

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C800
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	RAM
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-c868-1sr-ba

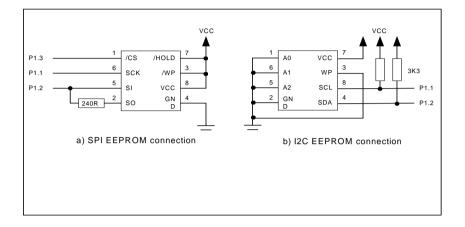
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C868 8-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking.



- One 8-bit and one 5 bits general purpose push-pull I/O ports
 - Enhanced sink current of 10 mA on Port 1/3 (total max current of 43 mA @ 100°C)
- Three 16-bit timers/counters –Timer 0 / 1 (C501 compatible)
 - -Timer 2 (up/down counter feature)
 - -Timer 1 or 2 can be used for serial baudrate generator
- Capture/compare unit for PWM signal generation –3-channel, 16-bit capture/compare unit –1-channel, 16-bit compare unit
- Full duplex serial interface (UART)
- 5 channel 8-bit A/D Converter
 Start of conversion can be synchronized to capture/compare timer 12/13.
- 13 interrupt vectors with four priority levels
- Programmable 16-bit Watchdog Timer
- Brown out detection
- Power Saving Modes
 - -Slow-down mode
 - -Idle mode (can be combined with slow-down mode)_
 - -Power-down mode with wake up capability through INT0 or RxD pins.
- Single power supply of 3.3V, internal voltage regulator for core voltage of 2.5V.
- P-DSO-28-1, P-TSSOP-38-1 packages
 - Temperature ranges:

SAF-C868-1RR BA, SAF-C868-1SR BA, SAF-C868-1RG BA, SAF-C868-1SG BA, SAF-C868A-1RR BA, SAF-C868A-1SR BA, SAF-C868A-1RG BA, SAF-C868A-1SG BA, SAF-C868P-1SR BA, SAF-C868P-1SG BA $T_A = -40$ to 85 °C SAK-C868-1RR BA, SAK-C868-1SR BA, SAK-C868-1RG BA, SAK-C868-1SG BA, SAK-C868A-1RR BA, SAK-C868A-1SR BA, SAK-C868A-1RG BA, SAK-C868A-1SG BA, SAK-C868A-1RG BA, SAK-C868A-1SG BA, SAK-C868A-1RG BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA, SAK-C868A-1RG BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA, SAK-C868A-1RG BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA,

BA, SAK-C868P-1SR BA, SAK-C868P-1SG BA, $T_A = -40$ to 125 °C

Figure 9 EEPROM connections for a) SPI and b) I2C

C868

Block	Symbol	Name	Add- ress	Contents after Reset
A/D- Con- verter	ADCON0 ADCON1 ADDATH	A/D Converter Control Register 0 A/D Converter Control Register 1 A/D Converter Data Register	D8_H ¹⁾ D9 _H DB _H	00_H XX000000 _{B²⁾} 00 _H
Ports	P1 ⁴⁾ P1DIR ³⁾ P3 ⁴⁾ P3DIR ³⁾ P3ALT P1ALT	Port 1 Register Port 1 Direction Register Port 3 Register Port 3 Direction Register Port 3 Alternate Function Register Port 1 Alternate Function Register	90H ¹⁾ 90H ¹⁾ B0H ¹⁾ B0H ¹⁾ B1 _H B4 _H	FF _H FF _H FF _H 00 _H XXX00X00 _{B²}
Watch dog	WDTCON WDTREL WDTL WDTH	Watchdog Timer Control Register Watchdog Timer Reload Register Watchdog Timer, Low Byte Watchdog Timer, High Byte	A2 _H A3 _H B2 _H B3 _H	XXXXXX00 _{B²⁾ 00_H 00_H 00_H}
Timer 2	T2CON T2MOD RC2H RC2L T2H T2L	Timer 2 Control Register Timer 2 Mode Register Timer 2 Reload/Capture, High Byte Timer 2 Reload/Capture, Low Byte Timer 2, High Byte Timer 2, Low Byte	C8 _H ¹⁾ C9 _H CB _H CA _H CD _H CC _H	00_H XXXXXX0 _B ²⁾ 00 _H 00 _H 00 _H 00 _H

