
Microchip Technology - PIC16C926-I/L Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI

Peripherals Brown-out Detect/Reset, LCD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 14KB (8K x 14)

Program Memory Type OTP

EEPROM Size -

RAM Size 336 x 8

Voltage - Supply (Vcc/Vdd) 4V ~ 5.5V

Data Converters A/D 5x10b

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 68-LCC (J-Lead)

Supplier Device Package 68-PLCC (24.23x24.23)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16c926-i-l

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic16c926-i-l-4411845
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC16C925/926
Pin Diagrams

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44

9 8 7 6 5 4 3 2 1 6
8

6
7

6
6

6
5

6
4

6
3

6
2

6
1

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

RD5/SEG29/COM3
RG6/SEG26
RG5/SEG25
RG4/SEG24
RG3/SEG23
RG2/SEG22
RG1/SEG21
RG0/SEG20
RG7/SEG28
RF7/SEG19
RF6/SEG18
RF5/SEG17
RF4/SEG16
RF3/SEG15
RF2/SEG14
RF1/SEG13
RF0/SEG12

RA4/T0CKI
RA5/AN4/SS

RB1
RB0/INT

RC3/SCK/SCL
RC4/SDI/SDA

RC5/SDO

VLCD2
VLCD3
AVDD
VDD
VSS

C1
C2

OSC1/CLKIN
OSC2/CLKOUT

RC0/T1OSO/T1CKI

R
A

3
/A

N
3

/V
R

E
F
+

R
A

2
/A

N
2

/V
R

E
F
-

V
S

S
R

A
1

/A
N

1
R

A
0

/A
N

0
R

B
2

R
B

3
M

C
L

R
/V

P
P

N
/C

R
B

4
R

B
5

R
B

7
R

B
6

V
D

D
C

O
M

0
R

D
7

/S
E

G
3

1
/C

O
M

1
R

D
6

/S
E

G
3

0
/C

O
M

2

R
C

1
/T

1
O

S
I

R
C

2
/C

C
P

1
V

L
C

D
1

V
L

C
D

A
D

J
R

D
0

/S
E

G
0

0
R

D
1

/S
E

G
0

1
R

D
2

/S
E

G
0

2
R

D
3

/S
E

G
0

3
R

D
4

/S
E

G
0

4
R

E
7

/S
E

G
2

7
R

E
0

/S
E

G
0

5
R

E
1

/S
E

G
0

6
R

E
2

/S
E

G
0

7
R

E
3

/S
E

G
0

8
R

E
4

/S
E

G
0

9

R
E

6
/S

E
G

1
1

R
E

5
/S

E
G

1
0

PLCC, CLCC

Input Pin
Output Pin

Digital Input/LCD Output Pin

LEGEND:

Input/Output Pin

LCD Output Pin

PIC16C92X
DS39544B-page 2 Preliminary  2001-2013 Microchip Technology Inc.

PIC16C925/926
FIGURE 2-3: REGISTER FILE MAP — DSTEMP

TRISF

TRISG

TRISB

PORTF
PORTG

PORTB

Indirect addr.(*)

TMR0
PCL

STATUS

FSR
PORTA

PORTB
PORTC

PCLATH

INTCON
PIR1

TMR1L

TMR1H
T1CON

TMR2
T2CON

SSPBUF

SSPCON
CCPR1L

CCPR1H
CCP1CON

ADRESH

ADCON0

OPTION

PCL
STATUS

FSR

TRISA
TRISB

TRISC

PCLATH
INTCON

PIE1

PCON

PR2

SSPADD
SSPSTAT

ADCON1

00h
01h
02h

03h
04h

05h
06h

07h
08h
09h

0Ah
0Bh

0Ch
0Dh

0Eh
0Fh

10h
11h
12h

13h
14h

15h
16h

17h
18h
19h

1Ah
1Bh

1Ch
1Dh

1Eh
1Fh

80h
81h

82h
83h
84h

85h
86h

87h
88h

89h
8Ah
8Bh

8Ch
8Dh

8Eh
8Fh

90h
91h
92h

93h
94h

95h
96h

97h
98h

99h
9Ah
9Bh

9Ch
9Dh

9Eh
9Fh

20h A0h

General
Purpose
Register

General
Purpose
Register

7Fh FFh
Bank 0 Bank 1

EFh

F0h

File
Address

Indirect addr.(*)

accesses
70h - 7Fh

Indirect addr.(*)

PCL
STATUS

FSR

PCLATH
INTCON

PCL
STATUS

FSR

PCLATH
INTCON

LCDD02

LCDD03
LCDD04

LCDD15

100h
101h
102h

103h
104h

105h
106h

107h
108h

109h
10Ah
10Bh

10Ch
10Dh

10Eh
10Fh

110h
111h
112h

113h
114h

115h
116h

117h
118h
119h

11Ah
11Bh

11Ch
11Dh

11Eh
11Fh

180h
181h

182h
183h
184h

185h
186h

187h
188h

189h
18Ah
18Bh

18Ch
18Dh

18Eh
18Fh

190h
191h

192h
193h
194h

195h
196h

197h
198h

199h
19Ah
19Bh

19Ch
19Dh

19Eh
19Fh

120h 1A0h

17Fh 1FFh
Bank 2 Bank 3

1EFh

1F0h

Indirect addr.(*)

