

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C800
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	RAM
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	P-DSO-28
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-c868-1sg-ba

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2003-05

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2003. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

- One 8-bit and one 5 bits general purpose push-pull I/O ports
 - Enhanced sink current of 10 mA on Port 1/3 (total max current of 43 mA @ 100°C)
- Three 16-bit timers/counters –Timer 0 / 1 (C501 compatible)
 - -Timer 2 (up/down counter feature)
 - -Timer 1 or 2 can be used for serial baudrate generator
- Capture/compare unit for PWM signal generation –3-channel, 16-bit capture/compare unit –1-channel, 16-bit compare unit
- Full duplex serial interface (UART)
- 5 channel 8-bit A/D Converter
 Start of conversion can be synchronized to capture/compare timer 12/13.
- 13 interrupt vectors with four priority levels
- Programmable 16-bit Watchdog Timer
- Brown out detection
- Power Saving Modes
 - -Slow-down mode
 - -Idle mode (can be combined with slow-down mode)_
 - -Power-down mode with wake up capability through INT0 or RxD pins.
- Single power supply of 3.3V, internal voltage regulator for core voltage of 2.5V.
- P-DSO-28-1, P-TSSOP-38-1 packages
 - Temperature ranges:

SAF-C868-1RR BA, SAF-C868-1SR BA, SAF-C868-1RG BA, SAF-C868-1SG BA, SAF-C868A-1RR BA, SAF-C868A-1SR BA, SAF-C868A-1RG BA, SAF-C868A-1SG BA, SAF-C868P-1SR BA, SAF-C868P-1SG BA $T_A = -40$ to 85 °C SAK-C868-1RR BA, SAK-C868-1SR BA, SAK-C868-1RG BA, SAK-C868-1SG BA, SAK-C868A-1RR BA, SAK-C868A-1SR BA, SAK-C868A-1RG BA, SAK-C868A-1SG BA, SAK-C868A-1RG BA, SAK-C868A-1SG BA, SAK-C868A-1RG BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA, SAK-C868A-1RG BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA, SAK-C868A-1RG BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA, SAK-C868A-1SR BA, SAK-C868A-1SG BA,

BA, SAK-C868P-1SR BA, SAK-C868P-1SG BA, $T_A = -40$ to 125 °C

Figure 2 Logic Symbol

CPU

The C868 is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 10.67 MHz external crystal (giving a 40MHz CPU clock), 58% of the instructions execute in 300 ns.

PSW Program Status Word Register

[Reset value: 00_H]

D7 _H	D6 _H	D5 _H	D4 _H	D3 _H	D2 _H	D1 _H	D0 _H
СҮ	AC	F0	RS1	RS0	ov	F1	Р
rwh	rwh	rw	rw	rw	rwh	rw	rwh

Field	Bits	Тур	Descri	ption				
P	0	rwh	Parity Flag Set/cleared by hardware after each instruction to indicate an odd/even number of "one" bits in the accumulator, i.e. even parity.					
F1	1	rw	Genera	al Pu	rpose Flag			
ov	2	rwh	Overfle Used b	Overflow Flag Used by arithmetic instructions.				
RS0 RS1	3 4	rw	Regist These banks.	Register Bank select control bits These bits are used to select one of the four register banks.				
			Table	2:				
			RS1	RS0	Function			
			0	0	Bank 0 selected, data address 00 _H -07 _H			
			0	1	Bank 1 selected, data address 08 _H -0F _H			
			1	0	Bank 2 selected, data address 10_{H} -17_{H}			
			1	1	Bank 3 selected, data address 18_{H} -1F _H			
F0	5	rw	Genera	al Pu	rpose Flag			
AC	6	rwh	Auxiliary Carry Flag Used by instructions which execute BCD operations.					
СҮ	7	rwh	Carry Used b	Flag by arit	hmetic instructions.			

