

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml22j18a-mut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

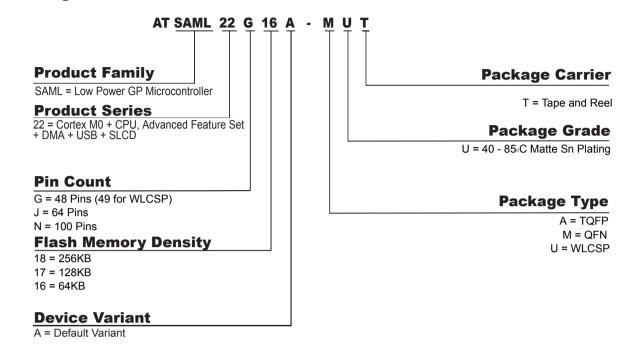
1. Description

Atmel | SMART SAM L22 is a series of Ultra low-power segment LCD microcontrollers using the 32-bit ARM[®] Cortex[®]-M0+ processor, ranging from 48- to 100-pins with up to 256KB Flash and 32KB of SRAM and can drive up to 320 LCD segments. The SAM L22 devices operate at a maximum frequency of 32MHz and reach 2.46 Coremark/MHz. They are designed for simple and intuitive migration with identical peripheral modules, hex compatible code, identical linear address map and pin compatible migration paths between all devices in the product series. All devices include intelligent and flexible peripherals, Atmel Event System for inter-peripheral signaling, and support for capacitive touch button, slider and wheel user interfaces.

The Atmel SAM L22 devices provide the following features: Segment LCD (SLCD) controller with up to 48 selectable SLCD pins from max. 52 pins to drive up to 320 segments, all SLCD Pins can be used also as GPIOs (100-pin package: 8 of the SLCD pins can be used only as GP input), in-system programmable Flash, sixteen-channel direct memory access (DMA) controller, 8 channel Event System, programmable interrupt controller, up to 82 programmable I/O pins, 32-bit real-time clock and calendar, up to four 16-bit Timer/Counters (TC) and one 24-bit Timer/Counters for Control (TCC), where each TC can be configured to perform frequency and waveform generation, accurate program execution timing or input capture with time and frequency measurement of digital signals. The TCs can operate in 8- or 16-bit mode, selected TCs can be cascaded to form a 32-bit TC, and the TCC has extended functions optimized for motor, lighting and other control applications. The series provide one full-speed USB 2.0 device interface; up to six Serial Communication Modules (SERCOM) that each can be configured to act as an USART, UART, SPI, I²C up to 3.4MHz, SMBus, PMBus, and ISO7816 smart card interface; up to twenty channel 1Msps 12-bit ADC with optional oversampling and decimation supporting up to 16-bit resolution, two analog comparators with window mode, Peripheral Touch Controller supporting up to 256 buttons, sliders, wheels and proximity sensing; programmable Watchdog Timer, brown-out detector and power-on reset and twopin Serial Wire Debug (SWD) program and debug interface.

All devices have accurate and low-power external and internal oscillators. All oscillators can be used as a source for the system clock. Different clock domains can be independently configured to run at different frequencies, enabling power saving by running each peripheral at its optimal clock frequency, and thus maintaining a high CPU frequency while reducing power consumption.

The SAM L22 devices have four software-selectable sleep modes, idle, standby, backup and off. In idle mode the CPU is stopped while all other functions can be kept running. In standby all clocks and functions are stopped expect those selected to continue running. In this mode all RAMs and logic contents are retained. The device supports SleepWalking. This feature allows the peripheral to wake up from sleep based on predefined conditions, and thus allows some internal operation like DMA transfer and/or the CPU to wake up only when needed, e.g. when a threshold is crossed or a result is ready. The Event System supports synchronous and asynchronous events, allowing peripherals to receive, react to and send events even in standby mode.


The SAM L22 devices have two software-selectable performance level (PL0 and PL2) allowing the user to scale the lowest core voltage level that will support the operating frequency.

The Flash program memory can be reprogrammed in-system through the SWD interface. The same interface can be used for nonintrusive on-chip debugging of application code. A boot loader running in the device can use any communication interface to download and upgrade the application program in the Flash memory.

The Atmel SAM L22 devices are supported with a full suite of program and system development tools, including C compilers, macro assemblers, program debugger/simulators, programmers and evaluation kits.

3. Ordering Information

Note: The device variant (last letter of the ordering number) is independent of the die revision (DSU.DID.REVISION): The device variant denotes functional differences, whereas the die revision marks evolution of the die.