Table 6 Special Function Registers - Functional Blocks (cont'd)

1) Bit-addressable special function registers

2) "X" means that the value is undefined and the location is reserved

3) Register is mapped by bit RMAP in SYSCON0.4=1

4) Register is mapped by bit RMAP in SYSCON0.4=0

Block	Symbol	Name	Add- ress	Contents after Reset
Cap-	ISSL ³⁾	Cap/Com Int Status Set Reg, Low Byte	BC _H	00 _H
ture/	ISSH ³⁾	Cap/Com Int Status Set Reg, High Byte	BD _H	00 _H
Com-	ISRL ⁴⁾	Cap/Com Int Status Reset Reg, Low Byte	BC _H	00 _H
pare	ISRH ⁴⁾	Cap/Com Int Status Reset Reg, High Byte	BD _H	00 _H
Unit	INPL ³⁾	Cap/Com Int Node Ptr Reg, Low Byte	BE _H	40 _H
	INPH ³⁾	Cap/Com Int Node Ptr Reg, High Byte	BF _H	39 _H
	IENL ⁴⁾	Cap/Com Interrupt Register, Low Byte	BE _H	00 _H
	IENH ⁴⁾	Cap/Com Interrupt Register, High Byte	BF _H	00 _H
	CC60SRL	Cap/Com Channel 0 Shadow, Low Byte	FA _H	00 _H
	CC60SRH	Cap/Com Channel 0 Shadow, High Byte	FB _H	00 _H
	CC61SRL	Cap/Com Channel 1 Shadow, Low Byte	FC _H	00 _H
	CC61SRH	Cap/Com Channel 1 Shadow, High Byte	FD _H	00 _H
	CC62SRL	Cap/Com Channel 2 Shadow, Low Byte	FE _H	00 _H
	CC62SRH	Cap/Com Channel 2 Shadow, High Byte	FF _H	00 _H
	CC63SRL	T13 Compare Shadow Reg, Low Byte	B6 _H	00 _H
	CC63SRH	T13 Compare Shadow Reg, High Byte	B7 _H	00 _H
	MODCTRL ³⁾	Modulation Control Register, Low Byte	D6 _H	00 _H
	MODCTRH ³⁾	Modulation Control Register, High Byte	D7 _H	00 _H
	TRPCTRL	Trap Control Register, Low Byte	CEH	00 _H
	TRPCTRH	Trap Control Register, High Byte	CF _H	00 _H
	PSLRL	Passive State Level Register, Low Byte	A6 _H	00 _H
	MCMOUTL ³⁾	MCM Output Register, Low Byte	DCH	00 _H
	MCMOUTH ³⁾	MCM Output Register, High Byte	DD_H	00 _H
	MCMOUTSL ⁴⁾	MCM Output Shadow Register, Low Byte	DCH	00 _H
	MCMOUTSH ⁴⁾	MCM Output Shadow Register, High Byte	DD_H	00 _H
	MCMCTRLL ⁴⁾	MCM Control Register, Low Byte	D6 _H	00 _H
	T12MSELL	T12 Cap/Com Mode Sel Reg, Low Byte	F6 _H	00 _H
	T12MSELH	T12 Cap/Com Mode Sel Reg, High Byte	F7 _H	00 _H

Table 6 Special Function Registers - Functional Blocks (cont'd)

1) Bit-addressable special function registers

3) Register is mapped by bit RMAP in SYSCON0.4=1

4) Register is mapped by bit RMAP in SYSCON0.4=0

Table 7	Contonts of the SERs	. SFRs in numeric order of their addresses
I able I	Contents of the SERS,	

