

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	·
RAM Size	176 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c925-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Details on page
Bank 1											
80h	INDF	Addressing	this location	egister)	0000 0000	26					
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	20
82h	PCL	Program Co	Program Counter (PC) Least Significant Byte								25
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
84h	FSR	Indirect Dat	a Memory Ad	dress Pointe	er	•		•	•	xxxx xxxx	26
85h	TRISA	_	—	PORTA Dat	a Direction F	Register				11 1111	29
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	31
87h	TRISC	—	—	PORTC Da	ta Direction F	Register				11 1111	33
88h	TRISD	PORTD Da	ta Direction F	Register						1111 1111	34
89h	TRISE	PORTE Da	ta Direction F	Register						1111 1111	36
8Ah	PCLATH	—	—	—	Write Buffer	for the uppe	er 5 bits of the	e PC		0 0000	25
8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21
8Ch	PIE1	LCDIE	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	24
8Dh	-	Unimpleme	nted								—
8Eh	PCON	_	_	_	_	_		POR	BOR	0-	24
8Fh	—	Unimpleme	nted	•	•	•		•	•	—	
90h	—	Unimpleme	nted							—	
91h	-	Unimpleme	nted							—	_
92h	PR2	Timer2 Per	iod Register							1111 1111	51
93h	SSPADD	Synchronou	us Serial Port	(I ² C mode)	Address Reg	ister				0000 0000	69, 72
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	59
95h	-	Unimpleme	nted	•		•		•	•	—	_
96h	_	Unimpleme	nted							_	
97h	—	Unimpleme	nted							—	_
98h	—	Unimpleme	nted							—	_
99h	—	Unimpleme	nted							_	
9Ah	—	Unimpleme	nted							—	_
9Bh	—	Unimpleme	nted							—	
9Ch	-	Unimpleme	nted							_	_
9Dh	-	Unimpleme	nted							-	—
9Eh	ADRESL	A/D Result	Register Low							xxxx xxxx	79
9Fh	ADCON1	—		—	_	—	PCFG2	PCFG1	PCFG0	000	76

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 2-1:**

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0'. Shaded locations are unimplemented, read as '0'. Note 1: These pixels do not display, but can be used as general purpose RAM.

4.0 I/O PORTS

Some pins for these ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

4.1 PORTA and TRISA Register

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All RA pins have data direction bits (TRISA register), which can configure these pins as output or input.

Setting a bit in the TRISA register puts the corresponding output driver in a Hi-Impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The other PORTA pins are multiplexed with analog inputs and the analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 4-1: INITIALIZING PORTA

BCF BCF	STATUS, RPO STATUS, RP1	; Select Bank0
CLRF	PORTA	; Initialize PORTA
BSF	STATUS, RPO	; Select Bank1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA<5:4> as outputs
		; RA<7:6> are always
		; read as '0'.

FIGURE 4-1: BLOCK DIAGRAM OF

PINS RA3:RA0 AND RA5

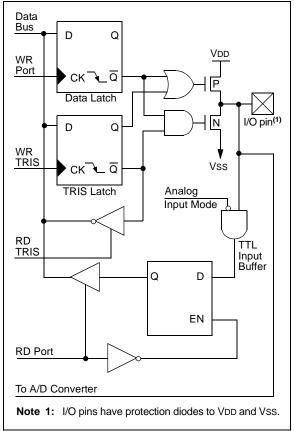
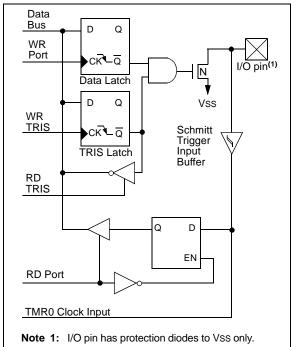
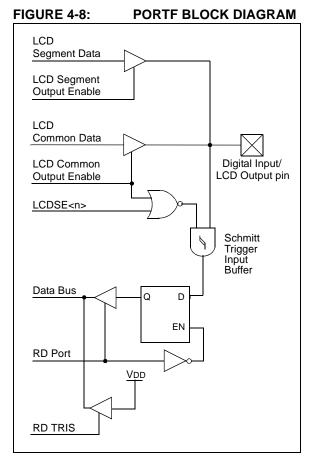



FIGURE 4-2:

BLOCK DIAGRAM OF RA4/T0CKI PIN



4.6 **PORTF and TRISF Register**

PORTF is a digital input only port. Each pin is multiplexed with an LCD segment driver. These pins have Schmitt Trigger input buffers.

