

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C800
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	RAM
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-c868p-1sr-ba

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

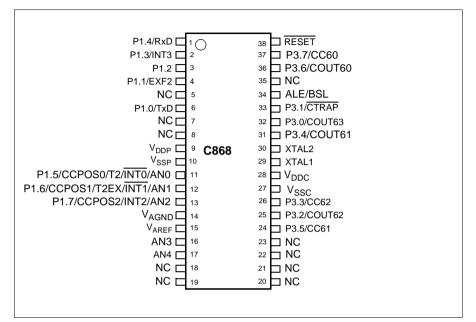
C868 8-Bit Single-Chip Microcontroller

Microcontrollers

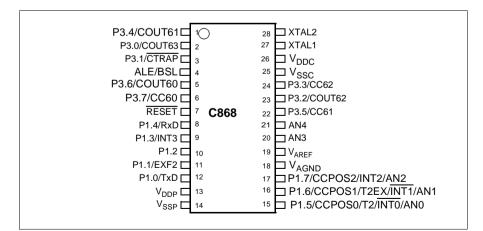
Never stop thinking.

C868

Revision History:		2003-05	V 1.0
Previous	Version:	-	
Current dat		(major changes since last revision)	
		ata updated	
		on of I2C included	


We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:


mcdocu.comments@infineon.com

 \searrow

Figure 3 C868 Pin Configuration P-TSSOP-38 Package (top view)

Memory Organization

The C868 CPU manipulates operands in the following five address spaces:

- up to 8 Kbyte of RAM internal program memory : 8K ROM for C868-1R

: 8K RAM for C868-1S

C868

- 4 Kbyte of internal Self test and Boot ROM
- 256 bytes of internal data memory
- 256 bytes of internal XRAM data memory
- 128 byte special function register area

Figure 0-1 illustrates the memory address spaces of the C868.

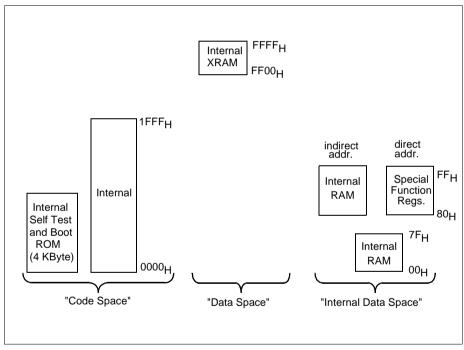


Figure 0-1 C868 Memory Map

The PLL output frequency is determined by:

$$f_{\mathsf{PLL}} = f_{\mathsf{VCO}} / \mathsf{K} = \frac{15}{\mathsf{K}} \times f_{\mathsf{OSC}}$$
[1]

The range for the VCO frequency is given by:

$$100 \text{ MHz} \le f_{\text{VCO}} \le 160 \text{ MHz}$$
[2]

The relationship between the input frequency and VCO frequency is given by:

$$f_{\rm VCO} = 15 \times f_{\rm OSC}$$
 [3]

This gives the range for the input frequency which is given by:

$$6.67 \text{ MHz} \le f_{\text{OSC}} \le 10.67 \text{ MHz}$$
 [4]

Table 5 Output Frequencies f_{PLL} Derived from Various Output Factors

K-F	actor	f _P	LL	Duty	Jitter
Selected Factor	KDIV	f _{VCO} = 100 MHz	f _{VCO} = 160 MHz	Cycle [%]	
2	000 _B	50	80	50	linear depending on f _{VCO}
4	010 _B	25	40	50	at f _{VCO} =100MHz: +/-300ps
5 ¹⁾	011 _B	20	32	40	at f _{VCO} =160MHz: +/-250ps additional jitter for odd Kdiv
6	100 _B	16.67	26.67	50	factors tbd.
8	101 _B	12.5	20	50	
9 ¹⁾	110 _B	11.11	17.78	44	
10	111 _B	10	16	50	
16	001 _B	6.25	10	50	

¹⁾ These odd factors should not be used (not tested because off the unsymmetrical duty cycle).

2) Shaded combinations should not be used because they are above the maximum CPU frequency of 40MHz.