Addr	Reg- ister	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
E6 _H	T12DT CL	00 _H		-	DTM5	DTM4	DTM3	DTM2	DTM1	DTM0
E7 _H	T12DT CH	00 _H	-	DTR2	DTR1	DTR0	_	DTE2	DTE1	DTE0
E8 _H	PMCO N1	XXXX X000 _B	-	-	-	-	-	CCUDI S	T2DIS	ADCDI S
EA _H	CMPM ODIFL	00 _H	-	MCC6 3S	_	-	-	MCC6 2S	MCC6 1S	MCC6 0S
EB _H	CMPM ODIFH	00 _H	-	MCC6 3R	-	-	_	MCC6 2R	MCC6 1R	MCC6 0R
ECH	T12L	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
ED _H	T12H	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
EEH	T13L	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
EF _H	T13H	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
F0 _H	В	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
F2 _H ²)	TCTR 4L	00 _H	T12ST D	T12ST R	_	_	DTRE S	T12RE S	T12RS	T12RR
F2 _H 3)	TCTR 2L	00 _H	-	T13TE D1	T13TE D0	T13TE C2	T13TE C1	T13TE C0	T13SS C	T12SS C
F3 _H ²)	TCTR 4H	00 _H	T13ST D	T13ST R	-	-	-	T13RE S	T13RS	T13RR
F4 _H	CMPS TATL	00 _H	-	CC63S T	-	-	-	CC62S T	CC61S T	CC60S T
F5 _H	CMPS TATH	00 _H	T13IM	COUT 63PS	COUT 62PS	CC62P S	COUT 61PS	CC61P S	COUT 60PS	CC60P S
F6 _H	T12M SELL	00 _H	MSEL 613	MSEL 612	MSEL 611	MSEL 610	MSEL 603	MSEL 602	MSEL 601	MSEL 600
F7 _H	T12M SELH	00 _H	-	-	-	-	MSEL 623	MSEL 622	MSEL 621	MSEL 620

1) X means that the value is undefined and the location is reserved

2) This register is mapped with RMAP (SYSCON0.4)=0

3) This register is mapped with RMAP (SYSCON0.4)=1

Shaded registers are bit-addressable special function registers

Timer/Counter 2 with Compare/Capture/Capture

Timer 2 is a 16-bit timer/counter with an up/down count feature. It has three operating modes:

- 16-bit auto-reload mode (up or down counting)
- 16-bit capture mode
- Baudrate generator

Table 9 Timer/Counter 2 Operating Modes

Mode	T2CO	Ν		T2MOD	T2CON	T2EX	Remarks	Syste Cloci	
	RCLK or TCLK	<u>CP/</u> RL2	TR2	DCEN	EXEN			Inte- rnal	T2
16-bit Auto-	0	0	1	0	0	Х	reload upon overflow	<i>f</i> sys /12	max <i>f</i> sys
reload	0	0	х	0	1	\downarrow	reload trigger (falling edge)		/24
	0	0	1	1	Х	0	down counting		
	0	0	1	1	Х	1	up counting		
16-bit Capture	0	1	1	Х	0	Х	16-bit Timer/ Counter (only up-counting)	<i>f</i> sys /12	max ^ƒ sys /24
	0	1	1	x	1	\downarrow	capture T2H,T2L-> RC2H,RC2L		
Baudrate Generator	1	Х	1	Х	0	Х	no overflow interrupt request(TF2)	f _{SYS} /2	-
	1	х	1	Х	1	\downarrow	extra external interrupt ("Timer 2")		
off	Х	Х	0	Х	Х	Х	Timer 2 stops	-	-

Note: denotes a falling edge

Switching Examples

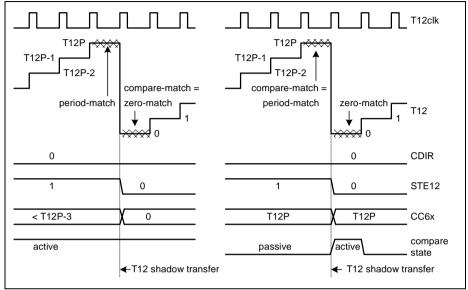
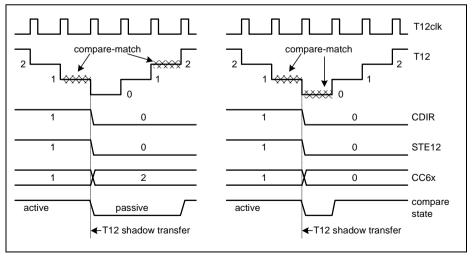



Figure 16 Edge-aligned mode with duty cycles near 100% and near 0%. Applicable to T13 as well.

