

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml22j16a-aut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Battery backup support
- Two runtime selectable power/performance levels
- Embedded Buck/LDO regulator supporting on-the-fly selection
- Active mode: <50µA/MHz
- Standby with full retention, RTC and LCD = 3.47µA
 - 2.1µs wake-up time
- Standby with full retention and RTC: 1.87µA
 - 2.1µs wake-up time
- Ultra low power Backup mode with RTC: 490nA
 - 90µs wake-up time
- Peripherals
 - Segment LCD controller
 - Up to 8 (4) common and 40 (44) segment terminals to drive 320 (176) segments
 - Static, 1/2, 1/3, 1/4 bias
 - Internal charge pump able to generate VLCD higher than VDDIO
 - 16-channel Direct Memory Access Controller (DMAC)
 - 8-channel Event System
 - Up to four 16-bit Timer/Counters (TC), each configurable as:
 - 16-bit TC with two compare/capture channels
 - 8-bit TC with two compare/capture channels
 - 32-bit TC with two compare/capture channels, by using two TCs
 - One 24-bit Timer/Counters for Control (TCC), with extended functions:
 - Four compare channels with optional complementary output
 - · Generation of synchronized pulse width modulation (PWM) pattern across port pins
 - Deterministic fault protection, fast decay and configurable dead-time between complementary output
 - Dithering that increase resolution with up to 5 bit and reduce quantization error
 - Frequency Meter
 - 32-bit Real Time Counter (RTC) with clock/calendar function
 - 8x32-bit Backup Register
 - Tamper Detection
 - Watchdog Timer (WDT)
 - CRC-32 generator
 - One full-speed (12Mbps) Universal Serial Bus (USB) 2.0 Device
 - Eight endpoints
 - Crystal less operation
 - Up to six Serial Communication Interfaces (SERCOM), each configurable as:
 - USART with full-duplex and single-wire half-duplex configuration
 - ISO7816
 - I²C up to 3.4MHz¹
 - SPI
 - One AES encryption engine

¹ Max 1 high-speed mode and max 3 fast mode I²C

Table of Contents

Intr	oduction	1			
Fea	Features1				
1.	Description	6			
2.	Configuration Summary	7			
3.	Ordering Information. 3.1. SAM L22N. 3.2. SAM L22J. 3.3. SAM L22G. 3.4. Device Identification.	9 9 9 10 10			
4.	Block Diagram	. 12			
5.	Pinout. 5.1. SAM L22G. 5.2. SAM L22J. 5.3. SAM L22N.	.14 14 15 16			
6.	Signal Descriptions List	17			
7.	I/O Multiplexing and Considerations	. 20 20 22			
8.	Power Supply and Start-Up Considerations. 8.1. Power Domain Overview. 8.2. Power Supply Considerations.	. 25 25 25			
	 8.3. Power-Up 8.4. Power-On Reset and Brown-Out Detector 8.5. Performance Level Overview 	28 28 29			
9.	Product Mapping	.30			
10.	Memories. 10.1. Embedded Memories. 10.2. Physical Memory Map. 10.3. NVM User Row Mapping. 10.4. NVM Software Calibration Area Mapping. 10.5. Serial Number.	. 31 31 32 33 33			
11.	Processor and Architecture	34 34 36			

1. Description

Atmel | SMART SAM L22 is a series of Ultra low-power segment LCD microcontrollers using the 32-bit ARM[®] Cortex[®]-M0+ processor, ranging from 48- to 100-pins with up to 256KB Flash and 32KB of SRAM and can drive up to 320 LCD segments. The SAM L22 devices operate at a maximum frequency of 32MHz and reach 2.46 Coremark/MHz. They are designed for simple and intuitive migration with identical peripheral modules, hex compatible code, identical linear address map and pin compatible migration paths between all devices in the product series. All devices include intelligent and flexible peripherals, Atmel Event System for inter-peripheral signaling, and support for capacitive touch button, slider and wheel user interfaces.