Figure 12 shows the recommended oscillator circuitries for crystal and external clock operation.

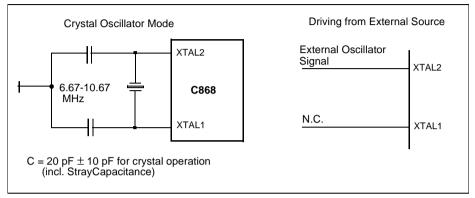


Figure 12 Recommended Oscillator Circuit

In this application the on-chip oscillator is used as a crystal-controlled, positivereactance oscillator (a more detailed schematic is given in **Figure 13**). It is operated in its fundamental response mode as an inductive reactor in parallel resonance with a capacitor external to the chip. The crystal specifications and capacitances are noncritical. In this circuit tbd pF can be used as single capacitance at any frequency together with a good quality crystal. A ceramic resonator can be used in place of the crystal in cost-critical applications. If a ceramic resonator is used, the two capacitors normally have different values depending on the oscillator frequency. We recommend consulting the manufacturer of the ceramic resonator for value specifications of these capacitors.

Block	Symbol	Name	Add- ress	Contents after Reset
Cap-	T12L	Timer T12 Counter Register, Low Byte	EC_{H}	00 _H
ture/	T12H	Timer T12 Counter Register, High Byte	ED _H	00 _H
Com-	T13L	Timer T13 Counter Register, Low Byte	EEH	00 _H
pare	T13H	Timer T13 Counter Register, High Byte	EFH	00 _H
Unit	T12PRL	Timer T12 Period Register, Low Byte	DEH	00 _H
	T12PRH	Timer T12 Period Register, High Byte	DF _H	00 _H
	T13PRL	Timer T13 Period Register, Low Byte	D2 _H	00 _H
	T13PRH	Timer T13 Period Register, High Byte	D3 _H	00 _H
	CC60RL	Capture/Compare Ch 0 Reg, Low Byte	C2 _H	00 _H
	CC60RH	Capture/Compare Ch 0 Reg, High Byte	C3 _H	00 _H
	CC61RL	Capture/Compare Ch 1 Reg, Low Byte	C4 _H	00 _H
	CC61RH	Capture/Compare Ch 1 Reg, High Byte	C5 _H	00 _H
	CC62RL	Capture/Compare Ch 2 Reg, Low Byte	C6 _H	00 _H
	CC62RH	Capture/Compare Ch 2 Reg, High Byte	C7 _H	00 _H
	CC63RL	T13 Compare Register, Low Byte	D4 _H	00 _H
	CC63RH	T13 Compare Register, High Byte	D5 _H	00 _H
	T12DTCL	Timer T12 Dead Time Ctrl, Low Byte	E6 _H	00 _H
	T12DTCH	Timer T12 Dead Time Ctrl, High Byte	E7 _H	00 _H
	CMPSTATL	Compare Timer Status, Low Byte	F4 _H	00 _H
	CMPSTATH	Compare Timer Status, High Byte	F5 _H	00 _H
	CMPMODIFL	Compare Timer Modification, Low Byte	EA _H	00 _H
	CMPMODIFH	Compare Timer Modification, High Byte	EB _H	00 _H
	TCTR0L	Timer Control Register 0, Low Byte	E2 _H	00 _H
	TCTR0H	Timer Control Register 0, High Byte	E3 _H	00 _H
	TCTR2L ³⁾	Timer Control Register 2, Low Byte	F2 _H	00 _H
	TCTR4L ⁴⁾	Timer Control Register 4, Low Byte	F2 _H	0 _H
	TCTR4H ⁴⁾	Timer Control Register 4, High Byte	F3 _H	00 _H
	ISL	Cap/Com Interrupt Register, Low Byte	E4 _H	00 _H
	ISH	Cap/Com Interrupt Register, High Byte	E5 _H	00 _H
	PISELH	Port Input Selector Register, High Byte	BBH	00 _H

Table 6 Special Function Registers - Functional Blocks (cont'd)