Dead-time Generation

The dead-time generation logic is built in a similar way for all three channels of T12. Each of the three channels works independently with its own dead-time counter and the trigger and enable signals.

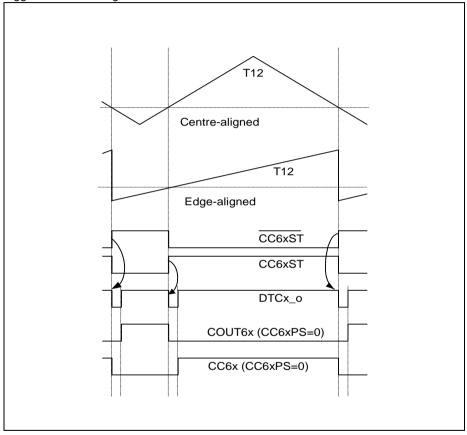


Figure 18 Dead-time generation for centre and edge aligned modes

Capture Mode

In capture mode the bits CC6xST indicate the occurrence of the selected capture event according to the bit fields MSEL6x. A rising and/or a falling edge on the pins CC6x can be selected as capture event, that is used to transfer the contents of timer T12 to the CC6xR and CC6xSR registers. In order to work in capture mode, the capture pins have to be configured as inputs.

Hall Sensor Mode

In **Brushless-DC motors** the next multi-channel state values depend on the pattern of the Hall inputs. There is a strong correlation between the **Hall pattern** (CURH) and the **modulation pattern** (MCMP). Because of different machine types the modulation pattern for driving the motor can be different. Therefore it is wishful to have a wide flexibility in defining the correlation between the Hall pattern and the corresponding modulation pattern. The CCU6 offers this by having a register which contains the actual Hall pattern (CURHS), the next expected Hall pattern (EXPHS) and its output pattern (MCMPS). At every correct Hall event (CHE, see figure *Hall Event Actions*) a new Hall pattern with its corresponding output pattern can be loaded (from a predefined table) by software into the register MCMOUTS. Loading this shadow register can also be done by a write action on MCMOUTS with bit STRHP = '1'

The **sampling** of the Hall pattern (on CCPOSx) is done with the T12 clock. By using the dead-time counter DTC0 (mode MSEL6x= '1000') a hardware **noise filter** can be implemented to suppress spikes on the Hall inputs due to high di/dt in rugged inverter environment. In case of a Hall event the DTC0 is reloaded and starts counting. When the counter value of one is reached, the CCPOSx inputs are sampled (without noise and spikes) and are compared to the current Hall pattern (CURH) and to the expected Hall pattern (EXPH). If the sampled pattern equals to the current pattern the edge on CCPOSx was due to a noise spike and no action will be triggered (implicit noise filter). If the sampled pattern equals to the next expected pattern the edge on CCPOSx was a correct Hall event, the bit CHE is set which causes an interrupt and the resets T12 (for speed measurement, see description mode '1000' below).

This correct Hall event can be used as a transfer request event for register MCMOUTS. The transfer from MCMOUTS to MCMOUT transfers the new CURH-pattern as well as the next EXPH-pattern. In case of the sampled Hall inputs were neither the current nor the expected Hall pattern, the bit WHE (wrong Hall event) is set which also can cause an interrupt and sets the IDLE mode clearing MCMP (modulation outputs are inactive). To restart from IDLE the transfer request of MCMOUTS have to be initiated by software (bit STRHP and bitfields SWSEL/SWSYN).