- **Note 1:** On a Power-on Reset, these pins are configured as LCD segment drivers.
 - 2: To configure the pins as a digital port, the corresponding bits in the LCDSE register must be cleared. Any bit set in the LCDSE register overrides any bit settings in the corresponding TRIS register.

BCF STATUS,	RP0	;Select Bank2	
BSF STATUS,	RP1	;	
BCF LCDSE,	SE16	;Make all PORTF	
BCF LCDSE,	SE12	;digital inputs	

TABLE 4-11: PORTF FUNCTIONS

Name	Bit#	Buffer Type	Function
RF0/SEG12	bit0	ST	Digital input or Segment Driver12.
RF1/SEG13	bit1	ST	Digital input or Segment Driver13.
RF2/SEG14	bit2	ST	Digital input or Segment Driver14.
RF3/SEG15	bit3	ST	Digital input or Segment Driver15.
RF4/SEG16	bit4	ST	Digital input or Segment Driver16.
RF5/SEG17	bit5	ST	Digital input or Segment Driver17.
RF6/SEG18	bit6	ST	Digital input or Segment Driver18.
RF7/SEG19	bit7	ST	Digital input or Segment Driver19.

Legend: ST = Schmitt Trigger input

TABLE 4-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
107h	PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	0000 0000	0000 0000
187h	TRISF	PORTF [Data Direc	tion Contr	ol Registe	r				1111 1111	1111 1111
10Dh	LCDSE	SE29	SE27	SE20	SE16	SE12	SE9	SE5	SE0	1111 1111	1111 1111

Legend: Shaded cells are not used by PORTF.

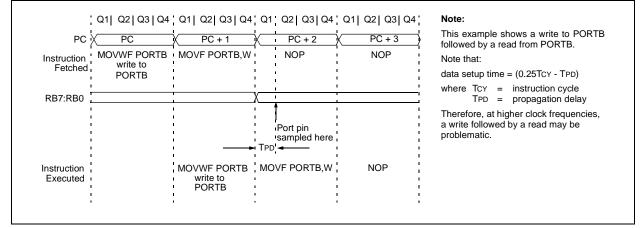
© 2001-2013 Microchip Technology Inc.

4.8 I/O Programming Considerations

4.8.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the contents of the data latch may now be unknown.

Reading the port register reads the values of the port pins. Writing to the port register, writes the value to the port latch. When using read-modify-write instructions (e.g. BCF, BSF) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.


Example 4-8 shows the effect of two sequential read-modify-write instructions on an I/O port. A pin actively outputting a Low or High should not be driven from external devices at the same time, in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 4-8: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs	
; PORTB<3:0> Outputs	
;PORTB<7:6> have external pull-ups and are	
;not connected to other circuitry	
;	
; PORT latch PORT pins	
;	
BCF PORTB, 7 ; 01pp pppp 11pp pppp	
BCF PORTB, 6 ; 10pp pppp 11pp pppp	
BCF STATUS, RP1 ; Select Bank1	
BSF STATUS, RPO ;	
BCF TRISB, 7 ; 10pp pppp 11pp pppp	
BCF TRISB, 6 ; 10pp pppp 10pp ppp	
;	
;Note that the user may have expected the	
;pin values to be 00pp ppp. The 2nd BCF	
;caused RB7 to be latched as the pin value	
; (high).	

4.8.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 4-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU, rather than the new state. When in doubt, it is better to separate these instructions with a NOP, or another instruction not accessing this I/O port.