The Atmel SAM L22 devices provide the following features: Segment LCD (SLCD) controller with up to 48 selectable SLCD pins from max. 52 pins to drive up to 320 segments, all SLCD Pins can be used also as GPIOs (100-pin package: 8 of the SLCD pins can be used only as GP input), in-system programmable Flash, sixteen-channel direct memory access (DMA) controller, 8 channel Event System, programmable interrupt controller, up to 82 programmable I/O pins, 32-bit real-time clock and calendar, up to four 16-bit Timer/Counters (TC) and one 24-bit Timer/Counters for Control (TCC), where each TC can be configured to perform frequency and waveform generation, accurate program execution timing or input capture with time and frequency measurement of digital signals. The TCs can operate in 8- or 16-bit mode, selected TCs can be cascaded to form a 32-bit TC, and the TCC has extended functions optimized for motor, lighting and other control applications. The series provide one full-speed USB 2.0 device interface; up to six Serial Communication Modules (SERCOM) that each can be configured to act as an USART, UART, SPI, I²C up to 3.4MHz, SMBus, PMBus, and ISO7816 smart card interface; up to twenty channel 1Msps 12-bit ADC with optional oversampling and decimation supporting up to 16-bit resolution, two analog comparators with window mode, Peripheral Touch Controller supporting up to 256 buttons, sliders, wheels and proximity sensing; programmable Watchdog Timer, brown-out detector and power-on reset and twopin Serial Wire Debug (SWD) program and debug interface.

All devices have accurate and low-power external and internal oscillators. All oscillators can be used as a source for the system clock. Different clock domains can be independently configured to run at different frequencies, enabling power saving by running each peripheral at its optimal clock frequency, and thus maintaining a high CPU frequency while reducing power consumption.

The SAM L22 devices have four software-selectable sleep modes, idle, standby, backup and off. In idle mode the CPU is stopped while all other functions can be kept running. In standby all clocks and functions are stopped expect those selected to continue running. In this mode all RAMs and logic contents are retained. The device supports SleepWalking. This feature allows the peripheral to wake up from sleep based on predefined conditions, and thus allows some internal operation like DMA transfer and/or the CPU to wake up only when needed, e.g. when a threshold is crossed or a result is ready. The Event System supports synchronous and asynchronous events, allowing peripherals to receive, react to and send events even in standby mode.

The SAM L22 devices have two software-selectable performance level (PL0 and PL2) allowing the user to scale the lowest core voltage level that will support the operating frequency.

The Flash program memory can be reprogrammed in-system through the SWD interface. The same interface can be used for nonintrusive on-chip debugging of application code. A boot loader running in the device can use any communication interface to download and upgrade the application program in the Flash memory.

The Atmel SAM L22 devices are supported with a full suite of program and system development tools, including C compilers, macro assemblers, program debugger/simulators, programmers and evaluation kits.

2. Configuration Summary

	SAM L22N	SAM L22J	SAM L22G
Pins	100	64	48 (QFN and TQFP) 49 (WLCSP)
General Purpose I/O- pins (GPIOs) ⁽¹⁾	82	50	36
Flash	256/128/64KB	256/128/64KB	256/128/64KB
Flash RWW section	8/4/2KB	8/4/2KB	8/4/2KB
System SRAM	32/16/8KB	32/16/8KB	32/16/8KB
Segment LCD (SLCD) Pins ⁽¹⁾	48 selectable from 52	31	23
Timer Counter (TC) instances	4	4	4
Waveform output channels per TC instance	2	2	2
Timer Counter for Control (TCC) instances	1	1	1
Waveform output channels per TCC	4	4	4
DMA channels	16	16	16
USB interface	1	1	1
AES engine	1	1	1
Configurable Custom Logic (CCL) (LUTs)	4	4	4
True Random Generator (TRNG)	1	1	1
Serial Communication Interface (SERCOM) instances	6	4 ⁽²⁾	4 ⁽²⁾
Analog-to-Digital Converter (ADC) channels	20	16	10
Two Analog Comparators (AC) with number of external input channels	4	4	2
Tamper Input Pins	5	3	2

3. Ordering Information

Note: The device variant (last letter of the ordering number) is independent of the die revision (DSU.DID.REVISION): The device variant denotes functional differences, whereas the die revision marks evolution of the die.