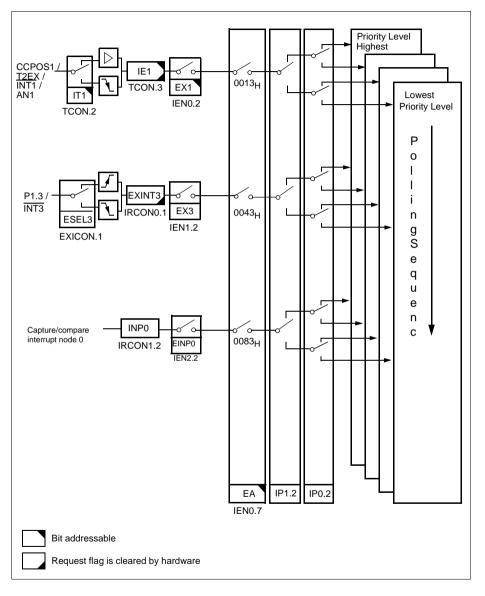
A/D Converter

The C868 includes a high performance / high speed 8-bit A/D-Converter (ADC) with 5 analog input channels. It operates with a successive approximation technique and uses self calibration mechanisms for reduction and compensation of offset and linearity errors. The A/D converter provides the following features:

- 5 multiplexed input channels, which can also be used as digital inputs
- 8-bit resolution with TUE of +/- 2 LSB8.
- Single or continuous conversion mode
- Start of conversion by software and hardware
- Interrupt request generation after each conversion
- Using successive approximation conversion technique via a capacitor array
- Powerdown in normal, idle and slow-down modes

The ADC supports two conversion modes - single and continuous conversions. For each mode, there are two ways in which conversion can be started - by software and by the T13PM signal from the CCU module.

Writing a '0' to bit CCU_ADEX select conversion control by ADST. Writing a '1' to bit field ADST starts conversion on the channel that is specified by ADCH. In single conversion mode, bit field ADM is cleared to '0'. This is the default mode selected after hardware reset. When a conversion is started, the channel specified is sampled. The busy flag ADBSY is set and ADST is cleared. When the conversion is completed, the interrupt request signal ADCIRQ is asserted possitively for 2 clocks and the 8-bit result together with the number of the converted channel is transferred to the result register ADDATH.


In continuous conversion mode, bit field ADM is set to '1'. In this mode, the ADC repeatedly converts the channel specified by ADCH. Bit ADST is cleared at the beginning of the first conversion. The busy flag ADBSY is asserted until the last conversion is completed. At the end of each conversion, the interrupt request signal ADCIRQ will be activated. To stop conversion, ADM has to be reset by software. If the channel number ADCH is changed while continuous conversion is in progress, the new channel specified will be sampled in the conversions that follow.

A new request to start conversion will be allowed only after the completion of any conversion that is in progress.

Writing a '1' to bit CCU_ADEX select conversion control by T13PM trigger signal from the CCU module.

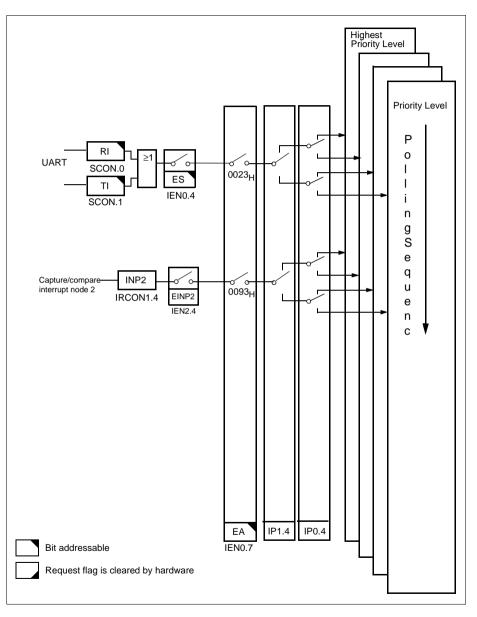

Note: Caution must be taken when changing conversion start source. To change conversion source from software to hardware trigger, it is best to let remaining software conversion to complete before changing. To change conversion source from hardware trigger to software, it is best to change source first, let any