16Fh

170h accesses
70h - 7Fh

accesses
70h - 7Fh

LCDD05
LCDD06

LCDD07
LCDD08

LCDD09
LCDD10
LCDD11

LCDD12
LCDD13

LCDD14

LCDD00

LCDD01

PORTD
PORTE

TRISD
TRISE

TMR0 OPTION

PMCON1

LCDSE

LCDPS

PMDATA

LCDCON

ADRESL

 Unimplemented data memory locations, read as '0'.
 * Not a physical register.

File
Address

File
Address

File
Address

PMADR

PMDATH

PMADRH
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 13

PIC16C925/926
 Bank 2

100h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 26

101h TMR0 Timer0 Module Register xxxx xxxx 41

102h PCL Program Counter (PC) Least Significant Byte 0000 0000 25

103h STATUS IRP RP1 RP0 TO PD Z DC C 0001 1xxx 19

104h FSR Indirect Data Memory Address Pointer xxxx xxxx 26

105h — Unimplemented — —

106h PORTB PORTB Data Latch when written: PORTB pins when read xxxx xxxx 31

107h PORTF PORTF pins when read 0000 0000 37

108h PORTG PORTG pins when read 0000 0000 38

109h — Unimplemented — —

10Ah PCLATH — — — Write Buffer for the upper 5 bits of the PC ---0 0000 25

10Bh INTCON GIE PEIE TMR0IE INTE RBIE TMR0IF INTF RBIF 0000 000x 21

10Ch PMCON1 reserved — — — — — — RD 1--- ---0 27

10Dh LCDSE SE29 SE27 SE20 SE16 SE12 SE9 SE5 SE0 1111 1111 94

10Eh LCDPS — — — — LP3 LP2 LP1 LP0 ---- 0000 84

10Fh LCDCON LCDEN SLPEN — VGEN CS1 CS0 LMUX1 LMUX0 00-0 0000 83

110h LCDD00 SEG07
COM0

SEG06
COM0

SEG05
COM0

SEG04
COM0

SEG03
COM0

SEG02
COM0

SEG01
COM0

SEG00
COM0

xxxx xxxx 92

111h LCDD01 SEG15
COM0

SEG14
COM0

SEG13
COM0

SEG12
COM0

SEG11
COM0

SEG10
COM0

SEG09
COM0

SEG08
COM0

xxxx xxxx 92

112h LCDD02 SEG23
COM0

SEG22
COM0

SEG21
COM0

SEG20
COM0

SEG19
COM0

SEG18
COM0

SEG17
COM0

SEG16
COM0

xxxx xxxx 92

113h LCDD03 SEG31
COM0

SEG30
COM0

SEG29
COM0

SEG28
COM0

SEG27
COM0

SEG26
COM0

SEG25
COM0

SEG24
COM0

xxxx xxxx 92

114h LCDD04 SEG07
COM1

SEG06
COM1

SEG05
COM1

SEG04
COM1

SEG03
COM1

SEG02
COM1

SEG01
COM1

SEG00
COM1

xxxx xxxx 92

115h LCDD05 SEG15
COM1

SEG14
COM1

SEG13
COM1

SEG12
COM1

SEG11
COM1

SEG10
COM1

SEG09
COM1

SEG08
COM1

xxxx xxxx 92

116h LCDD06 SEG23
COM1

SEG22
COM1

SEG21
COM1

SEG20
COM1

SEG19
COM1

SEG18
COM1

SEG17
COM1

SEG16
COM1

xxxx xxxx 92

117h LCDD07 SEG31
COM1(1)

SEG30
COM1

SEG29
COM1

SEG28
COM1

SEG27
COM1

SEG26
COM1

SEG25
COM1

SEG24
COM1

xxxx xxxx 92

118h LCDD08 SEG07
COM2

SEG06
COM2

SEG05
COM2

SEG04
COM2

SEG03
COM2

SEG02
COM2

SEG01
COM2

SEG00
COM2

xxxx xxxx 92

119h LCDD09 SEG15
COM2

SEG14
COM2

SEG13
COM2

SEG12
COM2

SEG11
COM2

SEG10
COM2

SEG09
COM2

SEG08
COM2

xxxx xxxx 92

11Ah LCDD10 SEG23
COM2

SEG22
COM2

SEG21
COM2

SEG20
COM2

SEG19
COM2

SEG18
COM2

SEG17
COM2

SEG16
COM2

xxxx xxxx 92

11Bh LCDD11 SEG31
COM2(1)

SEG30
COM2(1)