3.1. SAM L22N

Table 3-1. SAM L22N Ordering Codes

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAML22N16A-AUT	64K	8K	TQFP100	Tape & Reel
ATSAML22N17A-AUT	128K	16K	TQFP100	Tape & Reel
ATSAML22N18A-AUT	256K	32K	TQFP100	Tape & Reel

3.2. SAM L22J

Table 3-2. SAM L22J Ordering Codes

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAML22J16A-AUT	64K	8K	TQFP64	Tape & Reel
ATSAML22J16A-MUT	~		QFN64	
ATSAML22J17A-AUT	128K	16K	TQFP64	Tape & Reel
ATSAML22J17A-MUT	-		QFN64	

4. Block Diagram

Note:

1. Some device configurations have different number of SERCOM instances, Timer/Counter instances, PTC signals and ADC signals. The number of PTC X and Y signals is configurable.

6. Signal Descriptions List

The following table gives details on signal names classified by peripheral.

Table 6	-1.	Signal	Descriptions	List
---------	-----	--------	--------------	------

Signal Name	Function	Туре	Active Level	
Analog Comparators	- AC			
AIN[3:0]	AC Analog Inputs	Analog		
CMP[1:0]	AC Analog Output	Analog		
Analog Digital Conve	rter - ADC			
AIN[19:0]	ADC Analog Inputs	Analog		
VREFA	ADC Voltage External Reference A	Analog		
VREFB	ADC Voltage External Reference B	Analog		
External Interrupt Co	ntroller - EIC			
EXTINT[15:0]	External Interrupts inputs	Digital		
NMI	External Non-Maskable Interrupt input	Digital		
Generic Clock Genera	ator - GCLK	·		
GCLK_IO[4:0]	Generic Clock (source clock inputs or generic clock generator output)	Digital		
Custom Control Logi	c - CCL			
IN[11:0]	Logic Inputs	Digital		
OUT[3:0]	Logic Outputs	Digital		
Supply Controller - S	UPC			
VBAT	External battery supply Inputs	Analog		
PSOK	Main Power Supply OK input	Digital		
OUT[1:0]	Logic Outputs	Digital		
Power Manager - PM				
RESETN	Reset input	Digital	Low	
Serial Communication Interface - SERCOMx				
PAD[3:0]	SERCOM Inputs/Outputs Pads	Digital		
Oscillators Control -	OSCCTRL			
XIN	Crystal or external clock Input	Analog/Digital		
XOUT	Crystal Output	Analog		

8. Power Supply and Start-Up Considerations

8.1. Power Domain Overview

The Atmel SAM L22 power domains are not independent of each other:

- VDDCORE and VDDIO share GND, whereas VDDANA refers to GNDANA.
- VDDCORE serves as the internal voltage regulator output.
- VSWOUT and VDDBU are internal power domains.

8.2. Power Supply Considerations

8.2.1. Power Supplies

The Atmel SAM L22 has several different power supply pins:

- VDDIO powers I/O lines and OSC16M, XOSC, the internal regulator for VDDCORE and the Automatic Power Switch. Voltage is 1.62V to 3.63V
- VDDANA powers I/O lines and the ADC, AC, LCD, and PTC. Voltage is 1.62V to 3.63V
- VLCD has two alternative functions:
 - Output of the LCD voltage pump when VLCD is generated internally. Output voltage is 2.5V to 3.5V.
 - Supply input for the bias generator when VLCD is provided externally by the application. Input voltage is 2.4 to 3.6V.
- VBAT powers the Automatic Power Switch. Voltage is 1.62V to 3.63V
- VDDCORE serves as the internal voltage regulator output. It powers the core, memories, peripherals, DFLL48M and FDPLL96M. Voltage is 0.9V to 1.2V typical.
- The Automatic Power Switch is a configurable switch that selects between VDDIO and VBAT as supply for the internal output VSWOUT, see the figure in Power Domain Overview.

8.4.4. Brown-Out Detector on VDDCORE

Once the device has started up, BOD12 monitors the internal VDDCORE.