Figure 25 Interrupt Structure, Overview Part 2

Figure 27 Interrupt Structure, Overview Part 4

Mode	Entering	Leaving by	Remarks
ldle Mode	ORL PCON,#01 _H	Occurance of any enabled interrupt	CPU clock is stopped; CPU maintains its
		Hardware Reset	data; peripheral units are active (if enabled) and provided with clock
Slow Down Mode	In normal mode: ORL PCON,#10 _H	ANL PCON,#0EF _H or Hardware Reset	Internal clock rate is reduced to a configurable factor of $1/_2$ to $1/_{32}$ of the system clock rate
	With idle mode: ORL PCON,#11 _H	Occurance of any enabled interrupt to exit idle mode and the instruction ANL PCON,#0EF _H to terminate slow down mode	CPU clock is stopped; CPU maintains all its data; Peripheral units are active (if enabled) and provided with a configurable factor of 1/2 to $1/32$ of the
		Hardware Reset	system clock rate
Software Power	With external wake-up	Hardware Reset	Oscillator is stopped;
Down mode	capability from power down enabled ORL PMCON0,#01 _H (to wake-up via pin INT0) or ORL PMCON0,#03 _H (to wake-up via pin RxD) ORL PCON,#02 _H	When $\overline{INT0}$ or RxD goes low for at least 10 μ s (latch phase). But it is desired that the corresponding pin must be held at high level during the power down mode entry and up to the wake-up.	Contents of on-chip RAM and SFR's are maintained
	With external wake-up capability from power down disabled ORL PCON,#02 _H	Hardware Reset	

Table 15 Power Saving Modes Overview

Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C868. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Operating Condition Parameters

Parameter	Symbol	Limit	Values	Unit	Notes	
		min.	max.			
Digital supply voltage	V _{DDP}	3.0	3.6	V	Active mode, $f_{SYSmax} = 40 \text{ MHz}$	
		tbd	3.6	V	PowerDown mode ¹⁾	
Digital ground voltages	$V_{\rm SSC,}V_{\rm SSP}$		0	V	-	
Ambient temperature	T _A	-40	85	°C	SAF-C868	
		-40	125	°C	SAK-C868	
Analog reference voltage	V _{AREF}	3.0V	V _{DDP} + 0.1	V	-	
Analog ground voltage	V _{AGND}	V _{SSP} - 0.1	V _{SSP} + 0.1	V	-	
Analog input voltage	V _{AIN}	V _{AGND}	V _{AREF}	V	-	
External Clock	fosc	6.67	10.67	MHz	-	
Input current on any pin during overload condition except int/ analog and XTAL	I _{OV0}	-5	5	mA	_2)3)	
int/analog pin	I _{OV1}	-2	5	mA	_3)4)	
XTAL pin	I _{OV2}	-5	5	mA	_3)5)	
Absolute sum of all input currents during overload condition	ΣI _{OV}	-	20	mA	_3)	

Notes:

¹⁾ Oscillator or external clock disabled.

²⁾ Overload conditions under operating conditions occur if the voltage on the respective pin exceeds the specified operating range (i.e. V_{OV} > V_{DDP} +0.5V or V_{OV} < V_{SSP} -0.5V). The absolute sum of input currents on all port pins may not exceed 20mA. The suply voltages V_{DDP} and V_{SSP} must remain within the specified limits.

³⁾ Not 100% tested, but guaranteed by design characterization.

