

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 2x10b, 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s12dg12f1mpve

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	on 4 Modes of Operation
4.1	Overview
4.2	Chip Configuration Summary
4.3	Security70
4.3.1	Securing the Microcontroller70
4.3.2	Operation of the Secured Microcontroller70
4.3.3	Unsecuring the Microcontroller71
4.4	Low Power Modes
4.4.1	Stop
4.4.2	Pseudo Stop71
4.4.3	Wait
4.4.4	Run72
Secti	on 5 Resets and Interrupts
5.1	Overview
5.1	
5.2.1	Vectors .73 Vector Table .73
_	
5.3	Effects of Reset
5.3.1	I/O pins
5.3.2	Memory
Secti	on 6 HCS12 Core Block Description

Section 20 Port Integration Module (PIM) Block Description

Section 21 Voltage Regulator (VREG) Block Description

Section 22 Printed Circuit Board Layout Proposals

Appendix A Electrical Characteristics

A.1	General	87
A.1.1	Parameter Classification	87
A.1.2	Power Supply	87
A.1.3	Pins	88
A.1.4	Current Injection	88
A.1.5	Absolute Maximum Ratings	89
A.1.6	ESD Protection and Latch-up Immunity	90
A.1.7	Operating Conditions	90
A.1.8	Power Dissipation and Thermal Characteristics	91
A.1.9	I/O Characteristics	93
A.1.10	Supply Currents	94
A.2	ATD Characteristics	97
A.2.1	ATD Operating Characteristics	97
A.2.2	Factors influencing accuracy	97
A.2.3	ATD accuracy	99
A.3	NVM, Flash and EEPROM	101
A.3.1	NVM timing	101
A.3.2	NVM Reliability	103
A.4	Voltage Regulator	105
A.5	Reset, Oscillator and PLL	
A.5.1	Startup	107
A.5.2	Oscillator	108
A.5.3	Phase Locked Loop	109
A.6	MSCAN	113
A.7	SPI	115
A.7.1	Master Mode	115
A.7.2	Slave Mode	117
A.8	External Bus Timing	119
A.8.1	General Muxed Bus Timing	119

MC9S12DJ64 Device User Guide — V01.20

Appendix B Package Information

B.1	General	.123
B.2	112-pin LQFP package	.124
B.3	80-pin QFP package	.125

Table 0-2 Document References

User Guide	Versi on	Document Order Number
HCS12 CPU Reference Manual	V02	S12CPUV2/D
HCS12 Module Mapping Control (MMC) Block Guide	V04	S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide	V03	S12MEBIV3/D
HCS12 Interrupt (INT) Block Guide	V01	S12INTV1/D
HCS12 Background Debug (BDM) Block Guide	V04	S12BDMV4/D
HCS12 Breakpoint (BKP) Block Guide	V01	S12BKPV1/D
Clock and Reset Generator (CRG) Block User Guide	V04	S12CRGV4/D
Oscillator (OSC) Block User Guide	V02	S12OSCV2/D
Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide	V01	S12ECT16B8CV1/D
Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide	V02	S12ATD10B8CV2/D
Inter IC Bus (IIC) Block User Guide	V02	S12IICV2/D
Asynchronous Serial Interface (SCI) Block User Guide	V02	S12SCIV2/D
Serial Peripheral Interface (SPI) Block User Guide	V02	S12SPIV2/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide	V01	S12PWM8B8CV1/D
64K Byte Flash (FTS64K) Block User Guide	V01	S12FTS64KV1/D
1K Byte EEPROM (EETS1K) Block User Guide	V01	S12EETS1KV1/D
Byte Level Data Link Controller -J1850 (BDLC) Block User Guide	V01	S12BDLCV1/D
Freescale Scalable CAN (MSCAN) Block User Guide	V02	S12MSCANV2/D
Voltage Regulator (VREG) Block User Guide	V01	S12VREGV1/D
Port Integration Module (PIM_9DJ64) Block User Guide	V01	S12PIM9DJ64V1/D