Figure 9 EEPROM connections for a) SPI and b) I2C

C868

The PLL output frequency is determined by:

$$f_{\mathsf{PLL}} = f_{\mathsf{VCO}} / \mathsf{K} = \frac{15}{\mathsf{K}} \times f_{\mathsf{OSC}}$$
[1]

The range for the VCO frequency is given by:

$$100 \text{ MHz} \leq f_{\text{VCO}} \leq 160 \text{ MHz}$$
[2]

The relationship between the input frequency and VCO frequency is given by:

$$f_{\rm VCO} = 15 \times f_{\rm OSC}$$
[3]

This gives the range for the input frequency which is given by:

$$6.67 \text{ MHz} \le f_{\text{OSC}} \le 10.67 \text{ MHz}$$
 [4]

Table 5 Output Frequencies f_{PLL} Derived from Various Output Factors

K-Factor		f _P	LL	Duty	Jitter
Selected Factor	KDIV	f _{VCO} = 100 MHz	f _{VCO} = 160 MHz	Cycle [%]	
2	000 _B	50	80	50	linear depending on f _{VCO}
4	010 _B	25	40	50	at f _{VCO} =100MHz: +/-300ps
5 ¹⁾	011 _B	20	32	40	additional iitter for odd Kdiv
6	100 _B	16.67	26.67	50	factors tbd.
8	101 _B	12.5	20	50	
9 ¹⁾	110 _B	11.11	17.78	44	
10	111 _B	10	16	50	
16	001 _B	6.25	10	50	

¹⁾ These odd factors should not be used (not tested because off the unsymmetrical duty cycle).

2) Shaded combinations should not be used because they are above the maximum CPU frequency of 40MHz.

Figure 12 shows the recommended oscillator circuitries for crystal and external clock operation.

Figure 12 Recommended Oscillator Circuit

In this application the on-chip oscillator is used as a crystal-controlled, positivereactance oscillator (a more detailed schematic is given in **Figure 13**). It is operated in its fundamental response mode as an inductive reactor in parallel resonance with a capacitor external to the chip. The crystal specifications and capacitances are noncritical. In this circuit tbd pF can be used as single capacitance at any frequency together with a good quality crystal. A ceramic resonator can be used in place of the crystal in cost-critical applications. If a ceramic resonator is used, the two capacitors normally have different values depending on the oscillator frequency. We recommend consulting the manufacturer of the ceramic resonator for value specifications of these capacitors.

Figure 13 On-Chip Oscillator Circuitry

To drive the C868 with an external clock source, the external clock signal has to be applied to XTAL2, as shown in **Figure 14**. XTAL1 has to be left unconnected. A pullup resistor is suggested (to increase the noise margin), but is optional if V_{OH} of the driving gate corresponds to the V_{HH2} specification of XTAL2.

Figure 14 External Clock Source

Block	Symbol	Name	Add- ress	Contents after Reset
C800 core	ACC B DPH DPL DPSEL PSW SP SCON SBUF IEN0 IEN1 IEN2 IP0 IP1 TCON TL0 TL0 TL1 TH0 TH1 PCON	Accumulator B-Register Data Pointer, High Byte Data Pointer, Low Byte Data Pointer Select Register Program Status Word Register Stack Pointer Serial Channel Control Register Serial Data Buffer Interrupt Enable Register 0 Interrupt Enable Register 1 Interrupt Enable Register 2 Interrupt Priority Register 0 interrupt Priority Register 1 Timer 0/1 Control Register Timer Mode Register Timer 0, Low Byte Timer 1, Low Byte Timer 1, High Byte Power Control Register	E0 H ¹⁾ 83H 82H 84H ¹⁾ 81H 99H ¹⁾ 99H ¹⁾ A9H A9H A9H AAH B8H ¹⁾ 88H 88H 88H 88H 80H 80H 87H	00 _H 00 _H 00 _H 00 _H 00 _H 00 _H 07 _H 00 _H 000 _H
Sys- tem	PMCON0 CMCON EXICON IRCON0 IRCON1 PMCON1 PMCON2 SCUWDT VERSION SYSCON0 SYSCON1	Wake-up Control Register Clock Control Register External Interrupt Control Register External Interrupt Request Register Peripheral Interrupt Request Register Peripheral Management Ctrl Register Peripheral Management Status Register SCU/Watchdog Control Register ROM Version Register System Control Register 0 System Control Register 1	8E _H 8F _H 91 _H 92 _H 93 _H 93 _H 93 _H 93 _H 93 _H 92 _H 93 _H 93 H 93 _H 93 _H 93 H 93 H 93 H 93 H 93 H 93 H} 93 H93 H} 93 H} 93 H} 93 H} 93 H}	XXX00000B ² 10011111B XXXXXX00B ² XXXXX00B ² XX0000X0B ² XXXX000B ² XXXX000B ² XXXX000B ² 00H XX10XXX1B ² 00XXX0X0B ²