8.5. Performance Level Overview

By default, the device will start in Performance Level 0. This PL0 is aiming for the lowest power consumption by limiting logic speeds and the CPU frequency. As a consequence, all GCLK will have limited capabilities, and some peripherals and clock sources will not work or with limited capabilities:

List of peripherals/clock sources not available in PL0:

- USB (limited by logic frequency)
- DFLL48M

List of peripherals/clock sources with limited capabilities in PL0:

- All AHB/APB peripherals are limited by CPU frequency
- DPLL96M: may be able to generate 48MHz internally, but the output cannot be used by logic
- GCLK: the maximum frequency is by factor 4 compared to PL2
- SW interface: the maximum frequency is by factor 4 compared to PL2
- TC: the maximum frequency is by factor 4 compared to PL2
- TCC:the maximum frequency is by factor 4 compared to PL2
- SERCOM: the maximum frequency is by factor 4 compared to PL2

List of peripherals/clock sources with full capabilities in PL0:

- AC
- ADC
- EIC
- OSC16M
- PTC
- All 32KHz clock sources and peripherals

Full functionality and capability will be ensured in PL2. When transitioning between performance levels, the Supply Controller (SUPC) will provide a configurable smooth voltage scaling transition.

10. Memories

10.1. Embedded Memories

- Internal high-speed Flash with Read-While-Write (RWW) capability on a section of the array
- Internal high-speed RAM, single-cycle access at full speed

10.2. Physical Memory Map

The high-speed bus is implemented as a bus matrix. All high-speed bus addresses are fixed, and they are never remapped in any way, even during boot. The 32-bit physical address space is mapped as follows:

Table 10-1. SAM L22 Physical Memory Map

Memory	Start address	Size [KB]		
		SAML22x18 ⁽¹⁾	SAML22x17 ⁽¹⁾	SAML22x16 ⁽¹⁾
Embedded Flash	0x0000000	256	128	64
Embedded RWW section	0x00400000	8	4	2
Embedded SRAM	0x20000000	32	16	8
Peripheral Bridge A	0x4000000	64	64	64
Peripheral Bridge B	0x41000000	64	64	64
Peripheral Bridge C	0x42000000	64	64	64
IOBUS	0x6000000	0.5	0.5	0.5

Note: 1. x = G, J, or E.

Table 10-2. Flash Memory Parameters

Device	Flash size [KB]	Number of pages	Page size [Bytes]
SAML22x18 ⁽¹⁾	256	4096	64
SAML22x17 ⁽¹⁾	128	2048	64
SAML22x16 ⁽¹⁾	64	1024	64

Note: 1. x = G, J, or E.

Table 10-3. RWW Section Parameters⁽¹⁾

Device	Flash size [KB]	Number of pages	Page size [Bytes]
SAML22x18 ⁽¹⁾	8	128	64
SAML22x17 ⁽¹⁾	4	64	64
SAML22x16 ⁽¹⁾	2	32	64

Note: 1. x = G, J, or E.

11. Processor and Architecture

11.1. Cortex M0+ Processor

The Atmel SAM L22 implements the ARM ARM[®]Cortex[™]-M0+ processor, based on the ARMv6 Architecture and Thumb[®]-2 ISA. The Cortex M0+ is 100% instruction set compatible with its predecessor, the Cortex-M0 core, and upward compatible to Cortex-M3 and M4 cores. The implemented ARM Cortex-M0+ is revision r0p1. For more information refer to http://www.arm.com

11.1.1. Cortex M0+ Configuration

Table 11-1. Cortex M0+ Configuration

Features	Cortex-M0+ options	SAM L22 configuration
Interrupts	External interrupts 0-32	27
Data endianness	Little-endian or big-endian	Little-endian
SysTick timer	Present or absent	Present
Number of watchpoint comparators	0, 1, 2	2
Number of breakpoint comparators	0, 1, 2, 3, 4	4
Halting debug support	Present or absent	Present
Multiplier	Fast or small	Fast (single cycle)
Single-cycle I/O port	Present or absent	Present
Wake-up interrupt controller	Supported or not supported	Not supported
Vector Table Offset Register	Present or absent	Present
Unprivileged/Privileged support	Present or absent	Present
Memory Protection Unit	Not present or 8-region	8-region
Reset all registers	Present or absent	Absent
Instruction fetch width	16-bit only or mostly 32-bit	32-bit

The ARM Cortex-M0+ core has two bus interfaces:

- Single 32-bit AMBA-3 AHB-Lite system interface that provides connections to peripherals and all system memory, which includes flash and RAM.
- Single 32-bit I/O port bus interfacing to the PORT and DIVAS with 1-cycle loads and stores.