FIGURE 4-10: SUCCESSIVE I/O OPERATION

6.4 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2					
LP	32 kHz	33 pF	33 pF					
	100 kHz	15 pF	15 pF					
	200 kHz	15 pF	15 pF					
These values are for design guidance only.								
Crystals Tested:								
32.768 kHz	Epson C-001R32.768K-A ± 20 PP							
100 kHz	Epson C-2 100.00 KC-P ± 20 PPM							
200 kHz	STD XTL	\pm 20 PPM						
of t sta 2: Sir cha res	the oscillator to rt-up time. ace each reso aracteristics, to onator/crysta	nce increases out also increa nator/crystal h he user should I manufacture external comp	as its own d consult the for appro-					

6.5 Resetting Timer1 Using the CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event trigger from the CCP1								
	module will not set interrupt flag bit								
	TMR1IF (PIR1<0>).								

Timer1 must be configured for either Timer or Synchronized Counter mode, to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively become the period register for Timer1.

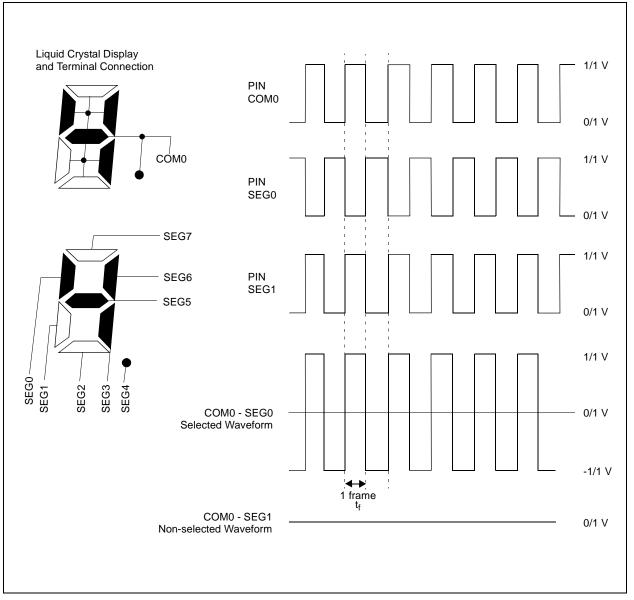
6.6 Resetting of Timer1 Register Pair (TMR1H:TMR1L)

TMR1H and TMR1L registers are not reset on a POR or any other RESET, except by the CCP1 special event trigger.

T1CON register is reset to 00h on a Power-on Reset. In any other RESET, the register is unaffected.

6.7 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.


TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
8Ch	PIE1	LCDIE	ADIE			SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
0Eh	TMR1L	Holding	register fo	or the Least	Significant	Byte of the 1	6-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding register for the Most Significant Byte of the 16-bit TMR1 Register						xxxx xxxx	uuuu uuuu		
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

NOTES:

11.2 LCD Interrupts

The LCD timing generation provides an interrupt that defines the LCD frame timing. This interrupt can be used to coordinate the writing of the pixel data with the start of a new frame. Writing pixel data at the frame boundary allows a visually crisp transition of the image. This interrupt can also be used to synchronize external events to the LCD. For example, the interface to an external segment driver, such as a Microchip AY0438, can be synchronized for segment data update to the LCD frame.

A new frame is defined to begin at the leading edge of the COM0 common signal. The interrupt will be set immediately after the LCD controller completes accessing all pixel data required for a frame. This will occur at a fixed interval before the frame boundary (TFINT), as shown in Figure 11-7. The LCD controller will begin to access data for the next frame within the interval from the interrupt to when the controller begins to access data after the interrupt (TFWR). New data must be written within TFWR, as this is when the LCD controller will begin to access the data for the next frame.