3.1. SAM L22N

Table 3-1. SAM L22N Ordering Codes

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAML22N16A-AUT	64K	8K	TQFP100	Tape & Reel
ATSAML22N17A-AUT	128K	16K	TQFP100	Tape & Reel
ATSAML22N18A-AUT	256K	32K	TQFP100	Tape & Reel

3.2. SAM L22J

Table 3-2. SAM L22J Ordering Codes

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAML22J16A-AUT	64K	8K	TQFP64	Tape & Reel
ATSAML22J16A-MUT	-		QFN64	
ATSAML22J17A-AUT	128K	16K	TQFP64	Tape & Reel
ATSAML22J17A-MUT			QFN64	

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAML22J18A-AUT	256K	32K	TQFP64	Tape & Reel
ATSAML22J18A-MUT			QFN64	

3.3. SAM L22G

Table 3-3. SAM L22G Ordering Codes

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAML22G16A-AUT	64K	8K	TQFP48	Tape & Reel
ATSAML22G16A-MUT	~		QFN48	
ATSAML22G17A-AUT	128K	16K	TQFP48	Tape & Reel
ATSAML22G17A-MUT	-		QFN48	
ATSAML22G17A-UUT	a		WLCSP49	
ATSAML22G18A-AUT	256K	32K	TQFP48	Tape & Reel
ATSAML22G18A-MUT	-			
ATSAML22G18A-UUT			WLCSP49	

3.4. Device Identification

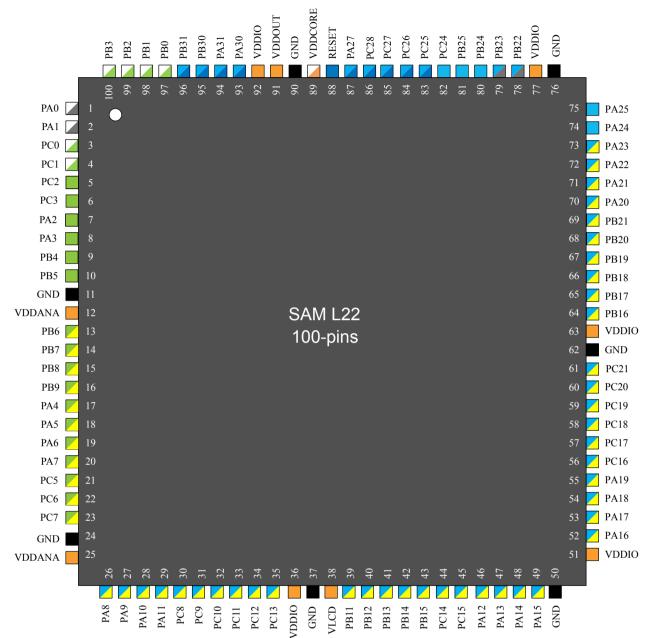

The DSU - Device Service Unit peripheral provides the Device Selection bits in the Device Identification register (DID.DEVSEL) in order to identify the device by software. The SAM L22 variants have a reset value of DID=0x10820xxx, with the last digits identifying the variant:

Table 3-4. SAM L22 Device Identification Values

DSU DID.DEVSEL	Device
0x0	L22N18
0x1	L22N17
0x2	L22N16
0x3-0x4	Reserved
0x5	L22J18
0x6	L22J17
0x7	L22J16
0x8-0x9	Reserved
0xA	L22G18
0xB	L22G17
0xC	L22G16
0xD-0xFF	Reserved

5.3. SAM L22N

6. Signal Descriptions List

The following table gives details on signal names classified by peripheral.

Signal Name	Function	Туре	Active Level	
Analog Comparators	- AC			
AIN[3:0]	AC Analog Inputs	Analog		
CMP[1:0]	AC Analog Output	Analog		
Analog Digital Conve	rter - ADC			
AIN[19:0]	ADC Analog Inputs	Analog		
VREFA	ADC Voltage External Reference A	Analog		
VREFB	ADC Voltage External Reference B	Analog		
External Interrupt Cor	ntroller - EIC			
EXTINT[15:0]	External Interrupts inputs	Digital		
NMI	External Non-Maskable Interrupt input			
Generic Clock Genera	ator - GCLK	·		
GCLK_IO[4:0]	Generic Clock (source clock inputs or generic clock generator output)	Digital		
Custom Control Logic	c - CCL			
IN[11:0]	Logic Inputs	Digital		
OUT[3:0]	Logic Outputs	Digital		
Supply Controller - SU	JPC			
VBAT	External battery supply Inputs	Analog		
PSOK	Main Power Supply OK input	Digital		
OUT[1:0]	Logic Outputs	Digital		
Power Manager - PM				
RESETN Reset input		Digital	Low	
Serial Communication	n Interface - SERCOMx			
PAD[3:0]	SERCOM Inputs/Outputs Pads	Digital		
Oscillators Control - 0	DSCCTRL			
XIN	Crystal or external clock Input	Analog/Digital		
XOUT	Crystal Output	Analog		

