

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Discontinued at Digi-Key
Core Processor	C800
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	RAM
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-c868p-1sr-ba

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CPU

The C868 is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 10.67 MHz external crystal (giving a 40MHz CPU clock), 58% of the instructions execute in 300 ns.

PSW Program Status Word Register

[Reset value: 00_H]

D7 _H	D6 _H	D5 _H	D4 _H	D3 _H	D2 _H	D1 _H	D0 _H
СҮ	AC	F0	RS1	RS0	ov	F1	Р
rwh	rwh	rw	rw	rw	rwh	rw	rwh

Field	Bits	Тур	Descri	Description				
P	0	rwh	Parity Set/cle indicate accum	Parity Flag Set/cleared by hardware after each instruction to indicate an odd/even number of "one" bits in the accumulator, i.e. even parity.				
F1	1	rw	Genera	General Purpose Flag				
ov	2	rwh	Overfle Used b	Overflow Flag Used by arithmetic instructions.				
RS0 RS1	3 4	rw	Register Bank select control bits These bits are used to select one of the four register banks.					
			Table 2 :					
			RS1	RS0	Function			
			0	0	Bank 0 selected, data address 00 _H -07 _H			
			0	1	Bank 1 selected, data address 08 _H -0F _H			
			1	0	Bank 2 selected, data address 10_{H} -17_{H}			
			1 1 Bank 3 selected		Bank 3 selected, data address 18_{H} -1F _H			
F0	5	rw	Genera	al Pu	rpose Flag			
AC	6	rwh	Auxilia Used b	Auxiliary Carry Flag Used by instructions which execute BCD operations.				
СҮ	7	rwh	Carry Used b	Flag by arit	hmetic instructions.			

Figure 6 Entry and exit of Chip Modes

A valid hardware reset would, of course, override any of the above entry or exit procedures.

Table 0-1	Hardware and Software	Selection of	Chipmodes
-----------	-----------------------	--------------	-----------

Operating Mode (Chipmode)	Hardware Selection	Software Selection			
Normal Mode	ALE/BSL pin = high RESET rising edge	ALE/BSL = don't care; setting bits BSLEN, SWAP = 0,0; execute unlocking sequence			
Normal XRAM Mode	Not possible	setting bits BSLEN,SWAP = 0,1; execute unlocking sequence			
Bootstrap XRAM Mode	Not possible	setting bits BSLEN,SWAP = 1,1; execute unlocking sequence			
Bootstrap Mode	ALE/BSL pin = low RESET rising edge	ALE/BSL = don't care; setting bits BSLEN, SWAP = 1,0; execute unlocking sequence			

Bootstrap loader

The C868, includes a bootstrap mode, which is activated by setting the ALE/BSL pin at logic low with a pulldown and TxD pin at logic high with a pullup at the rising edge of the RESET. Or it can be entered by software, that is by setting BSLEN bit and resetting SWAP bit in SFR SYSCON1 accompany by an unlock sequence.

In the bootstrap mode, software routines of the bootstrap loader located in the boot ROM will be executed. Its purpose is to allow the easy and quick programming of the internal SRAM (0000_H to 1FFF_H) or XRAM (FF00_H to FFFF_H) via serial interface (UART) while the MCU is in-circuit. It also provides a way to program SRAM or XRAM through bootstrapping from an external SPI or I2C EEPROM.

The first action of the bootstrap loader is to detect the presence of EEPROM and its type, SPI or I2C, and check the first byte of the serial EEPROM. If the first byte is $0A5_H$, the MCU would enter Phase A to download from the EEPROM. Otherwise, it will enter Phase B to establish a serial communication with the connected host. Bootstrapping from the serial EEPROM can also be done in phase B if it is invoked by the host.

Phase B consists of two functional parts that represent two phases:

- Phase I: Establish a serial connection and automatically synchronize to the transfer speed (baud rate) of the serial communication partner (host).
- Phase II: Perform the serial communication with the host. The host controls the communication by sending special header information, which select one of the working modes. These modes are:

Modes	Description
0	Transfer a customer program from the host to the SRAM (0000_H to $1FFF_H$) or XRAM ($FF00_H$ -FFFF_H). Then return to the beginning of phase II and wait for the next command from the host.
1	Execute a customer program in the XRAM at start address FF00 _H .
2	Execute a customer program in the SRAM at start address 0000 _H .
3	Transfer a customer program from the SPI EEPROM to the SRAM $(0000_{\text{H}} \text{ to } 1\text{FFF}_{\text{H}})$ or XRAM (FF00 _H -FFFF _H). Then return to the beginning of phase II and wait for the next command from the host.
4	Transfer a customer program from the I2C EEPROM to the SRAM $(0000_{\text{H}} \text{ to } 1\text{FFF}_{\text{H}})$ or XRAM (FF00 _H -FFFF _H). Then return to the beginning of phase II and wait for the next command from the host.
5-9	reserved

Table 4 Serial Communication Modes of Phase B

The phases of the bootstrap loader are illustrated in Figure 7.