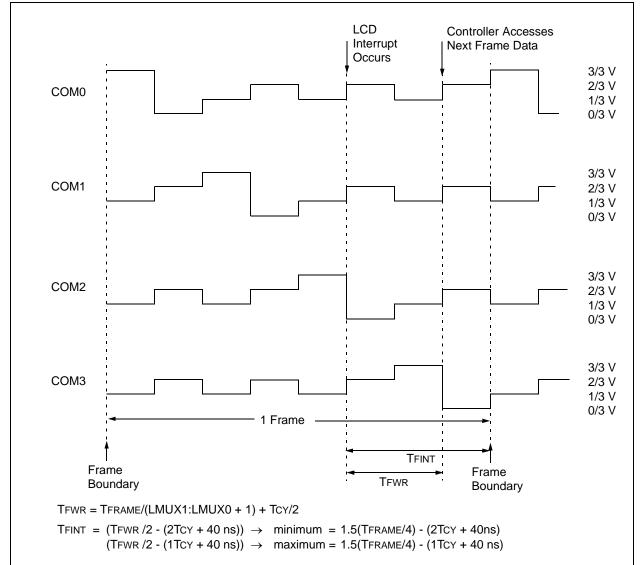


FIGURE 11-7: EXAMPLE WAVEFORMS AND INTERRUPT TIMING IN QUARTER-DUTY CYCLE DRIVE

TABLE 12-6 :	INITIALIZATION CONDITIONS FOR ALL REGISTERS
---------------------	---

Register	Power-on Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	uuuu uuuu	นนนน นนนน
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	0x 0000	0u 0000	uu uuuu
PORTB	xxxx xxxx	uuuu uuuu	սսսս սսսս
PORTC	xx xxxx	uu uuuu	uu uuuu
PORTD	0000 0000	0000 0000	uuuu uuuu
PORTE	0000 0000	0000 0000	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	00 0000	00 0000	uu uuuu (1)
TMR1L	xxxx xxxx	uuuu uuuu	սսսս սսսս
TMR1H	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	սսսս սսսս
T2CON	-000 0000	-000 0000	-uuu uuuu
SSPBUF	xxxx xxxx	uuuu uuuu	սսսս սսսս
SSPCON	0000 0000	0000 0000	uuuu uuuu
CCPR1L	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	xxxx xxxx	սսսս սսսս	นนนน นนนน
CCP1CON	00 0000	00 0000	uu uuuu
ADRES	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISC	11 1111	11 1111	uu uuuu
TRISD	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISE	1111 1111	1111 1111	<u>uuuu</u> uuuu
PIE1	00 0000	00 0000	uu uuuu
PCON	0-	u-	u-

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for RESET value for specific condition.

12.5 Interrupts

The PIC16C925/926 family has nine sources of interrupt:

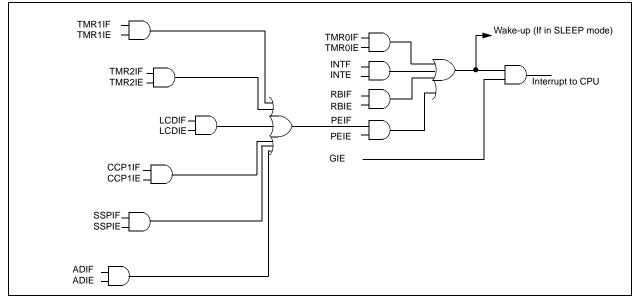
- External interrupt RB0/INT
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB7:RB4)
- A/D Interrupt
- TMR1 overflow interrupt
- · TMR2 matches period interrupt
- CCP1 interrupt
- · Synchronous serial port interrupt
- LCD module interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit, or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.

FIGURE 12-10: INTERRUPT LOGIC


The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function register, PIR1. The corresponding interrupt enable bits are contained in special function register, PIE1, and the peripheral interrupt enable bit is contained in special function register, INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the RB0/INT pin or RB Port change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 12-11). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or the GIE bit.

12.8 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on-chip pull-ups on PORTB should also be considered.

The MCLR pin must be at a logic high level (VIHMC).

12.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or peripheral interrupt.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. The PD bit, which is set on power-up is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (START/STOP) bit detect interrupt.
- SSP transmit or receive in Slave mode (SPI/I²C).
- 4. CCP Capture mode interrupt.
- 5. A/D conversion (when A/D clock source is RC).
- 6. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 7. LCD module.