Function	-				A	В					C	D	E		F	Н	
Туре	L22G ⁽⁵⁾	L22J	L22N	Pad Name	EIC	ANAREF	ADC	AC	РТС	SLCD	SERCOM ⁽⁶⁾	SERCOM ⁽⁶⁾	тс/тсс	TCC/RTC	COM/RTC	AC/ GCLK/ SUPC	CCL
digital: input only			30	PC08	EIC/EXTINT[0]					SLCD/ LP[15]							
			31	PC09	EIC/EXTINT[1]					SLCD/ LP[16]							
			32	PC10	EIC/EXTINT[2]					SLCD/	SERCOM1/						
			33	PC11	EIC/EXTINT[3]					LP[17] SLCD/	PAD[2] SERCOM1/						
			34	PC12	EIC/EXTINT[4]					LP[18] SLCD/	PAD[3] SERCOM1/						
			35	PC13	EIC/EXTINT[5]					LP[19] SLCD/	PAD[0] SERCOM1/						
	19	23	38	VLCD						LP[20]	PAD[1]	_					
	20	24	39	PB11	EIC/EXTINT[11]					SLCD/ LP[21]		SERCOM3/ PAD[3]	TC/1/ WO[1]	TCC/ WO[5]			CCL/ OUT[1]
I2C: full Fm+. Limited currents		25	40	PB12	EIC/EXTINT[12]					SLCD/ LP[22]	SERCOM3/ PAD[0]		TC/0/ WO[0]	TCC/ WO[6]			
for Sm, Fm		26	41	PB13	EIC/EXTINT[13]					SLCD/ LP[23]	SERCOM3/ PAD[1]		TC/0/ WO[1]	TCC/ WO[7]			
		27	42	PB14	EIC/EXTINT[14]					SLCD/	SERCOM3/		TC/1/	WO[7]		GCLK/	CCL/IN[9]
		28	43	PB15	EIC/EXTINT[15]					LP[24] SLCD/	PAD[2] SERCOM3/		WO[0] TC/1/			IO[0] GCLK/	CCL/
			44	PC14	EIC/EXTINT[6]					LP[25] SLCD/	PAD[3]		WO[1]			IO[1]	IN[10]
			45	PC15	EIC/EXTINT[7]					LP[26] SLCD/							
I2C: Sm, Fm, Fm+	21	29	46	PA12	EIC/EXTINT[12]					LP[27] SLCD/	SERCOM4/	SERCOM3/		TCC/		AC/	
120.011,111,111	22	30	47	PA13	EIC/EXTINT[13]					LP[28] SLCD/	PAD[0] SERCOM4/	PAD[0] SERCOM3/		WO[6] TCC/		CMP[0]	
										LP[29]	PAD[1]	PAD[1]		WO[7]		CMP[1]	
	23	31	48	PA14	EIC/EXTINT[14]					SLCD/ LP[30]	SERCOM4/ PAD[2]	SERCOM3/ PAD[2]		TCC/ WO[4]		GCLK/ IO[0]	
	24	32	49	PA15	EIC/EXTINT[15]					SLCD/ LP[31]	SERCOM4/ PAD[3]	SERCOM3/ PAD[3]		TCC/ WO[5]		GCLK/ IO[1]	
	25	35	52	PA16	EIC/EXTINT[0]				PTC/ X[28]	SLCD/ LP[32]	SERCOM1/ PAD[0]	SERCOM2/ PAD[0]		TCC/ WO[6]		GCLK/ IO[2]	CCL/IN[0]
	26	36	53	PA17	EIC/EXTINT[1]				PTC/ X[29]	SLCD/ LP[33]	SERCOM1/ PAD[1]	SERCOM2/ PAD[1]		TCC/ WO[7]		GCLK/ IO[3]	CCL/IN[1]
	27	37	54	PA18	EIC/EXTINT[2]				PTC/ X[30]	SLCD/ LP[34]	SERCOM1/ PAD[2]	SERCOM2/ PAD[2]		TCC/ WO[2]		AC/ CMP[0]	CCL/IN[2]
	28	38	55	PA19	EIC/EXTINT[3]				PTC/ X[31]	SLCD/ LP[35]	SERCOM1/ PAD[3]	SERCOM2/ PAD[3]		TCC/ WO[3]		AC/ CMP[1]	CCL/ OUT[0]
			56	PC16	EIC/EXTINT[8]					SLCD/ LP[36]							
			57	PC17	EIC/EXTINT[9]					SLCD/ LP[37]							
digital: input only			58	PC18	EIC/EXTINT[10]					SLCD/							
			59	PC19	EIC/EXTINT[11]					LP[38] SLCD/							
			60	PC20	EIC/EXTINT[12]					LP[39] SLCD/							CCL/IN[9]
			61	PC21	EIC/EXTINT[13]					LP[40] SLCD/							CCL/
		39	64	PB16	EIC/EXTINT[0]					LP[41] SLCD/	SERCOM5/		TC/2/	TCC/		GCLK/	IN[10] CCL/IN[11]
		40	65	PB17	EIC/EXTINT[1]					LP[42] SLCD/	PAD[0] SERCOM5/		WO[0] TC/2/	WO[4] TCC/		IO[2] GCLK/	CCL/
			66	PB18	EIC/EXTINT[2]					LP[43]	PAD[1] SERCOM5/	SERCOM3/	WO[1]	WO[5] TCC/		IO[3]	OUT[3]
										LP[44]	PAD[2]	PAD[2]		WO[0]			
			67	PB19	EIC/EXTINT[3]					SLCD/ LP[45]	SERCOM5/ PAD[3]	SERCOM3/ PAD[3]		TCC/ WO[1]			
			68	PB20	EIC/EXTINT[4]					SLCD/ LP[46]	SERCOM3/ PAD[0]	SERCOM5/ PAD[0]		TCC/ WO[2]			
			69	PB21	EIC/EXTINT[5]					SLCD/ LP[47]	SERCOM3/ PAD[1]	SERCOM5/ PAD[1]		TCC/ WO[3]			
	29	41	70	PA20	EIC/EXTINT[4]				PTC/ XY[16]	SLCD/ LP[48]	SERCOM0/ PAD[0]	SERCOM2/ PAD[2]	TC/3/ WO[0]	TCC/ WO[6]		GCLK/ IO[4]	
	30	42	71	PA21	EIC/EXTINT[5]				PTC/ XY[17]	SLCD/ LP[49]	SERCOM0/ PAD[1]	SERCOM2/ PAD[3]	TC/3/ WO[1]	TCC/ WO[7]			
I2C: Sm, Fm, Fm+	31	43	72	PA22	EIC/EXTINT[6]				PTC/ XY[18]	SLCD/ LP[50]	SERCOM0/ PAD[2]	SERCOM2/ PAD[0]	TC/0/ WO[0]	TCC/ WO[4]			CCL/IN[6]
	32	44	73	PA23	EIC/EXTINT[7]				PTC/ XY[19]	SLCD/ LP[51]	SERCOM0/ PAD[3]	SERCOM2/ PAD[1]	TC/0/ WO[1]	TCC/ WO[5]	USB/SOF_1KHZ		CCL/IN[7]
	33	45	74	PA24	EIC/EXTINT[12]				X1[10]	21 [01]	SERCOM2/	SERCOM5/	TC/1/	TCC/	USB/DM		CCL/IN[8]
	34	46	75	PA25	EIC/EXTINT[13]						PAD[2] SERCOM2/	PAD[0] SERCOM5/	WO[0] TC/1/	WO[0] TCC/	USB/DP		CCL/
	37	49	78	PB22	EIC/EXTINT[6]						PAD[3] SERCOM0/	PAD[1] SERCOM5/	WO[1] TC/3/	WO[1] TCC/	USB/SOF_1KHZ		OUT[2] CCL/IN[0]
											PAD[2]	PAD[2]	WO[0]	WO[2]		IO[0]	