Figure 7 The phases of the Bootstrap Loader

The serial communication is activated in phase B. Using a full duplex serial cable (RS232), the MCU must be connected to the serial port of the host computer as shown in **Figure 8**.

Figure 8 Bootstrap Loader Interface to the PC

Addr	Reg- ister	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
81 _H	SP	07 _H	.7	.6	.5	.4	.3	.2	.1	.0
82 _H	DPL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
83 _H	DPH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
84 _H	DPSE L	00 _H	-	_	-	-	_	D2	D1	D0
87 _H	PCON	0XX0 0000 _B	SMOD	-	-	SD	GF1	GF0	PDE	IDLE
88 _H	TCON	00 _H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
89 _H	TMOD	00 _H	GATE 1	C/NT1	M1(1)	M0(1)	GATE 0	C/NT0	M1(0)	M0(0)
8A _H	TL0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8B _H	TL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8C _H	TH0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8D _H	TH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8E _H	PMCO N0	XXX0 0000 _B	-	-	-	EBO	BO	SDST AT	WS	EPWD
8F _H	CMCO N	1001 1111 _B	KDIV2	KDIV1	KDIV0	REL4	REL3	REL2	REL1	REL0
90 _H ²)	P1	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
90 _H ³)	P1DIR	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
91 _H	EXICO N	XXXX XX00 _B	-	-	-	-	-	-	ESEL3	ESEL2
92 _H	IRCO N0	XXXX XX00 _B	-	-	-	-	-	-	EXINT 3	EXINT 2
93 _H	IRCO N1	XX00 00X0 _B	-	-	INP3	INP2	INP1	INP0	-	IADC
98 _H	SCON	00 _H	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
99 _H	SBUF	00 _H	.7	.6	.5	.4	.3	.2	.1	.0

Table 7 Contents of the SFRs, SFRs in numeric order of their addresses

1) X means that the value is undefined and the location is reserved

2) This register is mapped with RMAP (SYSCON0.4)=0

3) This register is mapped with RMAP (SYSCON0.4)=1

Shaded registers are bit-addressable special function registers

Table 7 C	ontents of the SFRs, SFRs in numeric order of their addresses
-----------	---

Addr	Reg- ister	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C6 _H	CC62 RL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C7 _H	CC62 RH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C8 _H	T2CO N	00 _H	TF2	EXF2	RCLK	TCLK	EXEN 2	TR2	C/T2	CP/ RL2
C9 _H	T2MO D	XXXX XXX0 _B	-	-	-	-	-	-	-	DCEN
CAH	RC2L	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
СВН	RC2H	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CCH	TL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CD _H	TH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CEH	TRPC TRL	00 _H	-	-	-	-	-	TRPM 2	TRPM 1	TRPM 0
CF _H	TRPC TRH	00 _H	TRPP EN	TRPE N13	TRPE N5	TRPE N4	TRPE N3	TRPE N2	TRPE N1	TRPE N0
D0 _H	PSW	00 _H	CY	AC	F0	RS1	RS0	OV	F1	Р
D2 _H	T13PR L	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
D3 _H	T13PR H	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
D4 _H	CC63 RL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
D5 _H	CC63 RH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
D6 _H ²)	MCMC TRLL	00 _H	-	-	SWSY N1	SWSY N0	-	SWSE L2	SWSE L1	SWSE L0
D6 _H 3)	MODC TRL	00 _H	MCME N	-	T12M ODEN 5	T12M ODEN 4	T12M ODEN 3	T12M ODEN 2	T12M ODEN 1	T12M ODEN 0