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

12.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

ANDLW	AND Literal with W	ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDLW k	Syntax:	[<i>label</i>] ANDWF f [,d]
Operands:	$0 \leq k \leq 255$	Operands:	$0 \leq f \leq 127$
Operation:	(W) .AND. (k) \rightarrow (W)	·	$d \in [0,1]$
Status Affected:	Z	Operation:	(W).AND. (f) \rightarrow (destination)
Encoding:	11 1001 kkkk kkkk	Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'.	Encoding:	00 0101 dfff ffff
	The result is placed in the W register.	Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the
Words:	1		W register. If 'd' is 1, the result is stored back in register 'f'.
Cycles:	1	Words:	1
Q Cycle Activity:	Q1 Q2 Q3 Q4	Cycles:	1
	Decode Read Process Write to literal 'k' data W	Q Cycle Activity:	Q1 Q2 Q3 Q4
Example	ANDLW 0x5F		Decode Read register 'f' Process Write to data destination
Before Instruction			
W = After Instruction:	0xA3	Example	ANDWF FSR, 1
W =	0x03	Before Instruction W FSR After Instruction W FSR	$ \begin{array}{rcl} = & 0x17 \\ = & 0xC2 \\ = & 0x17 \\ = & 0x02 \\ \end{array} $

BCF	Bit Clear	f				
Syntax:	[label] B	SCF f[,b]			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$0 \rightarrow (f < b;$	>)				
Status Affected:	None					
Encoding:	01	00bb	bfff	ffff		
Description:	Bit 'b' in register 'f' is cleared.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write register 'f'		
Example	BCF	FLAG_	REG, 7			
Before Instruction: FLAG_REG = 0xC7 After Instruction:						
FLAG_RE	:G = ()x47				

BTFSC	Bit Test,	Skip if Cl	ear				
Syntax:	[<i>label</i>] E	STFSC f	,b]				
Operands:	$0 \le f \le 12$	27					
	$0 \le b \le 7$						
Operation:	skip if (f<	b>) = 0					
Status Affected:	None						
Encoding:	01	10bb	bfff	ffff			
Description:	next instr If bit 'b' in next instr NOP is ex	If bit 'b' in register 'f' is '1', then the next instruction is executed. If bit 'b' in register 'f' is '0', then the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.					
Words:	1						
Cycles:	1(2)						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	No Operation			
If Skip:	(2nd Cyc	le)					
	Q1	Q2	Q3	Q4			
	No Operation	No Operation	No Operation	No Operation			
Example HERE BTFSC FLAG, 1 FALSE GOTO PROCESS_CODE TRUE •							
Before Instruction: PC = address HERE							
After Instruction: if FLAG<1> = 0, PC = address TRUE if FLAG<1> = 1,							

PC = address FALSE

BSF	Bit Set f						
Syntax:	[<i>label</i>] B	SFf[,	b]				
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$1 \rightarrow (f < b;$	>)					
Status Affected:	None						
Encoding:	01	01bb	bfff	ffff			
Description:	Bit 'b' in register 'f' is set.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write register 'f'			
Example	BSF	FLAG RE	G, 7	L]			
Example BSF FLAG_REG, 7 Before Instruction: FLAG_REG = 0x0A After Instruction: FLAG_REG = 0x8A							