Atmel

Table 7-2. Oscillator Pinout

Oscillator	Supply	Signal	I/O pin
XOSC	VDDIO	XIN	PB22
		XOUT	PB23
XOSC32K	VSWOUT	XIN32	PA00
		XOUT32	PA01

Note: In order to minimize the cycle-to-cycle jitter of the external oscillator, keep the neighboring pins as steady as possible. For neighboring pin details, refer to the Oscillator Pinout section.

Table 7-3. XOSC32K Jitter Minimization

Package	Steady Signal Recommended
L22N	PB00, PB01, PB02, PB03, PC00, PC01
L22J	PB00, PB01, PB02, PB03, PA02, PA03
L22G	PB02, PB03, PA02, PA03

7.2.2. Serial Wire Debug Interface Pinout

Only the SWCLK pin is mapped to the normal PORT functions. A debugger cold-plugging or hot-plugging detection will automatically switch the SWDIO port to the SWDIO function.

Table 7-4. Serial Wire Debug Interface Pinout

Signal	Supply	I/O pin
SWCLK	VDDIO	PA30
SWDIO	VDDIO	PA31

7.2.3. SERCOM USART and I²C Configurations

The SAM L22 has up to six instances of the serial communication interface (SERCOM) peripheral. The following table lists the supported communication protocols for each SERCOM instance.

Table 7-5. SERCOM USART and I²C Protocols

	SERCOM Instance					
Protocol	SERCOM0	SERCOM1	SERCOM2	SERCOM3	SERCOM4	SERCOM5
l ² C	no	yes	yes	yes	yes	yes
I ² C at 3.4MHz	no	yes	no	no	no	yes
USART including RS485 and ISO 7816	yes	yes	yes	yes	yes	yes
SPI	yes	yes	yes	yes	yes	yes

Note: Not all available I²C pins support I²C mode at 3.4MHz.