DC Characteristics

(Operating Conditions apply)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		min.	max.		
Input low voltages all except XTAL2, int/analog int/analog XTAL2	$V_{\rm IL0}$ $V_{\rm IL1}$ $V_{\rm IL2}$	-0.5 -0.5 -0.5	0.3V _{DDP} 0.3V _{DDC} 0.1V _{DDC}	V V V	_1)
Input high voltages all except XTAL2, int/analog int/analog XTAL2	$V_{\rm IH0}$ $V_{\rm IH1}$ $V_{\rm IH2}$	0.7V _{DDP} 0.7V _{DDC} 0.7V _{DDC}	V _{DDP} +0.5 V _{DDP} +0.5 V _{DDC} +0.5	V V V	_
Output low voltage	V _{OL}	-	0.45	V	SAF-C868 I _{OL} =10mA
		-	0.55	V	SAK-C868 I _{OL} =10mA
Output high voltage	V _{OH}	2.4	-	V	I _{OH} =10mA
Input leakage current (all except int/analog)	I _{LIO}	-	±0.5	uA	0.4 <v<sub>IN<v<sub>DDP</v<sub></v<sub>
Input leakage current (int/ analog)	I _{LI1}	-	±0.5	uA	0.4 <v<sub>IN<v<sub>DDP²⁾</v<sub></v<sub>
Input low current (XTAL2)	I _{LI2}	-	±10	uA	0.4 <v<sub>IN<v<sub>DDC</v<sub></v<sub>
Digital supply voltage	V _{DDC}	2.25 ³⁾	2.75	V	-
Blocking capacitor for V_{DDC}		136	470	nF	_4)
Pin capacitance	C _{IO}	-	10	pF	$f_{\rm C}$ = 1MHz $T_{\rm A}$ = 25 ⁰ C

Note:

- Interrupt/analog pins are input only and has CMOS characteristics whereas the other I/O pins have TTL characteristics.
- ²⁾ The leakage current of interrupt/analog pins depends on the leakage current of the CMOS pad for the digital functions and the analog pad.
- ³⁾ The V_{DDC} is measured under the following conditions:

Microcontroller in power down mode; $\overline{\text{RESET}} = V_{\text{DDP}}$; $\text{XTAL2} = V_{\text{SSC}}$; XTAL1 = N.C.; $V_{\text{AGND}} = V_{\text{SSP}}$; $V_{\text{AREF}} = V_{\text{DDP}}$; $\text{RxD/INT0} = V_{\text{DDP}}$; all other pins are set to input and connected to gnd; ALE output disabled and connected to gnd; 20mA current sourced from the V_{DDC} pin.

 $^{4)}\,$ Ceramic type (±20%) max ESR: 25m Ω ,max trace length to capacitor is 10mm.

- ⁴⁾ During the sample time the input capacitance C_{AIN} must be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach their final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result.
- ⁵⁾ Not 100% tested, but guaranteed by design characterization.

Clock calculation table for ADC

TVC ¹⁾					32				
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$
t _{ADCC}	322	386	450	514	578	642	706	770	t _{SYS}
t _S	64	128	192	256	320	384	448	512	t _{SYS}
TVC ¹⁾					28				
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$
t _{ADCC}	282	338	394	450	506	562	618	674	t _{SYS}
t _S	56	112	168	224	280	336	392	448	t _{SYS}
TVC ¹⁾					24				
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$
t _{ADCC}	242	290	338	386	434	482	530	578	t _{SYS}
t _S	48	96	144	192	240	288	336	384	t _{SYS}
TVC ¹⁾					20				
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$
t _{ADCC}	202	242	282	322	362	402	442	482	t _{SYS}
t _S	40	80	120	160	200	240	280	320	t _{SYS}
TVC ¹⁾					16				
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$
t _{ADCC}	162	194	226	258	290	322	354	386	t _{SYS}
t _S	32	64	96	128	160	192	224	256	t _{SYS}
TVC ¹⁾					12				
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$
t _{ADCC}	122	146	170	194	218	242	266	290	t _{SYS}
ts	24	48	72	96	120	144	168	192	t _{SYS}

AC Characteristics

(Operating Condition Apply)

External Clock Drive Characteristics

Parameter	Symbol	Limit Values		Unit
			ole Ext Clock o 10.67 MHz	
		min	max	
Oscillating period	t _{OSC}	93.75	150	ns
High time	t_1	46.875	75	ns
Low time	<i>t</i> ₂	46.875	75	ns
Rise time	t_R	-	10	ns
Fall time	t_F	-	10	ns

ALE Characteristics

Parameter	Symbol	Lin	Unit	
			= 6.25MHz to 40MHz / Cycle 0.5	
		min	max	
ALE pulse width	t _{AWD}	50	320	ns
ALE period	t _{ACY}	150	960	ns

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results. Better operating results and business excellence mean less

idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com