\$0034 - \$003F

CRG (Clock and Reset Generator)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0034	SYNR	Read:	0	0	SYN5	SYN4	SYN3	SYN2	SYN1	SYN0
ψ0004	STINIX	Write:			5110	SINA	5110	31N2	5111	31110
\$0035	REFDV	Read:	0	0	0	0	REFDV3	REFDV2 F	REFDV1	REFDV0
φ0033	KEFDV	Write:					KELD13	KEFDVZ	KELDAI	KELDAO
¢oose	CTFLG	Read:	0	0	0	0	0	0	0	0
\$0036	TEST ONLY	Write:								
# 0027	CDCELC	Read:	DTIE	DODE	0	LOCKIE	LOCK	TRACK	CCMIE	SCM
\$0037	CRGFLG	Write:	RTIF	PORF		LOCKIF			SCMIF	
	CDCINIT	Read:	DTIE	0	0	LOCKIE	0	0	COMIE	0
\$0038	CRGINT	Write:	RTIE			LOCKIE			SCMIE	
\$0039	CLKSEL	Read:	PLLSEL	PSTP	SYSWAI	ROAWAI	PLLWAI	CWAI	RTIWAI	COPWAI
φυυσθ	CLNSEL	Write:	FLLSEL	FOIF	STOWAL	KOAWAI	FLLVVAI	CVKI	KIIWAI	COFWAI
\$003A	PLLCTL	Read:	CME	PLLON	AUTO	ACQ	0	PRE	PCE	SCME
φυυσΑ	FLLCTL	Write:	CIVIL	FLLOIN	AUTO	ACQ		FNE	FUL	SCIVIE
¢002D	RTICTL	Read:	0	RTR6	DTD <i>E</i>	DTD4	DTD2	DTD2	RTR1	RTR0
\$003B	KIICIL	Write:		KIKO	RTR5	RTR4	RTR3	RTR2	KIKI	KIKU
#0000	CODOTI	Read:	WCOP	RSBCK	0	0	0	CDC	CD4	CDO
\$003C	COPCTL	Write:	WCOP	KODUK				CR2 CR1		CR0
Ф000 D	FORBYP	Read:	0	0	0	0	0	0	0	0
\$003D	TEST ONLY	Write:								
₾ 000 □	CTCTL	Read:	0	0	0	0	0	0	0	0
\$003E	TEST ONLY	Write:								
Ф 000 Г	4 DM 400 D	Read:	0	0	0	0	0	0	0	0
\$003F	ARMCOP	Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0040 - \$007F

ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0040	TIOS	Read: Write:	IOS7	IOS6	IOS5	IOS4	IOS3	IOS2	IOS1	IOS0
\$0041	CFORC	Read:	0	0	0	0	0	0	0	0
φ00 4 I	CFORC	Write:	FOC7	FOC6	FOC5	FOC4	FOC3	FOC2	FOC1	FOC0
\$0042	OC7M	Read: Write:	OC7M7	OC7M6	OC7M5	OC7M4	ОС7М3	OC7M2	OC7M1	ОС7М0
\$0043	OC7D	Read: Write:	OC7D7	OC7D6	OC7D5	OC7D4	OC7D3	OC7D2	OC7D1	OC7D0
\$0044	TCNT (hi)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
ΨΟΟΤΤ	TOINT (III)	Write:								
\$0045	TCNT (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
φυυ-ισ	10111 (10)	Write:								
\$0046	TSCR1	Read:	TEN	TSWAI	TSFRZ	TFFCA	0	0	0	0
φοσισ	1001(1	Write:	,	1011/11	101112	1110/				
\$0047	TTOV	Read: Write:	TOV7	TOV6	TOV5	TOV4	TOV3	TOV2	TOV1	TOV0
\$0048	TCTL1	Read: Write:	OM7	OL7	OM6	OL6	OM5	OL5	OM4	OL4
\$0049	TCTL2	Read: Write:	ОМ3	OL3	OM2	OL2	OM1	OL1	ОМО	OL0

\$00E8 - \$00EF

BDLC (Bytelevel Data Link Controller J1850)

Address	Name
\$00E8	DLCBCR1
\$00E9	DLCBSVR
\$00EA	DLCBCR2
\$00EB	DLCBDR
\$00EC	DLCBARD
\$00ED	DLCBRSR
\$00EE	DLCSCR
\$00EF	DLCBSTAT