1) X means that the value is undefined and the location is reserved

2) This register is mapped with RMAP (SYSCON0.4)=0

3) This register is mapped with RMAP (SYSCON0.4)=1

Shaded registers are bit-addressable special function registers

Table 7	Contents of the SFRs.	SFRs in numeric order of their addresses

Addr	Reg- ister	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
E6 _H	T12DT CL	00 _H		-	DTM5	DTM4	DTM3	DTM2	DTM1	DTM0
E7 _H	T12DT CH	00 _H	-	DTR2	DTR1	DTR0	-	DTE2	DTE1	DTE0
E8 _H	PMCO N1	XXXX X000 _B	-	_	_	-	_	CCUDI S	T2DIS	ADCDI S
EA _H	CMPM ODIFL	00 _H	_	MCC6 3S	_	-	_	MCC6 2S	MCC6 1S	MCC6 0S
EB _H	CMPM ODIFH	00 _H	-	MCC6 3R	-	-	-	MCC6 2R	MCC6 1R	MCC6 0R
ECH	T12L	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
ED _H	T12H	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
EEH	T13L	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
EFH	T13H	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
F0 _H	В	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
F2 _H ²⁾	TCTR 4L	00 _H	T12ST D	T12ST R	_	_	DTRE S	T12RE S	T12RS	T12RR
F2 _H ³)	TCTR 2L	00 _H	-	T13TE D1	T13TE D0	T13TE C2	T13TE C1	T13TE C0	T13SS C	T12SS C
F3 _H ²)	TCTR 4H	00 _H	T13ST D	T13ST R	-	-	-	T13RE S	T13RS	T13RR
F4 _H	CMPS TATL	00 _H	-	CC63S T	-	-	-	CC62S T	CC61S T	CC60S T
F5 _H	CMPS TATH	00 _H	T13IM	COUT 63PS	COUT 62PS	CC62P S	COUT 61PS	CC61P S	COUT 60PS	CC60P S
F6 _H	T12M SELL	00 _H	MSEL 613	MSEL 612	MSEL 611	MSEL 610	MSEL 603	MSEL 602	MSEL 601	MSEL 600
F7 _H	T12M SELH	00 _H	-	-	-	-	MSEL 623	MSEL 622	MSEL 621	MSEL 620

1) X means that the value is undefined and the location is reserved

2) This register is mapped with RMAP (SYSCON0.4)=0

3) This register is mapped with RMAP (SYSCON0.4)=1

Shaded registers are bit-addressable special function registers

Timer 0 and 1

Timer 0 and 1 can be used in four operating modes as listed in Table 8:

	Table 8	Timer	0	and	1	Operating	Modes
--	---------	-------	---	-----	---	-----------	-------

Mode	Description	тмо	D	System Clock	
		M1	MO		
0	8-bit timer with a divide-by-32 prescaler	0	0	f _{SYS} /(12*32)	
1	16-bit timer	0	1	f _{SYS} /12	
2	8-bit timer with 8-bit autoreload	1	0		
3	Timer 0 used as one 8-bit timer and one 8-bit timer timer 1 stops	1	1		

The register is incremented every machine cycle. Since the machine cycle consist of twelve oscillator periods, the count rate is 1/12th of the system frequency. External inputs INT0 and INT1 can be programmed to function as a gate to facilitate pulse width measurements. Figure 15 illustrates the input clock logic.

Timer/Counter 2 with Compare/Capture/Capture

Timer 2 is a 16-bit timer/counter with an up/down count feature. It has three operating modes:

- 16-bit auto-reload mode (up or down counting)
- 16-bit capture mode
- Baudrate generator

Table 9 Timer/Counter 2 Operating Modes

Mode	T2CON			T2MOD	T2CON	T2EX	Remarks	System Clock	
	RCLK or TCLK	<u>CP/</u> RL2	TR2	DCEN	EXEN			Inte- rnal	T2
16-bit Auto-	0	0	1	0	0	Х	reload upon overflow	<i>f</i> sys /12	max <i>f</i> sys
reload	0	0 X 0 1		1	↓ reload trigger (falling edge)			/24	
	0	0	1	1	X 0 down countin		down counting		
	0	0	1	1	х	1	up counting		
16-bit Capture	0	1	1	X	0	Х	16-bit Timer/ Counter (only up-counting)	<i>f</i> sys /12	max ƒ _{SYS} /24
	0	1	1	x	1	\downarrow	capture T2H,T2L-> RC2H,RC2L		
Baudrate Generator	1	х	1	X	0	Х	no overflow interrupt request(TF2)	fsys /2	-
	1	Х	1	x	1	\downarrow	extra external interrupt ("Timer 2")		
off	Х	Х	0	Х	Х	Х	Timer 2 stops	-	-

Note: denotes a falling edge

Serial Interface (UART)

The serial port is a full duplex port capable of simultaneous transmit and receive functions. It is also receive-buffered; it can commence reception of a second byte before a previously-received byte has been read from the receive register. The serial port can operate in 3 modes as illustrated in **Table 10**.