7.2.4. GPIO Pin Clusters

Table 7-6. GPIO Clusters

Package	Cluster	GPIO	Supplies Pin connected to the	Supplies Pin connected to the cluster		
100 pins	1	PA02, PA03, PB04, PB05, PC02, PC03	VDDANA pin12	GNDANA pin11		
	2	PA04, PA05, PA06, PA07, PB06, PB07, PB08, PB09, PC05, PC06, PC07	VDDANA pin12, VDDANA pin25	GNDANA pin11, GNDANA pin24		
	3	PA08, PA09, PA10, PA11, PC08, PC09, PC10, PC11, PC12, PC13	VDDIO pin36	GND pin37		
	4	PA12, PA13, PA14, PA15, PB11, PB12, PB13, PB14, PB15, PC14, PC15	V _{DDIO} pin36, V _{DDIO} pin51	GND pin37, GND pin50		
	5	PA16, PA17, PA18, PA19, PC16, PC17, PC18, PC19, PC20, PC21	VDDIO pin51, VDDIO pin63	GND pin50, GND pin62		
	6	PA20, PA21, PA22, PA23, PA24, PA25, PB16, PB17, PB18, PB19, PB20, PB21	VDDIO pin63, VDDIO pin77	GND pin62, GND pin76		
	7	PA27, PB22, PB23, PB24, PB25, PC24, PC25, PC26, PC27, PC28	VDDIO pin77, VDDIO pin92	GND pin76, GND pin90		
	8	PA00, PA01, PA30, PA31, PB00, PB01, PB02, PB03, PB30, PB31, PC00, PC01	V _{DDIO} pin92	GND pin90		
64 pins	1	PA02, PA03, PA04, PA05, PA06, PA07, PB04, PB05, PB06, PB07, PB08, PB09	VDDANA pin8	GNDANA pin7		
	2	PA08, PA09, PA10, PA11	VDDIO pin21	GND pin22		
	3	PA12, PA13, PA14, PA15, PB11, PB12, PB13, PB14, PB15	VDDIO pin21, VDDIO pin34	GND pin22, GND pin33		
	4	PA16, PA17, PA18, PA19, PA20, PA21, PA22, PA23, PA24, PA25, PB16, PB17	V _{DDIO} pin34, V _{DDIO} pin48	GND pin33, GND pin47		
	5	PA27, PB22, PB23	VDDIO pin48, VDDIO pin56	GND pin47, GND pin54		
	6	PA00, PA01, PA30, PA31, PB00, PB01, PB02, PB03, PB30, PB31	V _{DDIO} pin56	GND pin54		
48 pins	1	PA02, PA03, PA04, PA05, PA06, PA07, PB08, PB09	VDDANA pin6	GNDANA pin5		
	2	PA08, PA09, PA10, PA11	VDDIO pin17	GND pin18		
	3	PA12, PA13, PA14, PA15, PA16, PA17, PA18, PA19, PA20, PA21, PA22, PA23, PA24, PA25, PB11	V _{DDIO} pin17, V _{DDIO} pin36	GND pin18, GND pin35		
	4	PA27, PB22, PB23	VDDIO pin36, VDDIO pin44	GND pin35, GND pin42		
	5	PA00, PA01, PA30, PA31, PB02, PB03	VDDIO pin44	GND pin42		
49 pins	1	PA02, PA03, PA04, PA05, PA06, PA07, PB08, PB09	VDDANA pin D7	GNDANA pin C7		
	2	PA08, PA09, PA10, PA11	V _{DDIO} pin G5	GND pin F5		
	3	PA12, PA13, PA14, PA15, PA16, PA17, PA18, PA19, PB11	VDDIO pin G5, VDDIO pin E1	GND pin F5, GND pin E2		
	4	PA20, PA21, PA22, PA23, PA24, PA25	VDDIO pin E1, VDDIO pin A5	GND pin E2, GND pin D4		
	4	PA27, PB22, PB23	VDDIO pin E1, VDDIO pin A5	GND pin D4, GND pin B3		
	5	PA00, PA01, PA30, PA31, PB02, PB03	V _{DDIO} pin A5	GND pin B3		

The same voltage must be applied to both VDDIO and VDDANA. This common voltage is referred to as VDD in the datasheet.

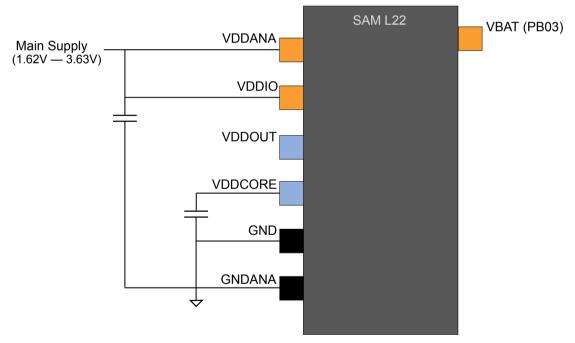
The ground pins, GND, are common to VDDCORE, and VDDIO. The ground pin for VDDANA is GNDANA.

For decoupling recommendations for the different power supplies, refer to the schematic checklist.

8.2.2. Voltage Regulator

The SAM L22 internal Voltage Regulator has four different modes:

- Linear mode : This is the default mode when CPU and peripherals are running. It does not require an external inductor.
- Switching mode. This is the most efficient mode when the CPU and peripherals are running. This mode can be selected by software on the fly.
- Low Power (LP) mode. This is the default mode used when the chip is in standby mode.
- Shutdown mode. When the chip is in backup mode, the internal regulator is off.


Note that the Voltage Regulator modes are controlled by the Power Manager.

8.2.3. Typical Powering Schematic

The SAM L22 uses a single supply from 1.62V to 3.63V.

The following figure shows the recommended power supply connection.

Figure 8-1. Power Supply Connection for Linear Mode Only

8.4.4. Brown-Out Detector on VDDCORE

Once the device has started up, BOD12 monitors the internal VDDCORE.

8.5. Performance Level Overview

By default, the device will start in Performance Level 0. This PL0 is aiming for the lowest power consumption by limiting logic speeds and the CPU frequency. As a consequence, all GCLK will have limited capabilities, and some peripherals and clock sources will not work or with limited capabilities:

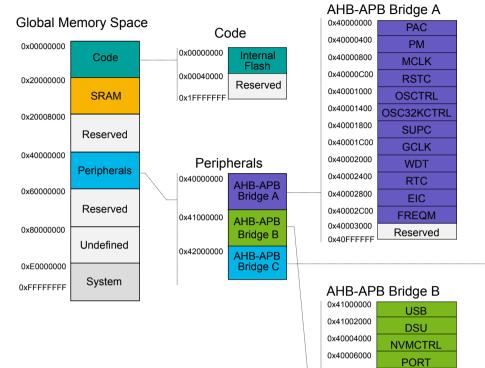
List of peripherals/clock sources not available in PL0:

- USB (limited by logic frequency)
- DFLL48M

List of peripherals/clock sources with limited capabilities in PL0:

- All AHB/APB peripherals are limited by CPU frequency
- DPLL96M: may be able to generate 48MHz internally, but the output cannot be used by logic
- GCLK: the maximum frequency is by factor 4 compared to PL2
- SW interface: the maximum frequency is by factor 4 compared to PL2
- TC: the maximum frequency is by factor 4 compared to PL2
- TCC: the maximum frequency is by factor 4 compared to PL2
- SERCOM: the maximum frequency is by factor 4 compared to PL2

List of peripherals/clock sources with full capabilities in PL0:


- AC
- ADC
- EIC
- OSC16M
- PTC
- All 32KHz clock sources and peripherals

Full functionality and capability will be ensured in PL2. When transitioning between performance levels, the Supply Controller (SUPC) will provide a configurable smooth voltage scaling transition.

9. Product Mapping

Figure 9-1. Atmel SAM L22 Product Mapping

0x40008000

0x4000A000

0x4000C000

DMAC

MTB

HMATRIXHS

AHB-APB Bridge C

	· J · ·
0x42000000	EVSYS
0x42000400	SERCOM0
0x42000800	SERCOM1
0x42000C00	SERCOM2
0x42001000	SERCOM3
0x42001400	SERCOM4
0x42001800	SERCOM5
0x42001C00	TCC0
0x42002000	TC0
0x42002400	TC1
0x42002800	TC2
0x42002C00	TC3
0x42003000	ADC
0x42003800	PTC
0x42003C00	SLCD
0x42004000	AES
0x42004400	TRNG
0x42004800	CCL
0x42004C00	Reserved

Atmel

10.4. NVM Software Calibration Area Mapping

The NVM Software Calibration Area contains calibration data that are determined and written during production test. These calibration values should be read by the application software and written back to the corresponding register.

The NVM Software Calibration Area can be read at address 0x00806020.

The NVM Software Calibration Area can not be written.

Table 10-5.	NVM	Software	Calibration	Area	Mapping
		oonnaio	ounoration	71104	mapping

Bit Position	Name	Description
2:0	ADC LINEARITY	ADC Linearity Calibration. Should be written to CALIB register.
5:3	ADC BIASCAL	ADC Bias Calibration. Should be written to CALIB register.
12:6	Reserved	Reserved for future use.
17:13	USB TRANSN	USB TRANSN calibration value. Should be written to the USB PADCAL register.
22:18	USB TRANSP	USB TRANSP calibration value. Should be written to the USB PADCAL register.
25:23	USB TRIM	USB TRIM calibration value. Should be written to the USB PADCAL register.
31:26	DFLL48M COARSE CAL	DFLL48M Coarse calibration value. Should be written to the OSCCTRL DFLLVAL register.

10.5. Serial Number

Each device has a unique 128-bit serial number which is a concatenation of four 32-bit words contained at the following addresses:

Word 0: 0x0080A00C

Word 1: 0x0080A040

Word 2: 0x0080A044

Word 3: 0x0080A048

The uniqueness of the serial number is guaranteed only when using all 128 bits.

11. Processor and Architecture

11.1. Cortex M0+ Processor

The Atmel SAM L22 implements the ARM ARM[®]Cortex[™]-M0+ processor, based on the ARMv6 Architecture and Thumb[®]-2 ISA. The Cortex M0+ is 100% instruction set compatible with its predecessor, the Cortex-M0 core, and upward compatible to Cortex-M3 and M4 cores. The implemented ARM Cortex-M0+ is revision r0p1. For more information refer to http://www.arm.com

11.1.1. Cortex M0+ Configuration

Table 11-1. Cortex M0+ Configuration

Features	Cortex-M0+ options	SAM L22 configuration
Interrupts	External interrupts 0-32	27
Data endianness	Little-endian or big-endian	Little-endian
SysTick timer	Present or absent	Present
Number of watchpoint comparators	0, 1, 2	2
Number of breakpoint comparators	0, 1, 2, 3, 4	4
Halting debug support	Present or absent	Present
Multiplier	Fast or small	Fast (single cycle)
Single-cycle I/O port	Present or absent	Present
Wake-up interrupt controller	Supported or not supported	Not supported
Vector Table Offset Register	Present or absent	Present
Unprivileged/Privileged support	Present or absent	Present
Memory Protection Unit	Not present or 8-region	8-region
Reset all registers	Present or absent	Absent
Instruction fetch width	16-bit only or mostly 32-bit	32-bit

The ARM Cortex-M0+ core has two bus interfaces:

- Single 32-bit AMBA-3 AHB-Lite system interface that provides connections to peripherals and all system memory, which includes flash and RAM.
- Single 32-bit I/O port bus interfacing to the PORT and DIVAS with 1-cycle loads and stores.