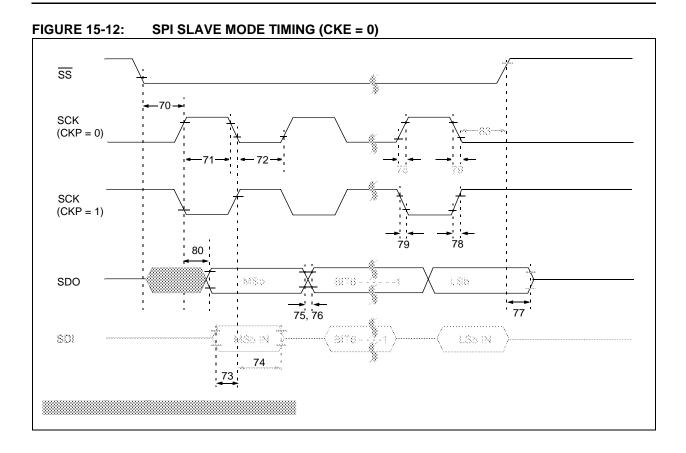
Q4	

GOTO	Unconditional Branch	INCF	Increment f
Syntax:	[<i>label</i>] GOTO k	Syntax:	[label] INCF f[,d]
Operands:	$0 \le k \le 2047$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow PC < 10:0 >$		d ∈ [0,1]
	$PCLATH<4:3> \rightarrow PC<12:11>$	Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	None	Status Affected:	Z
Encoding:	10 1kkk kkkk kkkk	Encoding:	00 1010 dfff ffff
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>.	Description:	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
	GOTO is a two-cycle instruction.	Words:	1
Words:	1	Cycles:	1
Cycles:	2	Q Cycle Activity:	Q1 Q2 Q3 Q4
Q Cycle Activity:	Q1 Q2 Q3 Q4	Q Oycle Adimity.	Bead
1st Cycle	Decode Read Process Write to literal 'k' data PC		Decode register 'f' Process Write to data destination
2nd Cycle	NoNoNoOperationOperationOperation	Example	INCF CNT, 1
		Before Instru	ction:
Example	GOTO THERE	CNT	= 0xFF
After Instruct		Z	= 0
PC =	Address THERE	After Instructi CNT	on: = 0x00

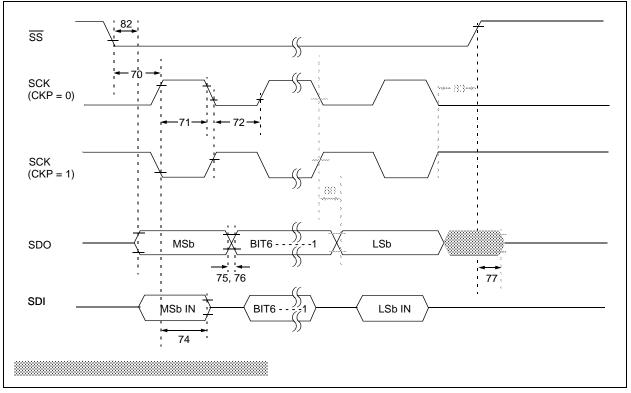
Z = 1

INCFSZ	Increment f, Skip if 0	IORLW	Inclusive OR Literal with W
Syntax:	[label] INCFSZ f [,d]	Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq f \leq 127$	Operands:	$0 \leq k \leq 255$
	d ∈ [0,1]	Operation:	(W) .OR. $k \rightarrow$ (W)
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0	Status Affected:	Z
Status Affected:	None	Encoding:	11 1000 kkkk kkkk
Encoding:	00 1111 dfff ffff	Description:	The contents of the W register is OR'ed with the eight-bit literal 'k'.
Description:	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed		The result is placed in the W register.
	in the W register. If 'd' is 1, the result is	Words:	1
	placed back in register 'f'. If the result is 1, the next instruction is	Cycles:	1
	executed. If the result is 0, a NOP is	Q Cycle Activity:	Q1 Q2 Q3 Q4
	executed instead, making it a 2Tcy instruction.		Decode Read Process Write to data W
Words:	1		
Cycles:	1(2)	Example	IORLW 0x35
Q Cycle Activity:	Q1 Q2 Q3 Q4	Before Instru	ction:
	Decode Read Process Write to	W =	0x9A
If China (2nd	register 'f' data destination	After Instruct	
If Skip: (2nc	l Cycle) Q1 Q2 Q3 Q4	W = Z =	0xBF 0
		2 -	0
	Operation Operation Operation		
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		
Before Instrue PC	ction: = address HERE		
After Instructi CNT if CNT PC if CNT PC			