1) Bit-addressable special function registers

2) "X" means that the value is undefined and the location is reserved

3) Register is mapped by bit RMAP in SYSCON0.4=1

4) Register is mapped by bit RMAP in SYSCON0.4=0

Table 7 Contents of the SFRs, SFRs in numeric order of	f their addresses
--	-------------------

Addr	Reg- ister	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
A2 _H	WDTC ON	XXXX XX00 _B	-	_	-	-	-	-	-	WDTI N
A3 _H	WDTR EL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
A6 _H	PSLRL	00 _H	PSL63	-	PSL5	PSL4	PSL3	PSL2	PSL1	PSL0
A8 _H	IEN0	0X00 0000 _B	EA	-	ET2	ES	ET1	EX1	ET0	EX0
A9 _H	IEN1	XXXX X000 _B	-	_	-	-	-	EX3	EX2	EADC
AA _H	IEN2	XX00 00XX _B	-	-	EINP3	EINP2	EINP1	EINP0	-	-
ACH	IP1	XX00 0000 _B	-	_	.5	.4	.3	.2	.1	.0
AD _H	SYSC ON0	XX10 XXX1 _B	-	-	EALE	RMAP	-	-	-	XMAP 0
AF _H	SYSC ON1	00XX X0X0 _B	ESWC	SWC	-	-	-	BSLE N	-	SWAP
B0 _{H²⁾}	P3	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
В0 _{Н³⁾}	P3DIR	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
B1 _H	P3ALT	00 _H	CC60	COUT 60	CC61	COUT 61	CC62	COUT 62	CTRA P	COUT 63
B2 _H	WDTL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
B3 _H	WDTH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
B4 _H	P1ALT	XXX0 0X00 _B	_	_	-	RxD	INT3	-	EXF2	TxD
B6 _H	CC63 SRL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
B7 _H	CC63 SRH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0

1) X means that the value is undefined and the location is reserved

2) This register is mapped with RMAP (SYSCON0.4)=0

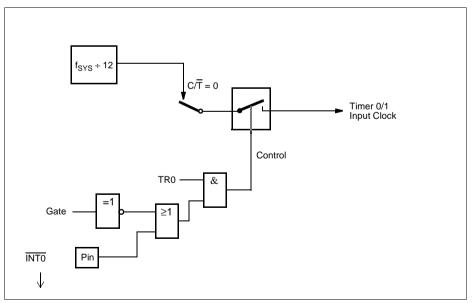
3) This register is mapped with RMAP (SYSCON0.4)=1

Shaded registers are bit-addressable special function registers

Ports

The C868 has two kinds of ports. The first kind is push-pull ports instead of the traditional quasi-bidirectional ports. The ports belonging to this kind are lsb of port 1 which is a 5-bit I/O port and port 3 which is an eight-bit I/O port. When configured as inputs, these ports will be high impedance with Schmitt trigger feature. Port 3 is alternate for capture/ compare functions whereas, port 1 has alternate functions for some of the pins.

The second kind is input ports which are shared by msb of port 1 which is a 3-bit input port, the interrupts, timer 2 inputs, capture/compare hall inputs and analog inputs.


Timer 0 and 1

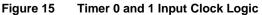

Timer 0 and 1 can be used in four operating modes as listed in Table 8:

Table 8	Timer 0 and 1 Operating Modes
---------	-------------------------------

Mode	Description	тмо	D	System Clock
		M1	MO	
0	8-bit timer with a divide-by-32 prescaler	0	0	f _{SYS} /(12*32)
1	16-bit timer	0	1	f _{SYS} /12
2	8-bit timer with 8-bit autoreload	1	0	
3	Timer 0 used as one 8-bit timer and one 8-bit timer timer 1 stops	1	1	

The register is incremented every machine cycle. Since the machine cycle consist of twelve oscillator periods, the count rate is 1/12th of the system frequency. External inputs INT0 and INT1 can be programmed to function as a gate to facilitate pulse width measurements. Figure 15 illustrates the input clock logic.

Trap Handling

<u>The trap</u> functionality permits the PWM outputs to react on the state of the input pin $\overline{\text{CTRAP}}$. This functionality can be used to switch off the power devices if the trap input becomes active (e.g. as emergency stop).