11.1.2. Cortex M0+ Peripherals

- System Control Space (SCS)
 - The processor provides debug through registers in the SCS. Refer to the Cortex-M0+ Technical Reference Manual for details (http://www.arm.com)
- Nested Vectored Interrupt Controller (NVIC)
 - External interrupt signals connect to the NVIC, and the NVIC prioritizes the interrupts.
 Software can set the priority of each interrupt. The NVIC and the Cortex-M0+ processor core are closely coupled, providing low latency interrupt processing and efficient processing of late

arriving interrupts. Refer to NVIC-Nested Vector Interrupt Controller and the Cortex-M0+ Technical Reference Manual for details (http://www.arm.com).

Note: When the CPU frequency is much higher than the APB frequency it is recommended to insert a memory read barrier after each CPU write to registers mapped on the APB. Failing to do so in such conditions may lead to unexpected behavior such as e.g. re-entering a peripheral interrupt handler just after leaving it.

- System Timer (SysTick)
 - The System Timer is a 24-bit timer clocked by CLK_CPU that extends the functionality of both the processor and the NVIC. Refer to the Cortex-M0+ Technical Reference Manual for details (http://www.arm.com).
- System Control Block (SCB)
 - The System Control Block provides system implementation information, and system control. This includes configuration, control, and reporting of the system exceptions. Refer to the Cortex-M0+ Devices Generic User Guide for details (http://www.arm.com).
- Micro Trace Buffer (MTB)
 - The CoreSight MTB-M0+ (MTB) provides a simple execution trace capability to the Cortex-M0+ processor. Refer to section MTB-Micro Trace Buffer and the CoreSight MTB-M0+ Technical Reference Manual for details (http://www.arm.com).
- Memory Protection Unit (MPU)
 - The Memory Protection Unit divides the memory map into a number of regions, and defines the location, size, access permissions and memory attributes of each region. Refer to the Cortex-M0+ Devices Generic User Guide for details (http://www.arm.com)

11.1.3. Cortex M0+ Address Map

Table 11-2. Cortex-M0+ Address Map

Address	Peripheral
0xE000E000	System Control Space (SCS)
0xE000E010	System Timer (SysTick)
0xE000E100	Nested Vectored Interrupt Controller (NVIC)
0xE000ED00	System Control Block (SCB)
0x41006000	Micro Trace Buffer (MTB)

Related Links

Product Mapping on page 30

11.1.4. I/O Interface

The device allows direct access to PORT registers. Accesses to the AMBA[®] AHB-Lite[™] and the single cycle I/O interface can be made concurrently, so the Cortex M0+ processor can fetch the next instructions while accessing the I/Os. This enables single cycle I/O access to be sustained for as long as necessary.

branch instructions or during exception entry. See the CoreSight MTB-M0+ Technical Reference Manual for more details on the MTB execution trace packet format.

Tracing is enabled when the MASTER.EN bit in the Master Trace Control Register is 1. There are various ways to set the bit to 1 to start tracing, or to 0 to stop tracing. See the CoreSight Cortex-M0+ Technical Reference Manual for more details on the Trace start and stop and for a detailed description of the MTB's MASTER register. The MTB can be programmed to stop tracing automatically when the memory fills to a specified watermark level or to start or stop tracing by writing directly to the MASTER.EN bit. If the watermark mechanism is not being used and the trace buffer overflows, then the buffer wraps around overwriting previous trace packets.

The base address of the MTB registers is 0x41006000; this address is also written in the CoreSight ROM Table. The offset of each register from the base address is fixed and as defined by the CoreSight MTB-M0+ Technical Reference Manual. The MTB has four programmable registers to control the behavior of the trace features:

- POSITION: Contains the trace write pointer and the wrap bit
- MASTER: Contains the main trace enable bit and other trace control fields
- · FLOW: Contains the WATERMARK address and the AUTOSTOP and AUTOHALT control bits
- BASE: Indicates where the SRAM is located in the processor memory map. This register is provided to enable auto discovery of the MTB SRAM location by a debug agent

See the CoreSight MTB-M0+ Technical Reference Manual for a detailed description of these registers.

11.4. High-Speed Bus System

11.4.1. Overview

11.4.2. Features

High-Speed Bus Matrix has the following features:

- Symmetric crossbar bus switch implementation
- Allows concurrent accesses from different masters to different slaves
- 32-bit data bus
- Operation at a one-to-one clock frequency with the bus masters

12. Packaging Information

12.1. Thermal Considerations

12.1.1. Thermal Resistance Data

The following table summarizes the thermal resistance data depending on the package.

Table 12-1. Thermal Resistance Data

Package Type	θ _{JA}	θ _{JC}
48-pin TQFP	64.2°C/W	12.3°C/W
64-pin TQFP	60.8°C/W	12.0°C/W
100-pin TQFP	58.5°C/W	12.7°C/W
48-pin QFN	32.4°C/W	11.2°C/W
64-pin QFN	32.7°C/W	10.8°C/W
49-pin WLCSP	37.3°C/W	5.8°C/W