Table 6 Special Function Registers - Functional Blocks

1) Bit-addressable special function registers

2) "X" means that the value is undefined and the location is reserved

3) Register is mapped by bit RMAP in SYSCON0.4=1

4) Register is mapped by bit RMAP in SYSCON0.4=0

Block	Symbol	Name	Add- ress	Contents after Reset
Cap-	ISSL ³⁾	Cap/Com Int Status Set Reg, Low Byte	BCH	00 _H
ture/	ISSH ³⁾	Cap/Com Int Status Set Reg, High Byte	BD _H	00 _H
Com-	ISRL ⁴⁾	Cap/Com Int Status Reset Reg, Low Byte	BC _H	00 _H
pare	ISRH ⁴⁾	Cap/Com Int Status Reset Reg, High Byte	BD _H	00 _H
Unit	INPL ³⁾	Cap/Com Int Node Ptr Reg, Low Byte	BE _H	40 _H
		Cap/Com Int Node Ptr Reg, High Byte	BF _H	39 _H
	IENL ⁴⁾	Cap/Com Interrupt Register, Low Byte	BE _H	00 _H
	IENH ⁴⁾	Cap/Com Interrupt Register, High Byte	BF _H	00 _H
	CC60SRL	Cap/Com Channel 0 Shadow, Low Byte	FA _H	00 _H
	CC60SRH	Cap/Com Channel 0 Shadow, High Byte	FB _H	00 _H
	CC61SRL	Cap/Com Channel 1 Shadow, Low Byte	FC _H	00 _H
	CC61SRH	Cap/Com Channel 1 Shadow, High Byte	FD _H	00 _H
	CC62SRL	Cap/Com Channel 2 Shadow, Low Byte	FE _H	00 _H
	CC62SRH	Cap/Com Channel 2 Shadow, High Byte	FF _H	00 _H
	CC63SRL	T13 Compare Shadow Reg, Low Byte	B6 _H	00 _H
	CC63SRH	T13 Compare Shadow Reg, High Byte	B7 _H	00 _H
	MODCTRL ³⁾	Modulation Control Register, Low Byte	D6 _H	00 _H
	MODCTRH ³⁾	Modulation Control Register, High Byte	D7 _H	00 _H
	TRPCTRL	Trap Control Register, Low Byte	CEH	00 _H
	TRPCTRH	Trap Control Register, High Byte	CF _H	00 _H
	PSLRL	Passive State Level Register, Low Byte	A6 _H	00 _H
	MCMOUTL ³⁾	MCM Output Register, Low Byte	DCH	00 _H
	MCMOUTH ³⁾	MCM Output Register, High Byte	DD _H	00 _H
	MCMOUTSL ⁴⁾	MCM Output Shadow Register, Low Byte	DCH	00 _H
	MCMOUTSH ⁴⁾	MCM Output Shadow Register, High Byte	DD_H	00 _H
	MCMCTRLL ⁴⁾	MCM Control Register, Low Byte	D6 _H	00 _H
	T12MSELL	T12 Cap/Com Mode Sel Reg, Low Byte	F6 _H	00 _H
	T12MSELH	T12 Cap/Com Mode Sel Reg, High Byte	F7 _H	00 _H

Table 6 Special Function Registers - Functional Blocks (cont'd)