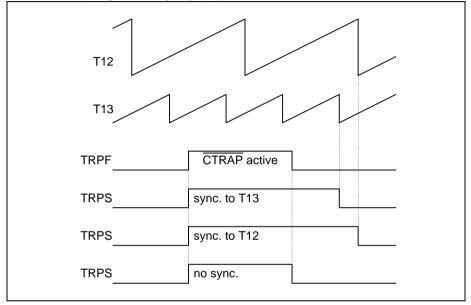


Figure 21 Trap State Synchronization (with TRM2='0')

For **Brushless-DC** motors there is a special mode (MSEL6x = '1000b') which is triggered by a change of the Hall-inputs (CCPOSx). This mode shows the capabilities of the CCU6. Here T12's channel 0 acts in capture function, channel 1 and 2 in compare function (without output modulation) and the multi-channel-block is used to trigger the output switching together with a possible modulation of T13.

After the detection of a valid Hall edge the T12 count value is captured to channel 0 (representing the actual motor speed) and resets the T12. When the timer reaches the compare value in channel 1, the next multi-channel state is switched by triggering the shadow transfer of bit field MCMP (if enabled in bit field SWEN). This trigger event can be combined with several conditions which are necessary to implement a noise filtering (correct Hall event) and to synchronize the next multi-channel state to the modulation sources (avoiding spikes on the output lines). This compare function of channel 1 can be used as a phase delay for the position input to the output switching which is necessary if a sensorless back-EMF technique is used instead of Hall sensors. The compare value in channel 2 can be used as a time-out trigger (interrupt) indicating that the motors destination speed is far below the desired value which can be caused by a abnormal load change. In this mode the modulation of T12 has to be disabled (T12MODENx = '0').

Figure 0-2 Timer T12 Brushless-DC Mode (MSEL6x = 1000)

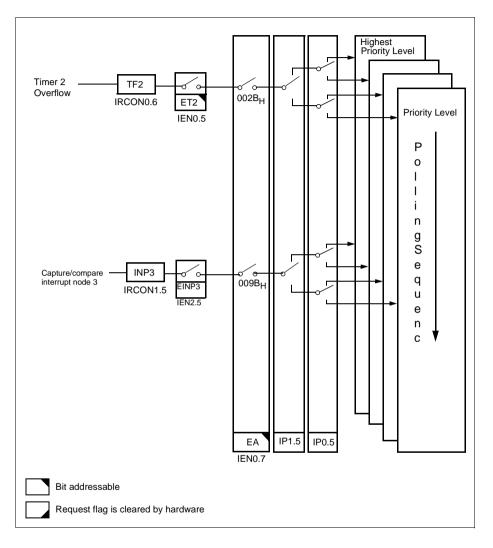
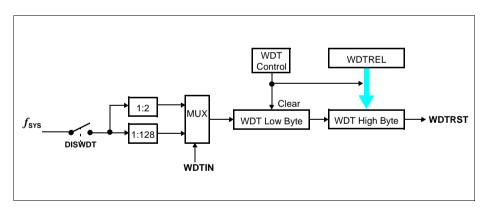


Figure 28 Interrupt Structure, Overview Part 5

Fail Save Mechanisms


The C868 offers enhanced fail save mechanisms, which allow an automatic recovery from software upset or hardware failure :

a programmable watchdog timer (WDT), with variable time-out period from 12.8 μ s to 819.2 μ s at f_{SYS} = 40 MHz.

Programmable Watchdog Timer

To protect the system against software failure, the user's program has to clear this watchdog within a previously programmed time period. If the software fails to do this periodical refresh of the watchdog timer, an internal reset will be initiated. The software can be designed so that the watchdog times out if the program does not work properly. It also times out if a software error is based on hardware-related problems.

The watchdog timer in the C868 is a 16-bit timer, which is incremented by a count rate of $f_{SYS}/2$ upto $f_{SYS}/128$. The machine clock of the C868 is divided by a prescaler, a divide-by-two or a divide-by-128 prescaler. The upper 8 bits of the Watchdog Timer can be preset to a user-programmable value via a watchdog service access in order to vary the watchdog expire time. The lower 8 bits are reset on each service access. **Figure 29** shows the block diagram of the watchdog timer unit.