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	IMSG	CLKS	0	0	0	0	ΙE	WCM
Write:	IIVISG	CLNS					IC	WCW
Read:	0	0	13	12	I1	10	0	0
Write:								
Read:	SMRST	DLOOP	RX4XE	NBFS	TEOD	TSIFR	TMIFR1	TMIFR0
Write:	SIVINST	DLOOP	NA4AL	NDFS	ILOD	ISIFK	TIVIIFIXI	TIVIIFICO
Read:	D7	D6	D5	D4	D3	D2	D1	D0
Write:	וט	D6	Do	υ4	DS	DZ	וט	D0
Read:	0	RXPOL	0	0	воз	BO2	BO1	BO0
Write:		KAPOL						
Read:	0	0	R5	R4	R3	R2	R1	R0
Write:			Ko	N4	КЭ	RΖ	ΚI	KU
Read:	0	0	0	BDLCE	0	0	0	0
Write:				BULCE				
Read:	0	0	0	0	0	0	0	IDLE
Write:								

\$00F0 - \$00FF

Reserved

Address	Name
\$00F0 -	Reserved
\$00FF	Reserved

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	0	0	0	0	0	0
Write:								

\$0100 - \$010F

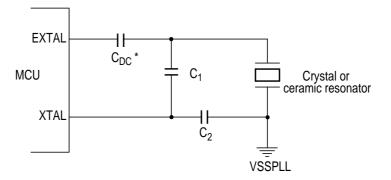
Flash Control Register (fts64k)

Address	Name
\$0100	FCLKDIV
\$0101	FSEC
\$0102	Reserved
\$0103	FCNFG
\$0104	FPROT
\$0105	FSTAT
\$0106	FCMD
\$0107	Reserved
\$0108	FADDRHI
\$0109	FADDRLO

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Read: Write:	FDIVLD	PRDIV8	FDIV5	FDIV4	FDIV3	FDIV2	FDIV1	FDIV0	
Read:	KEYEN	NV6	NV5	NV4	NV3	NV2	SEC1	SEC0	
Write:									
Read:	0	0	0	0	0	0	0	0	
Write:									
Read:	CBEIE	CCIE	KEYACC	0	0	0	0	0	
Write:	CDLIL	OOIL	NL IACC						
Read:	FPOPEN	NV6	FPHDIS	FPHS1	FPHS0	FPLDIS	FPLS1	FPLS0	
Write:	TT OF LIV	1110	1111010		111100	11 2510	11 201		
Read:	CBEIF	CCIF	PVIOL	ACCERR	0	BLANK	0	0	
Write:	052			7.0021.11		D2,			
Read:	0	CMDB6	CMDB5	0	0	CMDB2	0	CMDB0	
Write:		ONIDBO	OWIDBO			OWIDDE		OWIDDO	
Read:	0	0	0	0	0	0	0	0	
Write:									
Read:	Bit 14	Bit 14	13	12	11	10	9	Bit 8	
Write:						.0	<u> </u>	20	
Read:	Bit 7	6	5	4	3	2	1	Bit 0	
Write:	5 7	,	,	,	3	_	•	2 0	

Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout

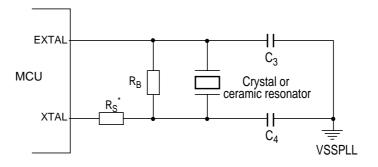
Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0172	Extended ID CAN0TIDR2	Read: Write:	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7
φυιτΖ	Standard ID	Read: Write:								
\$0173	Extended ID CAN0TIDR3	Read: Write:	ID6	ID5	ID4	ID3	ID2	ID1	ID0	RTR
ψΟ173	Standard ID	Read: Write:								
\$0174- \$017B	CANOTDSR0 - CANOTDSR7	Read: Write:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
\$017C	CAN0TDLR	Read: Write:					DLC3	DLC2	DLC1	DLC0
\$017D	CAN0TTBPR	Read: Write:	PRIO7	PRIO6	PRIO5	PRIO4	PRIO3	PRIO2	PRIO1	PRIO0
\$017E	CAN0TTSRH	Read:	TSR15	TSR14	TSR13	TSR12	TSR11	TSR10	TSR9	TSR8
		Write:	TODZ	TODO	TODE	TOD 4	TODO	TODO	TODA	TODO
\$017F	CAN0TTSRL	Read: Write:	TSR7	TSR6	TSR5	TSR4	TSR3	TSR2	TSR1	TSR0


\$0180 - \$023F Reserved

46

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0180 -	Posonyod	Read:	0	0	0	0	0	0	0	0
\$023F	Reserved	Write:								