11.1.2. Cortex M0+ Peripherals

- System Control Space (SCS)
 - The processor provides debug through registers in the SCS. Refer to the Cortex-M0+ Technical Reference Manual for details (http://www.arm.com)
- Nested Vectored Interrupt Controller (NVIC)
 - External interrupt signals connect to the NVIC, and the NVIC prioritizes the interrupts.
 Software can set the priority of each interrupt. The NVIC and the Cortex-M0+ processor core are closely coupled, providing low latency interrupt processing and efficient processing of late

arriving interrupts. Refer to NVIC-Nested Vector Interrupt Controller and the Cortex-M0+ Technical Reference Manual for details (http://www.arm.com).

Note: When the CPU frequency is much higher than the APB frequency it is recommended to insert a memory read barrier after each CPU write to registers mapped on the APB. Failing to do so in such conditions may lead to unexpected behavior such as e.g. re-entering a peripheral interrupt handler just after leaving it.

- System Timer (SysTick)
 - The System Timer is a 24-bit timer clocked by CLK_CPU that extends the functionality of both the processor and the NVIC. Refer to the Cortex-M0+ Technical Reference Manual for details (http://www.arm.com).
- System Control Block (SCB)
 - The System Control Block provides system implementation information, and system control. This includes configuration, control, and reporting of the system exceptions. Refer to the Cortex-M0+ Devices Generic User Guide for details (http://www.arm.com).
- Micro Trace Buffer (MTB)
 - The CoreSight MTB-M0+ (MTB) provides a simple execution trace capability to the Cortex-M0+ processor. Refer to section MTB-Micro Trace Buffer and the CoreSight MTB-M0+ Technical Reference Manual for details (http://www.arm.com).
- Memory Protection Unit (MPU)
 - The Memory Protection Unit divides the memory map into a number of regions, and defines the location, size, access permissions and memory attributes of each region. Refer to the Cortex-M0+ Devices Generic User Guide for details (http://www.arm.com)

11.1.3. Cortex M0+ Address Map

Table 11-2. Cortex-M0+ Address Map

Address	Peripheral
0xE000E000	System Control Space (SCS)
0xE000E010	System Timer (SysTick)
0xE000E100	Nested Vectored Interrupt Controller (NVIC)
0xE000ED00	System Control Block (SCB)
0x41006000	Micro Trace Buffer (MTB)

Related Links

Product Mapping on page 30

11.1.4. I/O Interface

The device allows direct access to PORT registers. Accesses to the AMBA[®] AHB-Lite[™] and the single cycle I/O interface can be made concurrently, so the Cortex M0+ processor can fetch the next instructions while accessing the I/Os. This enables single cycle I/O access to be sustained for as long as necessary.

11.2. Nested Vector Interrupt Controller

11.2.1. Overview

The Nested Vectored Interrupt Controller (NVIC) in the SAM L22 supports 32 interrupts with four different priority levels. For more details, refer to the Cortex-M0+ Technical Reference Manual (http://www.arm.com).

11.2.2. Interrupt Line Mapping

Each of the interrupt lines is connected to one peripheral instance, as shown in the table below. Each peripheral can have one or more interrupt flags, located in the peripheral's Interrupt Flag Status and Clear (INTFLAG) register.

An interrupt flag is set when the interrupt condition occurs. Each interrupt in the peripheral can be individually enabled by writing a '1' to the corresponding bit in the peripheral's Interrupt Enable Set (INTENSET) register, and disabled by writing '1' to the corresponding bit in the peripheral's Interrupt Enable Clear (INTENCLR) register.

An interrupt request is generated from the peripheral when the interrupt flag is set and the corresponding interrupt is enabled.