1) Bit-addressable special function registers

3) Register is mapped by bit RMAP in SYSCON0.4=1

4) Register is mapped by bit RMAP in SYSCON0.4=0

Table 7 Contents of the SFRs, SFRs in numeric order of their addresses

Addr	Reg- ister	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
B8 _H	IP0	XX00 0000 _B	-	-	.5	.4	.3	.2	.1	.0
BB _H	PISEL H	00 _H	_	_	ISPOS 2.1	ISPOS 2.0	ISPOS 1.1	ISPOS 1.0	ISPOS 0.1	ISPOS 0.0
BC _{H^{³)}}	ISSL	00 _H	ST12P M	ST12O M	SCC62 F	SCC62 R	SCC61 F	SCC61 R	SCC60 F	SCC60 R
BC _{H²⁾}	ISRL	00 _H	RT12P M	RT12O M	RCC6 2F	RCC6 2R	RCC6 1F	RCC6 1R	RCC6 0F	RCC6 0R
BD _H ³)	ISSH	00 _H	-	SIDLE	SWHE	SCHE	-	STRP F	ST13P M	ST13C M
BD _H ²⁾	ISRH	00 _H	-	RIDLE	RWHE	RCHE	_	RTRP F	RT13P M	RT13C M
BE _H ²⁾	IENL	00 _H	ENT12 PM	ENT12 OM	ENCC 62F	ENCC 62R	ENCC 61F	ENCC 61R	ENCC 60F	ENCC 60R
BE _H ³⁾	INPL	00 _H	INPCH E.1	INPCH E.0	INPCC 62.1	INPCC 62.0	INPCC 61.1	INPCC 61.0	INPCC 60.1	INPCC 60.0
BF _H ²)	IENH	00 _H	-	ENIDL E	ENWH E	ENCH E	-	ENTR PF	ENT13 PM	ENT13 CM
BF _H ³)	INPH	00 _H	-	-	INPT1 3.1	INPT1 3.0	INPT1 2.1	INPT1 2.0	INPER R.1	INPER R.0
C0 _H	SCUW DT	00 _H	-	PLLR	-	WDTR	WDTE OI	WDTD IS	WDTR S	WDTR E
C2 _H	CC60 RL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C3 _H	CC60 RH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C4 _H	CC61 RL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C5 _H	CC61 RH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0

1) X means that the value is undefined and the location is reserved

2) This register is mapped with RMAP (SYSCON0.4)=0

3) This register is mapped with RMAP (SYSCON0.4)=1

Shaded registers are bit-addressable special function registers

Timer/Counter 2 with Compare/Capture/Capture

Timer 2 is a 16-bit timer/counter with an up/down count feature. It has three operating modes:

- 16-bit auto-reload mode (up or down counting)
- 16-bit capture mode
- Baudrate generator

Table 9 Timer/Counter 2 Operating Modes

Mode	T2CON RCLK <u>CP/</u> TR2 or RL2 TCLK		T2MOD	T2CON	T2EX	Remarks	System Clock		
			TR2	DCEN	EXEN			Inte- rnal	T2
16-bit Auto-	0	0	1	0	0	Х	reload upon overflow	<i>f</i> sys /12	max <i>f</i> sys
reload	0	0	x	0	1	\downarrow	reload trigger (falling edge)		/24
	0	0	1	1	Х	0	down counting		
	0	0	1	1	х	1	up counting		
16-bit Capture	0	1	1	X	0	Х	16-bit Timer/ Counter (only up-counting)	<i>f</i> sys /12	max ƒ _{SYS} /24
	0	1	1	x	1	\downarrow	capture T2H,T2L-> RC2H,RC2L		
Baudrate Generator	1	X	1	X	0	Х	no overflow interrupt request(TF2)	fsys /2	-
	1	Х	1	x	1	\downarrow	extra external interrupt ("Timer 2")		
off	Х	Х	0	Х	Х	Х	Timer 2 stops	-	-

Note: denotes a falling edge

Switching Examples

Figure 16 Edge-aligned mode with duty cycles near 100% and near 0%. Applicable to T13 as well.