Mode	SCON SM1 SM0		Description			
0	0	0	Reserved			
1	0	1	8-bit UART, variable baudrate 10 bits are transmitted (through TxD) or received (RxD)			
2	1	0	9-bit UART, fixed baudrate 11 bits are transmitted (through TxD) or received (RxD)			
3	1	1	9-bit UART, variable baudrate Similar to mode 2, except for the variable baudrate.			

Table 10 UART Operating Modes

For clarification, some terms regarding the difference between "baudrate clock" and "baudrate" should be mentioned.

The serial interface requires a clock rate which is 16 times the baudrate for internal synchronization. Therefore, the baudrate generators must provide a "baudrate clock" to the serial interface which divides it by 16, thereby resulting in the actual "baudrate".

The baudrates in Mode 1 and 3 are determined by the timer overflow rate. These baudrates can be determined by Timer 1 or by Timer 2 or both (one for transmit, the other for receive.

Serial Interface	Active C	ontrol Bits	Baud Rate Calculation		
Operating Modes	TCLK/ SMOD RCLK				
Mode 1 (8-bit UART) Mode 3 (9-bit UART)	0	x	Controlled by timer 1 overflow: $(2^{SMOD} \times Timer 1 \text{ overflow rate}) / 32$		
	1	x	Controlled by baud rate generator $(2^{SMOD} \times Timer 2^{1)}$ overflow rate) / 32		
Mode 2 (9-bit UART)	-	0	<i>f</i> _{SYS} / 64		
		1	f _{SYS} / 32		

 Table 11
 Serial Interface - Baud Rate Dependencies

1) Timer 2 functioning as baudrate generator

Switching Examples

Figure 16 Edge-aligned mode with duty cycles near 100% and near 0%. Applicable to T13 as well.

Synchronization of T13 to T12

The timer T13 can be synchronized on a T12 event. Combined with the single shot mode, this feature can be used to generate a programmable delay after a T12 event.

Synchronization of T13 to T12

Multi-channel Mode

The multi-channel mode offers a possibility to modulate all six T12-related output signals within one instruction. The bits in bit field MCMP are used to select the outputs that may become active. If the multi-channel mode is enabled (bit MCMEN='1'), only those outputs may become active, which have a '1' at the corresponding bit position in bit field MCMP.

This bit field has its own shadow bit field MCMPS, which can be written by SW. The transfer of the new value in MCMPS to the bit field MCMP can be triggered by and synchronized to T12 or T13 events. This structure permits the SW to write the new value, which is then taken into account by the HW at a well-defined moment and synchronized to a PWM period. This avoids unintended pulses due to unsynchronized modulation sources (T12, T13, SW).

Trap Handling

<u>The trap</u> functionality permits the PWM outputs to react on the state of the input pin $\overline{\text{CTRAP}}$. This functionality can be used to switch off the power devices if the trap input becomes active (e.g. as emergency stop).

Figure 21 Trap State Synchronization (with TRM2='0')

Modulation control

The modulation control part combines the different modulation sources, six T12-related signals from the three compare channels, the T13-related signal and the multi-channel modulation signals. each modulation source can be individually enabled for each output line. Furthermore, the trap functionality is taken into account to disable the modulation of the corresponding output line during the trap state (if enabled).

Figure 22 Modulation Control example for CC60 and COUT60.

Interrupt System

The C868 provides 13 interrupt vectors with four priority levels. Nine interrupt requests are generated by the on-chip peripherals (timer 0, timer 1, timer 2, serial channel, A/D converter, and the capture/compare unit with 4 interrupts) and four interrupts may be triggered externally.

The wake-up from power-down mode interrupt has a special functionality which allows the software <u>power</u>-down mode to be terminated by a short negative pulse at pins CCPOS0/T2/INT0/AN0 or P1.4/RxD.

The 13 interrupt sources are divided into six groups. Each group can be programmed to one of the four interrupt priority levels. Additionally, 4 of these interrupt sources are channeled from 7 Capture/Compare (CCU6) interrupt sources.

Figure 23 to Figure 28 give a general overview of the interrupt sources and illustrate the request and control flags.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is to be serviced first. Thus, within each priority level there is a second priority structure determined by the polling sequence. This is illustrated in Table 13

Interrupt Group	Priority Bits of Interrupt	Interrupt S	Priority			
•	Group	High Priority Priority	ity	>	Low	
0	IP0.0	EXINT0	IADC			High
1	IP0.1	TF0	EXINT2			
2	IP0.2	EXINT1	EXINT3	INP0 ¹⁾		
3	IP0.3	TF1		INP1 ¹⁾		•
4	IP0.4	RI + TI		INP2 ¹⁾		
5	IP0.5	TF2		INP3 ¹⁾		Low

Table 13 Interrupt Source Structure

¹⁾ Capture/compare has 10 interrupt sources channeled to the 4 interrupt nodes INP0..3. The 3 capture/ compare ports has 3 pairs of interrupt request flags, ICC60R, ICC60F, ICC61R, ICC61F, ICC62R, ICC62F. The other flags are T12OM, T12PM, T13CM, T13PM, TRPF, WHE, CHE.