The interrupt requests for one peripheral are ORed together on system level, generating one interrupt request for each peripheral. An interrupt request will set the corresponding interrupt pending bit in the NVIC interrupt pending registers (SETPEND/CLRPEND bits in ISPR/ICPR).

For the NVIC to activate the interrupt, it must be enabled in the NVIC interrupt enable register (SETENA/ CLRENA bits in ISER/ICER). The NVIC interrupt priority registers IPR0-IPR7 provide a priority field for each interrupt.

Peripheral source	NVIC line
EIC NMI – External Interrupt Controller	NMI
PM – Power Manager	0
MCLK - Main Clock	
OSCCTRL - Oscillators Controller	
OSC32KCTRL - 32KHz Oscillators Controller	
PAC - Peripheral Access Controller	
SUPC - Supply Controller	
WDT – Watchdog Timer	1
RTC – Real Time Counter	2
EIC – External Interrupt Controller	3
FREQM - Frequency Meter	4
USB - Universal Serial Bus	5
NVMCTRL – Non-Volatile Memory Controller	6
DMAC - Direct Memory Access Controller	7

Table 11-3. Interrupt Line Mapping

11.4.3. Configuration

Figure 11-1. Master-Slave Relations High-Speed Bus Matrix

Table 11-4. High Speed Bus Matrix Masters

High-Speed Bus Matrix Masters	Master ID
CM0+ - Cortex M0+ Processor	0
DSU - Device Service Unit	1
DMAC - Direct Memory Access Controller / Data Access	2

Table 11-5. High-Speed Bus Matrix Slaves

High-Speed Bus Matrix Slaves	Slave ID
Internal Flash Memory	0
SRAM Port 0 - CM0+ Access	1
SRAM Port 1 - DSU Access	2
AHB-APB Bridge B	3
AHB-APB Bridge A	4

12.2. Package Drawings

12.2.1. 100 pin TQFP

DRAWINGS NOT SCALED

SIDE VIEW

COMMON DIMENSIONS (Unit of Measure = mm)				
SYMBOL	MIN	NOM	мах	NOTE
А			1.20	
A1	0.95		1.05	
с	0.09		0.20	
D/E	16.00			
D1/E1	14.00		2	
J	0.05		0.15	
L	0.45		0.75	
e	0.50 BSC			
f	0.17		0.27	
n	100			

 Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026, Variation AED.
 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
 3. Lead coplanarity is 0.10mm maximum.

Table 12-2. Device and Package Maximum Weight

520	mg
-----	----

Table 12-3. Package Characteristics

DETAIL VIEW

Moisture Sensitivity Level	MSL3
----------------------------	------

Table 12-4. Package Reference

JEDEC Drawing Reference	MS-026, variant AED
JESD97 Classification	e3

Atmel

300	mg
-----	----

Table 12-6. Package Characteristics

Moisture Sensitivity Level	MSL3
----------------------------	------

Table 12-13. Package Reference

JEDEC Drawing Reference	N/A
JESD97 Classification	E1

12.2.5. 48 pin TQFP

Table 12-15. Package Characteristics

Moisture Sensitivity Level	MSL3
Table 12-16. Package Reference	
JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

12.2.6. 48 pin QFN

Note: The exposed die attach pad is not connected electrically inside the device.

Table 12-17. Device and Package Maximum Weight

140	mg	
Table 12-18. Package Characteristics		
Moisture Sensitivity Level	MSL3	
Table 12-19. Package Reference		
JEDEC Drawing Reference	MO-220	

E3

12.3. Soldering Profile

JESD97 Classification

The following table gives the recommended soldering profile from J-STD-20.

Table 12-20.

Profile Feature	Green Package
Average Ramp-up Rate (217°C to peak)	3°C/s max.
Preheat Temperature 175°C ±25°C	150-200°C
Time Maintained Above 217°C	60-150s
Time within 5°C of Actual Peak Temperature	30s
Peak Temperature Range	260°C
Ramp-down Rate	6°C/s max.
Time 25°C to Peak Temperature	8 minutes max.

A maximum of three reflow passes is allowed per component.