Hall Sensor Mode

In **Brushless-DC motors** the next multi-channel state values depend on the pattern of the Hall inputs. There is a strong correlation between the **Hall pattern** (CURH) and the **modulation pattern** (MCMP). Because of different machine types the modulation pattern for driving the motor can be different. Therefore it is wishful to have a wide flexibility in defining the correlation between the Hall pattern and the corresponding modulation pattern. The CCU6 offers this by having a register which contains the actual Hall pattern (CURHS), the next expected Hall pattern (EXPHS) and its output pattern (MCMPS). At every correct Hall event (CHE, see figure *Hall Event Actions*) a new Hall pattern with its corresponding output pattern can be loaded (from a predefined table) by software into the register MCMOUTS. Loading this shadow register can also be done by a write action on MCMOUTS with bit STRHP = '1'

The **sampling** of the Hall pattern (on CCPOSx) is done with the T12 clock. By using the dead-time counter DTC0 (mode MSEL6x= '1000') a hardware **noise filter** can be implemented to suppress spikes on the Hall inputs due to high di/dt in rugged inverter environment. In case of a Hall event the DTC0 is reloaded and starts counting. When the counter value of one is reached, the CCPOSx inputs are sampled (without noise and spikes) and are compared to the current Hall pattern (CURH) and to the expected Hall pattern (EXPH). If the sampled pattern equals to the current pattern the edge on CCPOSx was due to a noise spike and no action will be triggered (implicit noise filter). If the sampled pattern equals to the next expected pattern the edge on CCPOSx was a correct Hall event, the bit CHE is set which causes an interrupt and the resets T12 (for speed measurement, see description mode '1000' below).

This correct Hall event can be used as a transfer request event for register MCMOUTS. The transfer from MCMOUTS to MCMOUT transfers the new CURH-pattern as well as the next EXPH-pattern. In case of the sampled Hall inputs were neither the current nor the expected Hall pattern, the bit WHE (wrong Hall event) is set which also can cause an interrupt and sets the IDLE mode clearing MCMP (modulation outputs are inactive). To restart from IDLE the transfer request of MCMOUTS have to be initiated by software (bit STRHP and bitfields SWSEL/SWSYN).

Below is a table listing output (MCMP) for a BLDC motor.

Block Commutation Control Table

Mode	CCPOS0- CCPOS2 Inputs			C	C60 - CC Outputs	62 5	COUT60 - COUT62 Outputs		
	CCP OS0	CCP OS1	CCP OS2	CC60	CC61	CC62	COUT6 0	COUT6 1	COUT6 2
Rotate left,	1	0	1	inactive	inactive	active	inactive	active	inactive
0° phase shift	1	0	0	inactive	inactive	active	active	inactive	inactive
	1	1	0	inactive	active	inactive	active	inactive	inactive
	0	1	0	inactive	active	inactive	inactive	inactive	active
	0	1	1	active	inactive	inactive	inactive	inactive	active
	0	0	1	active	inactive	inactive	inactive	active	inactive
Rotate right	1	1	0	active	inactive	inactive	inactive	active	inactive
	1	0	0	active	inactive	inactive	inactive	inactive	active
	1	0	1	inactive	active	inactive	inactive	inactive	active
	0	0	1	inactive	active	inactive	active	inactive	inactive
	0	1	1	inactive	inactive	active	active	inactive	inactive
	0	1	0	inactive	inactive	active	inactive	active	inactive
Slow down	Х	Х	Х	inactive	inactive	inactive	active	active	active
Idle ¹⁾	Х	Х	Х	inactive	inactive	inactive	inactive	inactive	inactive

¹⁾ In case of the sampled Hall inputs were neither the current nor the expected Hall pattern, the bit WHE (wrong Hall event) is set which also can cause an interrupt and sets the IDLE mode clearing MCMP (modulation outputs are inactive).

Interrupt System

The C868 provides 13 interrupt vectors with four priority levels. Nine interrupt requests are generated by the on-chip peripherals (timer 0, timer 1, timer 2, serial channel, A/D converter, and the capture/compare unit with 4 interrupts) and four interrupts may be triggered externally.

The wake-up from power-down mode interrupt has a special functionality which allows the software <u>power</u>-down mode to be terminated by a short negative pulse at pins CCPOS0/T2/INT0/AN0 or P1.4/RxD.

The 13 interrupt sources are divided into six groups. Each group can be programmed to one of the four interrupt priority levels. Additionally, 4 of these interrupt sources are channeled from 7 Capture/Compare (CCU6) interrupt sources.