Within a column, the topmost interrupt is serviced first, then the second and the third, when available. The interrupt groups are serviced from left to right of the table. A low-priority interrupt can itself be interrupted by a higher-priority interrupt, but not by another interrupt of the same or a lower priority. An interrupt of the highest priority level cannot be interrupted by another interrupt source.

Device Specifications

Absolute Maximum Ratings

Absolute Maximum Rating Parameters

Parameter	Symbol	Limi	t Values	Unit	Notes
		min.	max.		
Ambient temperature under bias	T _A	-40	125	°C	
Storage temperature	T _{STG}	-65	150	°C	-
Voltage on V_{DDP} pins with respect to ground (V_{SSP})	V _{DDP}	-0.3	4.6	V	-
Voltage on any pin except int/ analog and XTAL with respect to ground (V_{SSP})	V _{IN0}	-0.5	4.6	V	-
Voltage on any int/analog pin with respect to ground (V_{SSP})	V _{IN1}	-0.5	4.6	V	-
Voltage on XTAL pins with respect to ground (V_{SSC})	V _{IN2}	-0.5	4.6	V	-
Input current on any pin during overload condition	I _{OV}	-10	10	mA	_1)
Absolute sum of all input currents during overload condition	$\Sigma I_{OV} $	-	43	mA	-
Power dissipation	P _{DISS}	-	tbd	W	-

¹⁾ Proper operation is not guaranteed if overload conditions occur on functional pins like XTAL2 etc.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (V_{IN} > V_{DDP} or V_{IN2} < V_{SSP} , V_{IN2} > V_{DDC} or V_{IN2} < V_{SSC}) the voltage on V_{DDP} pin with respect to ground (V_{SSP}) must not exceed the values defined by the absolute maximum ratings.

Clock calculation table for ADC

TVC ¹⁾	32										
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$		
t _{ADCC}	322	386	450	514	578	642	706	770	t _{SYS}		
t _S	64	128	192	256	320	384	448	512	t _{SYS}		
	28										
STC ²⁾	2	4	6	8	10	12	14	16	t_{ADC}^{3}		
t _{ADCC}	282	338	394	450	506	562	618	674	t _{SYS}		
t _S	56	112	168	224	280	336	392	448	t _{SYS}		
				~	24				<u></u>		
	0	4	0	4	4	10	4.4	40	3)		
510-7	2	4	6	8	10	12	14	16	t _{ADC} "		
t _{ADCC}	242	290	338	386	434	482	530	578	t _{SYS}		
t _S	48	96	144	192	240	288	336	384	t _{SYS}		
					20				<u> </u>		
STC ²)	2	4	6	2	10	10	14	16	3)		
	2	4	0	0	10	12	14	10	IADC '		
t _{ADCC}	202	242	282	322	362	402	442	482	t _{SYS}		
t _S	40	80	120	160	200	240	280	320	t _{SYS}		
				1	6				1		
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$		
tADCC	162	194	226	258	290	322	354	386	t _{SVS}		
t _S	32	64	96	128	160	192	224	256	t _{SYS}		
TVC ¹⁾				1	2						
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$		
t _{ADCC}	122	146	170	194	218	242	266	290	t _{SYS}		
ts	24	48	72	96	120	144	168	192	t _{SYS}		

TVC ¹⁾	8										
STC ²⁾	2 4 6 8 10 12 14 16										
t _{ADCC}	82	98	114	130	146	162	178	194	t _{SYS}		
t _S	16	32	48	64	80	96	112	128	t _{SYS}		
TVC ¹⁾					4						
STC ²⁾	2	4	6	8	10	12	14	16	$t_{ADC}^{3)}$		
t _{ADCC}	42	50	58	66	74	82	90	98	t _{SYS}		
t _S	8	16	24	32	40	48	56	64	t _{SYS}		

¹⁾ TVC is the clock divider specified by bit fields ADCTC.

²⁾ STC is the sample time control specified by bit fields ADSTC.

³⁾ t_{ADC} is t_{SYS} *TVC