Related Links

Junction Temperature on page 42

12.1.2. Junction Temperature

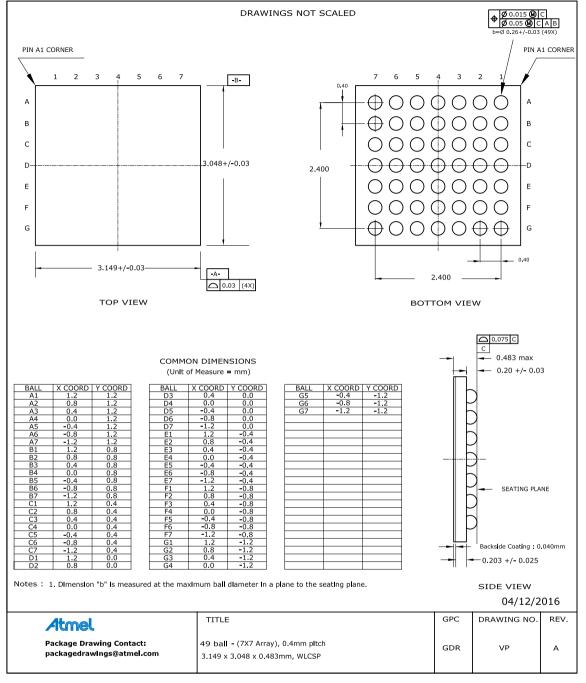
The average chip-junction temperature, T_J, in °C can be obtained from the following:

1.
$$T_J = T_A + (P_D \times \theta_{JA})$$

2.
$$T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$$

where:

- θ_{JA} = Package thermal resistance, Junction-to-ambient (°C/W), see Thermal Resistance Data
- θ_{JC} = Package thermal resistance, Junction-to-case thermal resistance (°C/W), see Thermal Resistance Data
- θ_{HEATSINK} = Thermal resistance (°C/W) specification of the external cooling device
- P_D = Device power consumption (W)
- T_A = Ambient temperature (°C)


From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature T_J in °C.

Related Links

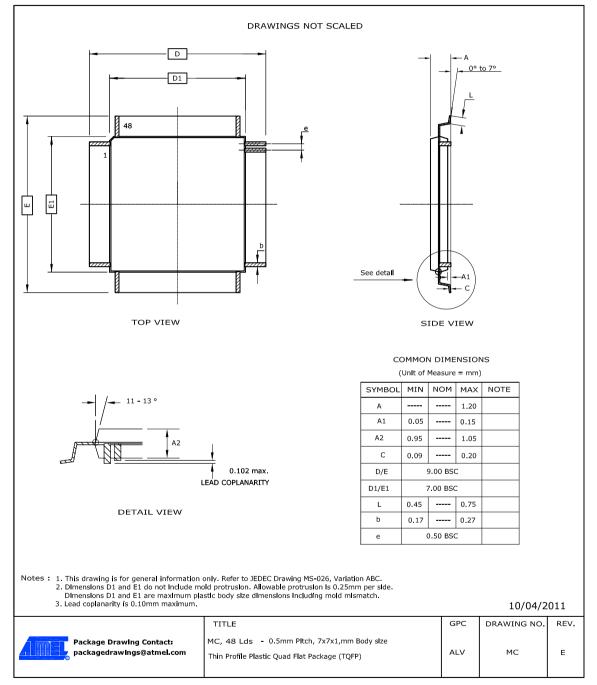
Thermal Resistance Data on page 42

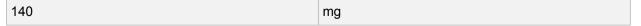
12.2.4. 49-Ball WLCSP

Table 12-11. Device and Package Maximum Weight

8.45

Table 12-12. Package Characteristics


loisture Sensitivity Level	MSL1
----------------------------	------


Table 12-13. Package Reference

JEDEC Drawing Reference	N/A
JESD97 Classification	E1

12.2.5. 48 pin TQFP

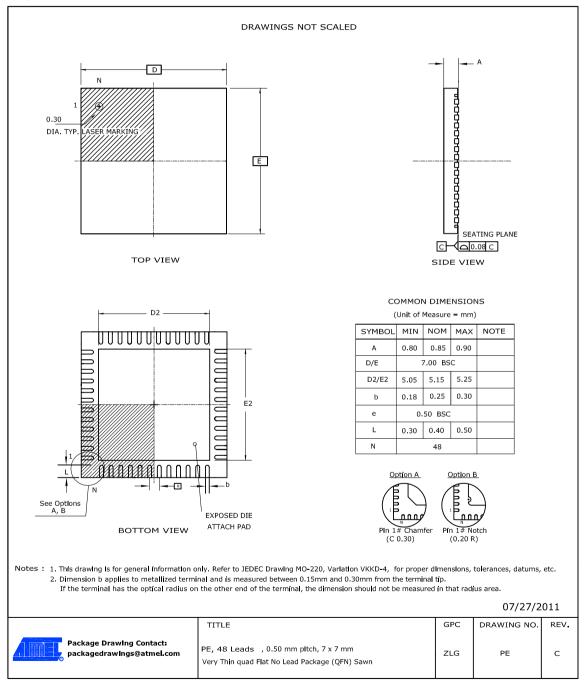


Table 12-15. Package Characteristics

Moisture Sensitivity Level	MSL3		
Table 12-16. Package Reference			
JEDEC Drawing Reference	MS-026		
JESD97 Classification	E3		

12.2.6. 48 pin QFN

Note: The exposed die attach pad is not connected electrically inside the device.

Atmel Enabling Unlimited Possibilities®

Т

Atmel Corporation

1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42402E-SAM L22G / L22J / L22N Summary_Datasheet_Summary-07/2016

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM[®], ARM Connected[®] logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM[®], ARM Connected[®] logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.