Figure 23 to Figure 28 give a general overview of the interrupt sources and illustrate the request and control flags.

Table 12	Interrupt	Source and	Vectors
	meenape	oouroo una	

Interrupt Source	Interrupt Vector Address(core connections)	Interrupt Request Flags
External Interrupt 0	0003 _H (EX0)	IE0
Timer 0 Overflow	000B _H (ET0)	TF0
External Interrupt 1	0013 _H (EX1)	IE1
Timer 1 Overflow	001B _H (ET1)	TF1
Serial Channel	0023 _H (ES)	RI / TI
Timer 2 Overflow	002B _H (EX5)	TF2
A/D Converter	0033 _H (EX6)	IADC
External Interrupt 2	003B _H (EX7)	IEX2
External Interrupt 3	0043 _H (EX8)	IEX3
	004B _H (EX9)	
	0053 _H (EX10)	
	005B _H (EX11)	
	0063 _H (EX12)	
	006B _H (EX13)	
CAPCOM interrupt node 0	0083 _H (EX14)	INP0 ¹⁾
CAPCOM interrupt node 1	008B _H (EX15)	INP1 ¹⁾
CAPCOM interrupt node 2	0093 _H (EX16)	INP2 ¹⁾
CAPCOM interrupt node3	009B _H (EX17)	INP3 ¹⁾
	00A3 _H (EX18)	
	00AB _H (EX19)	
	00D3 _H (EX20)	
	00DB _H (EX21)	
	00E3 _H (EX22)	
Wake-up from power-down mode	007B _H	-

¹⁾ Capture/compare has 10 interrupt sources channeled to the 4 interrupt nodes INP0..3. The 3 capture/compare ports has 3 pairs of interrupt request flags, ICC60R, ICC60F, ICC61R, ICC61F, ICC62R, ICC62F. The other flags are T12OM, T12PM, T13CM, T13PM, TRPF, WHE, CHE.

Device Specifications

Absolute Maximum Ratings

Absolute Maximum Rating Parameters

Parameter	Symbol	Limi	t Values	Unit	Notes
		min.	max.		
Ambient temperature under bias	T _A	-40	125	°C	
Storage temperature	T _{STG}	-65	150	°C	-
Voltage on V_{DDP} pins with respect to ground (V_{SSP})	V _{DDP}	-0.3	4.6	V	-
Voltage on any pin except int/ analog and XTAL with respect to ground (V _{SSP})	V _{IN0}	-0.5	4.6	V	-
Voltage on any int/analog pin with respect to ground (V_{SSP})	V _{IN1}	-0.5	4.6	V	-
Voltage on XTAL pins with respect to ground (V_{SSC})	V _{IN2}	-0.5	4.6	V	-
Input current on any pin during overload condition	I _{OV}	-10	10	mA	_1)
Absolute sum of all input currents during overload condition	$\Sigma I_{OV} $	-	43	mA	-
Power dissipation	P _{DISS}	-	tbd	W	-

¹⁾ Proper operation is not guaranteed if overload conditions occur on functional pins like XTAL2 etc.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (V_{IN} > V_{DDP} or V_{IN2} < V_{SSP} , V_{IN2} > V_{DDC} or V_{IN2} < V_{SSC}) the voltage on V_{DDP} pin with respect to ground (V_{SSP}) must not exceed the values defined by the absolute maximum ratings.