Figure 29 Block Diagram of the Programmable Watchdog Timer

After a reset, the Watchdog Timer is automatically enabled. If it is disabled, it cannot be enabled again during active mode of the device. If the software fails to clear the watchdog timer an internal reset will be initiated. The reset cause (external reset or reset caused by the watchdog) can be examined by software (status flag WDTR in SCUWDT is set). A refresh of the watchdog timer is done by setting bits WDTRE and WDTRS (in

[0.1]

SFR SCUWDT) consecutively. This double instruction sequence has been implemented to increase system security.

It must be noted, however, that the watchdog timer is halted during the idle mode and power-down mode of the processor (see section "Power Saving Modes"). It is not possible to use the idle mode in combination with the watchdog timer function. Therefore, even the watchdog timer cannot reset the device when one of the power saving modes has been entered accidentally.

The time period for an overflow of the Watchdog Timer is programmable in two ways :

- **the input frequency** to the Watchdog Timer can be selected via bit WDTIN in register WDTCON to be either $f_{sys}/2$ or $f_{sys}/128$.
- **the reload value** WDTREL for the high byte of WDT can be programmed in register WDTCON.

The period P_{WDT} between servicing the Watchdog Timer and the next overflow can therefore be determined by the following formula:

$$P_{WDT} = \frac{2^{(1 + WDTIN^{*}6) *} (2^{16} - WDTREL * 2^{8})}{f_{sys}}$$

 Table 14 lists the possible ranges for the watchdog time which can be achieved using a certain module clock. Some numbers are rounded to 3 significant digits.

Reload value	Prescale	Prescaler for f _{sys}								
in WDTREL	2 (WDTI	N = '0')		128 (WDTIN = '1')						
	40 MHz	20 MHz	16 MHz	40 MHz	20 MHz	16 MHz				
FF _H	12.8 µs	25.6 µs	32.0 µs	819.2 µs	1.64 ms	2.05 ms				
7F _H	1.65 ms	3.3 ms	4.13 ms	105.7 ms	211.3 ms	264 ms				
00 _H	3.28 ms	6.55 ms	8.19 ms	209.7 ms	419.4 ms	524 ms				

Table 14	Watchdog Time Ranges
----------	----------------------

For safety reasons, the user is advised to rewrite WDTCON each time before the Watchdog Timer is serviced.

Device Specifications

Absolute Maximum Ratings

Absolute Maximum Rating Parameters

Parameter	Symbol	Limi	t Values	Unit	Notes
		min.	max.		
Ambient temperature under bias	T _A	-40	125	°C	
Storage temperature	T _{STG}	-65	150	°C	-
Voltage on V_{DDP} pins with respect to ground (V_{SSP})	V _{DDP}	-0.3	4.6	V	-
Voltage on any pin except int/ analog and XTAL with respect to ground ($V_{\rm SSP}$)	V _{IN0}	-0.5	4.6	V	-
Voltage on any int/analog pin with respect to ground (V_{SSP})	V _{IN1}	-0.5	4.6	V	-
Voltage on XTAL pins with respect to ground (V_{SSC})	V _{IN2}	-0.5	4.6	V	-
Input current on any pin during overload condition	I _{OV}	-10	10	mA	_1)
Absolute sum of all input currents during overload condition	$\Sigma I_{OV} $	-	43	mA	-
Power dissipation	P _{DISS}	-	tbd	W	-

¹⁾ Proper operation is not guaranteed if overload conditions occur on functional pins like XTAL2 etc.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (V_{IN} > V_{DDP} or V_{IN2} < V_{SSP} , V_{IN2} > V_{DDC} or V_{IN2} < V_{SSC}) the voltage on V_{DDP} pin with respect to ground (V_{SSP}) must not exceed the values defined by the absolute maximum ratings.