\$0240 - \$027F PIM (Port Integration Module)


Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0240	PTT	Read: Write:	PTT7	PTT6	PTT5	PTT4	PTT3	PTT2	PTT1	PTT0
\$0241	PTIT	Read:	PTIT7	PTIT6	PTIT5	PTIT4	PTIT3	PTIT2	PTIT1	PTIT0
ψ0241		Write:								
\$0242	DDRT	Read: Write:	DDRT7	DDRT7	DDRT5	DDRT4	DDRT3	DDRT2	DDRT1	DDRT0
\$0243	RDRT	Read: Write:	RDRT7	RDRT6	RDRT5	RDRT4	RDRT3	RDRT2	RDRT1	RDRT0
\$0244	PERT	Read: Write:	PERT7	PERT6	PERT5	PERT4	PERT3	PERT2	PERT1	PERT0
\$0245	PPST	Read: Write:	PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0
\$0246	Reserved	Read:	0	0	0	0	0	0	0	0
ψ0240	ixeserveu	Write:								
\$0247	Reserved	Read:	0	0	0	0	0	0	0	0
Ψ02+1	reserved	Write:								
\$0248	PTS	Read: Write:	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0
\$0249	PTIS	Read:	PTIS7	PTIS6	PTIS5	PTIS4	PTIS3	PTIS2	PTIS1	PTIS0
Ψ0249	1 110	Write:								

* Due to the nature of a translated ground Colpitts oscillator a DC voltage bias is applied to the crystal

Please contact the crystal manufacturer for crystal DC bias conditions and recommended capacitor value C_{DC} .

Figure 2-4 Colpitts Oscillator Connections (PE7=1)

* Rs can be zero (shorted) when used with higher frequency crystals. Refer to manufacturer's data.

Figure 2-5 Pierce Oscillator Connections (PE7=0)

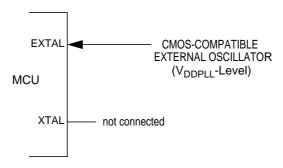


Figure 2-6 External Clock Connections (PE7=0)

(M) MOTOROLA

2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6

PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of \overline{RESET} . This pin is shared with the instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active when \overline{RESET} is low.

2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5

PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active when RESET is low.

2.3.16 PE4 / ECLK — Port E I/O Pin 4

PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK. ECLK can be used as a timing reference.

2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3

PE3 is a general purpose input or output pin. In MCU expanded modes of operation, \overline{LSTRB} can be used for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on, \overline{TAGLO} is used to tag the low half of the instruction word being read into the instruction queue.

2.3.18 PE2 / R/W — Port E I/O Pin 2

PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the read/write output signal for the external bus. It indicates the direction of data on the external bus.

2.3.19 PE1 / IRQ — Port E Input Pin 1

PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.

2.3.20 PE0 / XIRQ — Port E Input Pin 0

PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.

2.3.21 PH7 / KWH7 — Port H I/O Pin 7

PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

C3 VDDA VDD1^C C2 VDDR VSSPLL VDDPLL

Figure 22-1 Recommended PCB Layout 112LQFP Colpitts Oscillator

MC9S12DJ64 Device User Guide — V01.20

VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection.

NOTE:

In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted.

IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR

pins.

VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and

VSSPLL.

IDD is used for the sum of the currents flowing into VDD1 and VDD2.

A.1.3 Pins

There are four groups of functional pins.

A.1.3.1 5V I/O pins

Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD and the RESET pins. The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently.

A.1.3.2 Analog Reference

This group is made up by the VRH and VRL pins.

A.1.3.3 Oscillator

The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL.

A.1.3.4 TEST

This pin is used for production testing only.

A.1.3.5 VREGEN

This pin is used to enable the on chip voltage regulator.

A.1.4 Current Injection

Power supply must maintain regulation within operating V_{DD5} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD5}$) is greater than I_{DD5} , the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.

(M) MOTOROLA

NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the ambient temperature T_A and the junction temperature T_J . For power dissipation calculations refer to **Section A.1.8 Power Dissipation and Thermal** Characteristics.

