.

Section 8 Oscillator (OSC) Block Description

Consult the OSC Block User Guide for information about the Oscillator module.

8.1 Device-specific information

The XCLKS input signal is active low (see 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7).

Section 9 Enhanced Capture Timer (ECT) Block Description

Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer module. When the ECT_16B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*.

Figure 22-3 Recommended PCB Layout for 112LQFP Pierce Oscillator

MC9S12DJ64 Device User Guide — V01.20

The phase detector relationship is given by:

$$K_{\Phi} = -|i_{ch}| \cdot K_{V} = 316.7 \text{Hz}/\Omega$$

i_{ch} is the current in tracking mode.

The loop bandwidth f_C should be chosen to fulfill the Gardner's stability criteria by <u>at least</u> a factor of 10, typical values are 50. $\zeta = 0.9$ ensures a good transient response.

$$f_{C} < \frac{2 \cdot \zeta \cdot f_{ref}}{\pi \cdot \left(\zeta + \sqrt{1 + \zeta^{2}}\right)} \frac{1}{10} \rightarrow f_{C} < \frac{f_{ref}}{4 \cdot 10}; (\zeta = 0.9)$$
$$f_{C} < 25 \text{kHz}$$

And finally the frequency relationship is defined as

$$n = \frac{f_{VCO}}{f_{ref}} = 2 \cdot (synr + 1) = 50$$

With the above values the resistance can be calculated. The example is shown for a loop bandwidth $f_C=10kHz$:

$$R = \frac{2 \cdot \pi \cdot n \cdot f_{C}}{K_{\Phi}} = 2^{*} \pi^{*} 50^{*} 10 \text{kHz} / (316.7 \text{Hz} / \Omega) = 9.9 \text{k} \Omega = ~10 \text{k} \Omega$$

The capacitance C_s can now be calculated as:

$$C_s = \frac{2 \cdot \zeta^2}{\pi \cdot f_C \cdot R} \approx \frac{0.516}{f_C \cdot R}; (\zeta = 0.9) = 5.19 \text{nF} = -4.7 \text{nF}$$

The capacitance C_p should be chosen in the range of:

$$C_{s}/20 \le C_{p} \le C_{s}/10$$
 $C_{p} = 470 pF$

A.5.3.2 Jitter Information

The basic functionality of the PLL is shown in **Figure A-2**. With each transition of the clock f_{cmp} , the deviation from the reference clock f_{ref} is measured and input voltage to the VCO is adjusted accordingly. The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in **Figure A-3**.

A.7.2 Slave Mode

Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-19.

Figure A-7 SPI Slave Timing (CPHA = 0)

Figure A-8 SPI Slave Timing (CPHA =1)

Conditions are shown in Table A-4 unless otherwise noted, $C_{LOAD} = 50 pF$							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Frequency of operation (E-clock)	f _o	0		25.0	MHz
2	Р	Cycle time	t _{cyc}	40			ns
3	D	Pulse width, E low	PW _{EL}	19			ns
4	D	Pulse width, E high ¹	PW _{EH}	19			ns
5	D	Address delay time	t _{AD}			8	ns
6	D	Address valid time to E rise (PW _{EL} -t _{AD})	t _{AV}	11			ns
7	D	Muxed address hold time	t _{MAH}	2			ns
8	D	Address hold to data valid	t _{AHDS}	7			ns
9	D	Data hold to address	t _{DHA}	2			ns
10	D	Read data setup time	t _{DSR}	13			ns
11	D	Read data hold time	t _{DHR}	0			ns
12	D	Write data delay time	t _{DDW}			7	ns
13	D	Write data hold time	t _{DHW}	2			ns
14	D	Write data setup time ¹ (PW _{EH} -t _{DDW})	t _{DSW}	12			ns
15	D	Address access time ¹ (t _{cyc} –t _{AD} –t _{DSR})	t _{ACCA}	19			ns
16	D	E high access time ¹ (PW _{EH} –t _{DSR})	t _{ACCE}	6			ns
17	D	Non-multiplexed address delay time	t _{NAD}			6	ns
18	D	Non-muxed address valid to E rise (PW_{EL} - t_{NAD})	t _{NAV}	15			ns
19	D	Non-multiplexed address hold time	t _{NAH}	2			ns
20	D	Chip select delay time	t _{CSD}			16	ns
21	D	Chip select access time ¹ (t_{cyc} - t_{CSD} - t_{DSR})	t _{ACCS}	11			ns
22	D	Chip select hold time	t _{CSH}	2			ns
23	D	Chip select negated time	t _{CSN}	8			ns
24	D	Read/write delay time	t _{RWD}			7	ns
25	D	Read/write valid time to E rise (PW _{EL} -t _{RWD})	t _{RWV}	14			ns
26	D	Read/write hold time	t _{RWH}	2			ns
27	D	Low strobe delay time	t _{LSD}			7	ns
28	D	Low strobe valid time to E rise (PW _{EL} -t _{LSD})	t _{LSV}	14			ns
29	D	Low strobe hold time	t _{LSH}	2			ns
30	D	NOACC strobe delay time	t _{NOD}			7	ns
31	D	NOACC valid time to E rise (PW _{EL} -t _{NOD})	t _{NOV}	14			ns

Table A-20 Expanded Bus Timing Characteristics

FINAL PAGE OF 128 PAGES