15.2 DC Characteristics: PIC16C925/926 (Commercial, Industrial) PIC16LC925/926 (Commercial, Industrial)


DC CHA	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +70^{\circ}C$ for commercialOperating voltage VDD range as described in DC spec						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer	Vss	—	0.15Vdd		For entire VDD range
			Vss	_	0.8V	V	$4.5V \leq VDD \leq 5.5V$
D031		with Schmitt Trigger buffer	Vss	_	0.2VDD	V	
D032		MCLR, OSC1 (in RC mode)	Vss	_	0.2VDD	V	
D033		OSC1 (in XT, HS and LP)	Vss	_	0.3Vdd	V	(Note 1)
		Input High Voltage					
B 6 4 6	VIH	I/O ports		_	.,	.,	
D040		with TTL buffer	2.0	_	VDD	V	$4.5V \leq VD \leq 5.5V$
D040A			0.25VDD + 0.8V	_	Vdd	V	For entire VDp range
D041		with Schmitt Trigger buffer	+ 0.6V 0.8VDD	_	Vdd	v	
D041 D042		MCLR	0.8VDD	_	VDD	v \	
D042A		OSC1 (XT, HS and LP)	0.7VDD			v	(Note 1)
D043		OSC1 (in RC mode)	0.9VDD	_	VDD	Ň	
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	_μΑ_	VDD = 5V, VPIN = VSS
2010		Input Leakage Current			- 23		
		(Notes 2, 3)		~ `	$ \setminus $	\triangleright	
D060	lı∟	I/O ports	<	$\langle \rangle$	±1.0>	μA	Vss ≤ VPIN ≤ VDD, Pin at hi-Z
D061		MCLR, RA4/T0CKI		$\langle \mathcal{A} \rangle$	\sim	μΑ	$Vss \leq VPIN \leq VDD$
D063		OSC1	$\langle \langle \rangle$	\searrow	±5 ±5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP
			\sim	$\langle \rangle$	\geq		osc configuration
		Output Low Voltage		\searrow			
D080	Vol	I/O ports	$ \neq $. —	0.6	V	IOL = 4.0 mA, VDD = 4.5V
D083		OSC2/CLKOUT (RC osc mode)	$-\sim$	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V
		Output High Voltage	\land				
D090	Voн	I/O ports (Note 3)	₩рб - 0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V
D092		OSC2/CLKOUT (RC osc mode)	∜dd - 0.7	_	_	V	IOH = -1.3 mA, VDD = 4.5V
		Capacitive Loading Specs on					
		Output Pins					
D100	Cosc2	OSC2 pin	—	—	15	pF	In XT, HS and LP modes when
							external clock is used to drive
D101	Сю	All I/O pind and OSC2 (in BC)			50	۳E	OSC1.
D101 D102	Сю	All I/O pins and QSC2 (in RC) SCL, SDA in I ² C mode			50 400	pF pF	
D150	VDD	Open Drain High Voltage			8.5	V	RA4 pin
100						-	ameters are for design guidance only

† Data in "Typ" column is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C925/926 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

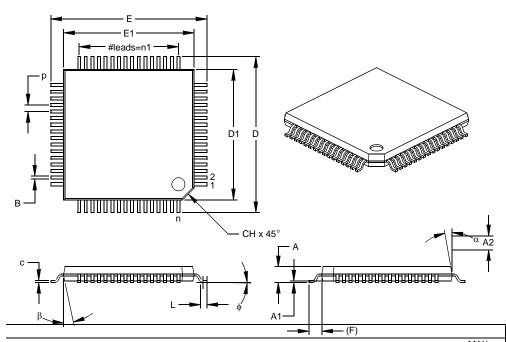
3: Negative current is defined as current sourced by the pin.

FIGURE 15-13: SPI SLAVE MODE TIMING (CKE = 1)

TABLE 15-11: A/D CONVERTER CHARACTERISTICS: PIC16C925/926 (COMMERCIAL, INDUSTRIAL) PIC16LC925/926 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution			10-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	EABS	Total Absolute error	_	- Z	det 1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral linearity error		70	< ± 1	LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	Edl	Differential linearity error			< ± 1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A05	EFS	Full scale error	\sim	\bigtriangledown	< ± 1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	EOFF	Offset error		\searrow	< ± 2	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A07	Egn	Gain error	Ì	_	< ± 1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	—	Monotonicity	$\langle \boldsymbol{\Sigma} \rangle$	guaranteed	_		$V\text{SS} \leq V\text{AIN} \leq V\text{REF}$
A20	VREF	Reference voltage	4VDD - 2.5V	_	AVDD + 0.3	V	
A25	VAIN	Analog input voltage	Vss - 0.3	—	VREF + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
A40	IAD	A/D conversion current PIC160925/926	_	220	_	μΑ	Average current consump-
		(VDD) PIC16LC925/926		90	_	μΑ	tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD.
		\searrow		_	10	μΑ	During A/D Conversion cycle