Table A-4 Operating Conditions

Rating	Symbol	Min	Тур	Max	Unit
I/O, Regulator and Analog Supply Voltage	V_{DD5}	4.5	5	5.25	V
Digital Logic Supply Voltage ¹	V _{DD}	2.35	2.5	2.75	V
PLL Supply Voltage ¹	V _{DDPLL}	2.35	2.5	2.75	V
Voltage Difference VDDX to VDDR and VDDA	Δ_{VDDX}	-0.1	0	0.1	V
Voltage Difference VSSX to VSSR and VSSA	Δ_{VSSX}	-0.1	0	0.1	V
Oscillator	f _{osc}	0.5	-	16	MHz
Bus Frequency	f _{bus}	0.25 ²	-	25	MHz
MC9S12DJ64 C					
Operating Junction Temperature Range	T_J	-40	-	100	°C
Operating Ambient Temperature Range ³	T _A	-40	27	85	°C
MC9S12DJ64 V					
Operating Junction Temperature Range	T_J	-40	-	120	°C
Operating Ambient Temperature Range ³	T _A	-40	27	105	°C
MC9S12DJ64 M					
Operating Junction Temperature Range	T_J	-40	-	140	°C
Operating Ambient Temperature Range ³	T _A	-40	27	125	°C

NOTES:

A.1.8 Power Dissipation and Thermal Characteristics

Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (T_J) in ${}^{\circ}C$ can be obtained from:

$$\mathsf{T}_\mathsf{J} = \mathsf{T}_\mathsf{A} + (\mathsf{P}_\mathsf{D} \bullet \Theta_\mathsf{JA})$$

 $T_{,I}$ = Junction Temperature, [°C]

^{1.} The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The given operating range applies when this regulator is disabled and the device is powered from an external source.

Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation.

^{3.} Please refer to **Section A.1.8 Power Dissipation and Thermal Characteristics** for more details about the relation between ambient temperature T_A and device junction temperature T_J.

MC9S12DJ64 Device User Guide — V01.20

NOTES:

- PLL off
 At those low power dissipation levels T_J = T_A can be assumed

96

A.2 ATD Characteristics

This section describes the characteristics of the analog to digital converter.

A.2.1 ATD Operating Characteristics

The **Table A-8** shows conditions under which the ATD operates.

The following constraints exist to obtain full-scale, full range results:

 $V_{SSA} \le V_{RL} \le V_{IN} \le V_{RH} \le V_{DDA}$. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped.

Table A-8 ATD Operating Characteristics

Condit	tions	s are shown in Table A-4 unless otherwise noted					
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	D	Reference Potential Low High	V _{RL} V _{RH}	V _{SSA} V _{DDA} /2		V _{DDA} /2 V _{DDA}	V
2	С	Differential Reference Voltage ¹	$V_{RH}-V_{RL}$	4.50	5.00	5.25	V
3	D	ATD Clock Frequency	f _{ATDCLK}	0.5		2.0	MHz
4	D	ATD 10-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}		14 7		28 14	Cycles μs
5	D	ATD 8-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}		12 6		26 13	Cycles µs
6	D	Recovery Time (V _{DDA} =5.0 Volts)	t _{REC}			20	μs
7	Р	Reference Supply current 2 ATD blocks on	I _{REF}			0.750	mA
8	Р	Reference Supply current 1 ATD block on	I _{REF}			0.375	mA

NOTES:

A.2.2 Factors influencing accuracy

Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD.

A.2.2.1 Source Resistance:

Due to the input pin leakage current as specified in **Table A-6** in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R_S

^{1.} Full accuracy is not guaranteed when differential voltage is less than 4.50V

^{2.} The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks.

A.2.3 ATD accuracy

Table A-10 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance.

Table A-10 ATD Conversion Performance

Conditions are shown in Table A-4 unless otherwise noted

 $V_{REF} = V_{RH} - V_{RL} = 5.12V$. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV

 $f_{ATDCLK} = 2.0MHz$

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	10-Bit Resolution	LSB		5		mV
2	Р	10-Bit Differential Nonlinearity	DNL	-1		1	Counts
3	Р	10-Bit Integral Nonlinearity	INL	-2.5	±1.5	2.5	Counts
4	Р	10-Bit Absolute Error ¹	AE	-3	±2.0	3	Counts
5	Р	8-Bit Resolution	LSB		20		mV
6	Р	8-Bit Differential Nonlinearity	DNL	-0.5		0.5	Counts
7	Р	8-Bit Integral Nonlinearity	INL	-1.0	±0.5	1.0	Counts
8	Р	8-Bit Absolute Error ¹	AE	-1.5	±1.0	1.5	Counts

NOTES:

For the following definitions see also **Figure A-1**.

Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.

$$DNL(i) = \frac{V_i - V_{i-1}}{1LSB} - 1$$

The Integral Non-Linearity (INL) is defined as the sum of all DNLs:

$$INL(n) = \sum_{i=1}^{n} DNL(i) = \frac{V_n - V_0}{1LSB} - n$$

^{1.} These values include the quantization error which is inherently 1/2 count for any A/D converter.

A.3 NVM, Flash and EEPROM

NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM.

A.3.1 NVM timing

The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency f_{NVMOSC} is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured.

The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as f_{NVMOP}.

The minimum program and erase times shown in **Table A-11** are calculated for maximum f_{NVMOP} and maximum f_{bus} . The maximum times are calculated for minimum f_{NVMOP} and a f_{bus} of 2MHz.

A.3.1.1 Single Word Programming

The programming time for single word programming is dependant on the bus frequency as a well as on the frequency f_{NVMOP} and can be calculated according to the following formula.

$$t_{swpgm} = 9 \cdot \frac{1}{f_{NVMOP}} + 25 \cdot \frac{1}{f_{bus}}$$

A.3.1.2 Row Programming

This applies only to the Flash where up to 32 words in a row can be programmed consecutively by keeping the command pipeline filled. The time to program a consecutive word can be calculated as:

$$t_{\text{bwpgm}} = 4 \cdot \frac{1}{f_{\text{NVMOP}}} + 9 \cdot \frac{1}{f_{\text{bus}}}$$

The time to program a whole row is:

$$t_{brpqm} = t_{swpqm} + 31 \cdot t_{bwpqm}$$

Row programming is more than 2 times faster than single word programming.

A.3.1.3 Sector Erase

Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:

A.5.1.5 Pseudo Stop and Wait Recovery

The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After t_{wrs} the CPU starts fetching the interrupt vector.

A.5.2 Oscillator

The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce oscillator/external clock depends on the \overline{XCLKS} signal which is sampled during reset. Pierce oscillator/external clock mode allows the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. t_{CQOUT} specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up time t_{UPOSC} . The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency t_{CMFA} .

Table A-15 Oscillator Characteristics

Condit	ions	s are shown in Table A-4 unless otherwise noted					
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1a	С	Crystal oscillator range (Colpitts)	fosc	0.5		16	MHz
1b	С	Crystal oscillator range (Pierce) ¹	fosc	0.5		40	MHz
2	Р	Startup Current	iosc	100			μΑ
3	С	Oscillator start-up time (Colpitts)	t _{UPOSC}		8 ²	100 ³	ms
4	D	Clock Quality check time-out	t _{CQOUT}	0.45		2.5	S
5	Р	Clock Monitor Failure Assert Frequency	f _{CMFA}	50	100	200	KHz
6	Р	External square wave input frequency ⁴	f _{EXT}	0.5		50	MHz
7	D	External square wave pulse width low	t _{EXTL}	9.5			ns
8	D	External square wave pulse width high	t _{EXTH}	9.5			ns
9	D	External square wave rise time	t _{EXTR}			1	ns
10	D	External square wave fall time	t _{EXTF}			1	ns
11	D	Input Capacitance (EXTAL, XTAL pins)	C _{IN}		7		pF
12	С	DC Operating Bias in Colpitts Configuration on EXTAL Pin	V _{DCBIAS}		1.1		V
13	Р	EXTAL Pin Input High Voltage ⁴	V _{IH,EXTAL}	0.75*V _{DDPLL}			V
	Т	EXTAL Pin Input High Voltage ⁴	V _{IH,EXTAL}			V _{DDPLL} + 0.3	V
14	Р	EXTAL Pin Input Low Voltage ⁴	V _{IL,EXTAL}			0.25*V _{DDPLL}	V
	Т	EXTAL Pin Input Low Voltage ⁴	V _{IL,EXTAL}	V _{DDPLL} - 0.3			V
15	С	EXTAL Pin Input Hysteresis ⁴	V _{HYS,EXTAL}		250		mV

Appendix B Package Information

B.1 General

This section provides the physical dimensions of the MC9S12DJ64 and MC9S12D32 packages.