DC Characteristics

(Operating Conditions apply)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Input low voltages all except XTAL2, int/analog Int/analog XTAL2	$V_{\rm IL0}$ $V_{\rm IL1}$ $V_{\rm IL2}$	-0.5 -0.5 -0.5	0.3V _{DDP} 0.3V _{DDC} 0.1V _{DDC}	V V V	_1)
Input high voltages all except XTAL2, int/analog int/analog XTAL2	$V_{\rm IH0}$ $V_{\rm IH1}$ $V_{\rm IH2}$	0.7V _{DDP} 0.7V _{DDC} 0.7V _{DDC}	V _{DDP} +0.5 V _{DDP} +0.5 V _{DDC} +0.5	V V V	_
Output low voltage	V _{OL}	-	0.45	V	SAF-C868 I _{OL} =10mA
		-	0.55	V	SAK-C868 I _{OL} =10mA
Output high voltage	V _{OH}	2.4	-	V	I _{OH} =10mA
Input leakage current (all except int/analog)	I _{LIO}	-	±0.5	uA	0.4 <v<sub>IN<v<sub>DDP</v<sub></v<sub>
Input leakage current (int/ analog)	I _{LI1}	-	±0.5	uA	0.4 <v<sub>IN<v<sub>DDP²⁾</v<sub></v<sub>
Input low current (XTAL2)	I _{LI2}	-	±10	uA	0.4 <v<sub>IN<v<sub>DDC</v<sub></v<sub>
Digital supply voltage	V _{DDC}	2.25 ³⁾	2.75	V	-
Blocking capacitor for V_{DDC}		136	470	nF	_4)
Pin capacitance	C _{IO}	-	10	pF	$f_{\rm C} = 1 \text{MHz}$ $T_{\rm A} = 25^{\rm 0} \text{C}$

Note:

Interrupt/analog pins are input only and has CMOS characteristics whereas the other I/O pins have TTL characteristics.

- ²⁾ The leakage current of interrupt/analog pins depends on the leakage current of the CMOS pad for the digital functions and the analog pad.
- ³⁾ The V_{DDC} is measured under the following conditions:

Microcontroller in power down mode; $\overline{\text{RESET}} = V_{\text{DDP}}$; $\text{XTAL2} = V_{\text{SSC}}$; XTAL1 = N.C.; $V_{\text{AGND}} = V_{\text{SSP}}$; $V_{\text{AREF}} = V_{\text{DDP}}$; $\text{RxD/INT0} = V_{\text{DDP}}$; all other pins are set to input and connected to gnd; ALE output disabled and connected to gnd; 20mA current sourced from the V_{DDC} pin.

 $^{4)}\,$ Ceramic type (±20%) max ESR: 25m Ω ,max trace length to capacitor is 10mm.

Power Supply Current

Parameter		Symbol	Limit Values		Unit	Test Condition	
				typ. ¹⁾	max. ²⁾	-	
Active mode	C868-1S	40 MHz ³⁾	I _{DDP}	13.1	15.6	mA	4)
	C868-1R	40 MHz ³⁾	I _{DDP}	13.5	15.5	mA	
Idle mode	C868-1S	40 MHz ³⁾	I _{DDP}	7.8	9.6	mA	5)
	C868-1R	40 MHz ³⁾	I _{DDP}	7.9	9.1	mA	
Active mode with slow-down enabled	C868-1S	40 MHz ³⁾	I _{DDP}	3.5	4.4	mA	6)
	C868-1R	40 MHz ³⁾	I _{DDP}	3.6	4.1	mA	
Idle mode with slow- down enabled	C868-1S	40 MHz ³⁾	I _{DDP}	3.4	4.2	mA	7)
	C868-1R	40 MHz ³⁾	I _{DDP}	3.6	4.1	mA	
Power- down mode	C868-1S		I _{PDP}	240	300	uA	SAF-C868 ⁸⁾
				240	400	uA	SAK-C868 ⁸⁾
	C868-1R		I _{PDP}	240	300	uA	SAF-C868 ⁸⁾
				240	400	uA	SAK-C868 ⁸⁾

Note:

¹⁾ The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C but not 100% tested.

²⁾ The maximum I_{DDP} values are measured under worst case conditions ($T_{\text{A}} = -40 \text{ °C}$ and $V_{\text{DDP}} = 3.6 \text{ V}$).

³⁾ System clock, set by using external clock of 10.67MHz and setting KDIV in CMCON to 010 (factor of 4)

⁴⁾ I_{DDP} (active mode) is measured with:

<u>XTAL2</u> driven with t_{R} , $t_{F} = 5$ ns, V_{IL1} , $V_{IL2} = V_{SSP} + 0.5$ V, V_{IH1} , $V_{IH2} = V_{DDP} - 0.5$ V; XTAL1 = N.C.; <u>RESET</u> = V_{DDP} ; all other pins are disconnected. $?I_{DDP}$ would be slightly higher if the crystal oscillator is used (approx. 1 mA).