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

17.2 Package Details

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			MILLIMETERS*		
Dimensi	ion Limits	MIN	NOM	MAX	MIN	NOM	
Number of Pins	n		64			64	
Pitch	р		.020			0.50	1.20
Pins per Side	n1		16			16	1.05
Overall Height	A	.039	.043	.047	1.00	1.10	0.25
Molded Package Thickness	A2	.000	.039	.011	0.95	1.00	0.75
Standoff §	A1	.002	.006	.010	0.05	0.15	
Foot Length	1	018	024	030	0.45	0.60	7
Footprint (Reference)	(E)	.0.0	.039		0.10	1.00	12.25
Foot Angle	, ¢	٥	3.5	7	٥	3.5	12.25
Overall Width	E	.463	.472	.482	11.75	12.00	10.10
Overall Length		.463	.472	.482	11.75	12.00	10.10
Molded Package Width	E1	.390	.394	.398	9.90	10.00	0.23
Molded Package Length	D1	.390	.394	.398	9.90	10.00	0.27
Lead Thickness	с. С	.000	.007	.009	0.13	0.18	1.14
Lead Width	В	.000	.009	.000	0.17	0.22	15
Pin 1 Corner Chamfer	СН	.007	.000	.011	0.64	0.89	15
Mold Draft Angle Top	α	5	10	15	5	10	
Mold Draft Angle Bottom	β	5	10	15	5	10	

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026

Drawing No. C04-085

Drawing No. C04-08

Code Protection	97, 112
Compare Mode (CCP)	
Associated Registers	
Block Diagram	55
Pin Configuration	
Software Interrupt Mode	
Special Event Trigger	
Timer1 Mode	55
Computed GOTO	
Configuration Bits	
Configuration Word	

n

D	
DC and AC Characteristics Graphs and Tables	
DC bit	
Development Support	
Device DC Characteristics	
LC Devices	
Direct Addressing	
E	
Errata	4
F	
- FSR Register	26
Initialization States	
	104
G	
GIE bit	107
_	
1	
I/O Programming Considerations	
Read-Modify-Write Example	
l ² C	
Addressing I ² C Devices	
Arbitration	68
BF	70, 71
СКР	71
Clock Synchronization	68
Combined Format	
Initiating and Terminating Data Transfer	
Master-Receiver Sequence	
Master-Transmitter Sequence	
Multi-Master	
Overview	
START	
STOP	
Transfer Acknowledge	
ICEPIC In-Circuit Emulator	
IDLE_MODE	
In-Circuit Serial Programming	
INDF Register	
Initialization States	
Indirect Addressing	
Instruction Cycle	
Instruction Flow/Pipelining	
Instruction Format	
Instruction Set	
ADDLW	
ADDWF	-
ANDLW	
ANDWF	
BCF	

BSF
BTFSC
BTFSS
CALL
CLRF
CLRW
CLRWDT
COMF
DECF
DECFSZ
GOTO
INCF
INCF
INCESZ
-
IORWF
MOVF
MOVLW
MOVWF
NOP
OPTION
RETFIE
RETLW
RETURN 127
RLF 127
RRF128
SLEEP 128
SUBLW 129
SUBWF 129
SWAPF 130
TRIS
XORLW131
XORWF
Instruction Set Summary 113–131
INT Interrupt 108
INTCON Register 21, 107
Initialization States 104
Inter-Integrated Circuit (I ² C). See I ² C.
Internal Sampling Switch (Rss) Impedence
Interrupt Flag
Interrupts
RB7:RB4 Port Change
IRP bit
V
K

Κ

KEELOQ Evaluation and Programming Tools 136

L .

LCD Module	
Associated Registers	96
Block Diagram	84
Charge Pump	95
Block Diagram	95
Electrical Specifications	145
External R-Ladder	95
Block Diagram	95
Generic LCDD Register	92
LCDCON Register	83
LCDPS Register	84
LCDSE Register	
Register Initialization States	105
Voltage Generation	
Loading PC Register (Diagram)	