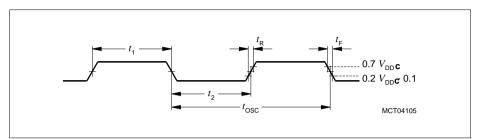
Power Supply Current Calculation Formulae

Parameter		Symbol	Formula ¹⁾
Active mode	C868-1S	I _{DDPtyp}	$0.25^* f_{SYS} + 3.1$ 0.26 * f_{SYS} + 5.2
	C868-1R	I _{DDPmax} I _{DDPtyp}	$0.27^* f_{SYS} + 2.7$
		I _{DDPmax}	0.29 * <i>f_{SYS}</i> + 3.9
Idle mode	C868-1S	<i>I</i> _{DDP<i>typ</i>}	$0.13^* f_{SYS} + 2.6$
		<i>I</i> _{DDPmax}	0.13 * <i>f_{SYS}</i> + 4.0
	C868-1R	<i>I</i> _{DDP<i>typ</i>}	$0.13^* f_{SYS} + 3.7$
		<i>I</i> _{DDPmax}	0.15 * <i>f_{SYS}</i> + 3.1
Active mode with	C868-1S C868-1R	<i>I</i> _{DDP<i>typ</i>}	0.01 * <i>f_{SYS}</i> + 3.1
slow-down enabled		<i>I</i> _{DDPmax}	0.02 * <i>f_{SYS}</i> + 3.6
		<i>I</i> _{DDP<i>typ</i>}	$0.01 * f_{SYS} + 3.2$
		<i>I</i> _{DDPmax}	0.01 * <i>f_{SYS}</i> + 3.7
Idle mode with slow-	C868-1S	<i>I</i> _{DDP<i>typ</i>}	$0.01^* f_{SYS} + 3.0$
down enabled		<i>I</i> _{DDPmax}	$0.01 * f_{SYS} + 3.8$
	C868-1R	<i>I</i> _{DDP<i>typ</i>}	$0.02^* f_{SYS} + 2.8$
		I _{DDPmax}	0.02 * <i>f_{SYS}</i> + 3.3

¹⁾ f_{SYS} is in MHz and results in mA.

Clock calculation table for ADC

TVC ¹⁾	32									
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$	
t _{ADCC}	322	386	450	514	578	642	706	770	t _{SYS}	
t _S	64	128	192	256	320	384	448	512	t _{SYS}	
TVC ¹⁾	28									
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$	
t _{ADCC}	282	338	394	450	506	562	618	674	t _{SYS}	
t _S	56	112	168	224	280	336	392	448	t _{SYS}	
TVC ¹⁾	24									
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$	
t _{ADCC}	242	290	338	386	434	482	530	578	t _{SYS}	
t _S	48	96	144	192	240	288	336	384	t _{SYS}	
TVC ¹⁾		20								
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$	
t _{ADCC}	202	242	282	322	362	402	442	482	t _{SYS}	
t _S	40	80	120	160	200	240	280	320	t _{SYS}	
TVC ¹⁾		16								
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$	
t _{ADCC}	162	194	226	258	290	322	354	386	t _{SYS}	
t _S	32	64	96	128	160	192	224	256	t _{SYS}	
TVC ¹⁾					12					
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$	
t _{ADCC}	122	146	170	194	218	242	266	290	t _{SYS}	
ts	24	48	72	96	120	144	168	192	t _{SYS}	


TVC ¹⁾	8								
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$
t _{ADCC}	82	98	114	130	146	162	178	194	t _{SYS}
ts	16	32	48	64	80	96	112	128	t _{SYS}
							·		
TVC ¹⁾	4								
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$
t _{ADCC}	42	50	58	66	74	82	90	98	t _{SYS}
t _S	8	16	24	32	40	48	56	64	t _{SYS}

¹⁾ TVC is the clock divider specified by bit fields ADCTC.

²⁾ STC is the sample time control specified by bit fields ADSTC.

³⁾ t_{ADC} is t_{SYS} *TVC

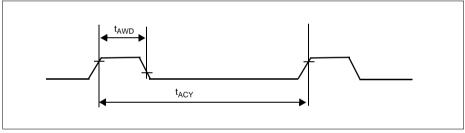


Figure 31 ALE Characteristic