SEG29
COM2

SEG28
COM2

SEG27
COM2

SEG26
COM2

SEG25
COM2

SEG24
COM2

xxxx xxxx 92

11Ch LCDD12 SEG07
COM3

SEG06
COM3

SEG05
COM3

SEG04
COM3

SEG03
COM3

SEG02
COM3

SEG01
COM3

SEG00
COM3

xxxx xxxx 92

11Dh LCDD13 SEG15
COM3

SEG14
COM3

SEG13
COM3

SEG12
COM3

SEG11
COM3

SEG10
COM3

SEG09
COM3

SEG08
COM3

xxxx xxxx 92

11Eh LCDD14 SEG23
COM3

SEG22
COM3

SEG21
COM3

SEG20
COM3

SEG19
COM3

SEG18
COM3

SEG17
COM3

SEG16
COM3

xxxx xxxx 92

11Fh LCDD15 SEG31
COM3(1)

SEG30
COM3(1)

SEG29
COM3(1)

SEG28
COM3

SEG27
COM3

SEG26
COM3

SEG25
COM3

SEG24
COM3

xxxx xxxx 92

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on
Power-on

Reset

Details on
page

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0'.
Shaded locations are unimplemented, read as ‘0’.

Note 1: These pixels do not display, but can be used as general purpose RAM.
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 17

PIC16C925/926
2.4 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte
comes from the PCL register, which is a readable and
writable register. The upper bits (PC<12:8>) are not
readable, but are indirectly writable through the
PCLATH register. On any RESET, the upper bits of the
PC will be cleared. Figure 2-5 shows the two situations
for the loading of the PC. The upper example in the fig-
ure shows how the PC is loaded on a write to PCL
(PCLATH<4:0>  PCH). The lower example in the fig-
ure shows how the PC is loaded during a CALL or GOTO
instruction (PCLATH<4:3>  PCH).

FIGURE 2-5: LOADING OF PC IN
DIFFERENT SITUATIONS

2.4.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset
to the program counter (ADDWF PCL). When doing a
table read using a computed GOTO method, care
should be exercised if the table location crosses a PCL
memory boundary (each 256 byte block). Refer to the
application note “Implementing a Table Read” (AN556).

2.4.2 STACK

The PIC16CXXX family has an 8-level deep x 13-bit
wide hardware stack. The stack space is not part of
either program or data space and the stack pointer is not
readable or writable. The PC is PUSHed onto the stack
when a CALL instruction is executed, or an interrupt
causes a branch. The stack is POPed in the event of a
RETURN, RETLW or a RETFIE instruction execution.
PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that
after the stack has been PUSHed eight times, the ninth
push overwrites the value that was stored from the first
push. The tenth push overwrites the second push (and
so on).

2.5 Program Memory Paging

PIC16C925/926 devices are capable of addressing a
continuous 8K word block of program memory. The
CALL and GOTO instructions provide only 11-bits of
address to allow branching within any 2K program
memory page. When doing a CALL or GOTO instruction,
the upper 2-bits of the address are provided by
PCLATH<4:3>. When doing a CALL or GOTO instruc-
tion, the user must ensure that the page select bits are
programmed so that the desired program memory
page is addressed. If a return from a CALL instruction
(or interrupt) is executed, the entire 13-bit PC is pushed
onto the stack. Therefore, manipulation of the
PCLATH<4:3> bits is not required for the RETURN
instructions (which POPs the address from the stack).

Example 2-1 shows the calling of a subroutine in
page 1 of the program memory. This example assumes
that PCLATH is saved and restored by the Interrupt
Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE
IN PAGE 1 FROM PAGE 0

PC

12 8 7 0

5
PCLATH<4:0>

PCLATH

Instruction with

ALU Result

GOTO, CALL

Opcode <10:0>

8

PC

12 11 10 0

11PCLATH<4:3>

PCH PCL

8 7

2

PCLATH

PCH PCL

PCL as
Destination

Note 1: There are no status bits to indicate stack
overflow or stack underflow conditions.

2: There are no instructions/mnemonics
called PUSH or POP. These are actions
that occur from the execution of the
CALL, RETURN, RETLW, and RETFIE
instructions, or the vectoring to an
interrupt address.

Note: The contents of the PCLATH register are
unchanged after a RETURN or RETFIE
instruction is executed. The user must
rewrite the PCLATH for any subsequent
CALL or GOTO instructions.

ORG 0x500
BCF PCLATH,4
BSF PCLATH,3 ;Select page 1 (800h-FFFh)
CALL SUB1_P1 ;Call subroutine in
 : ;page 1 (800h-FFFh)
 :
 :
ORG 0x900
SUB1_P1: ;called subroutine
 : ;page 1 (800h-FFFh)
 :
RETURN ;return to Call subroutine
 ;in page 0 (000h-7FFh)
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 25

PIC16C925/926
2.6 Indirect Addressing, INDF and
FSR Registers

The INDF register is not a physical register. Addressing
the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF reg-
ister. Any instruction using the INDF register actually
accesses the register pointed to by the File Select Reg-
ister (FSR). Reading the INDF register itself, indirectly
(FSR = '0'), will produce 00h. Writing to the INDF regis-
ter indirectly results in a no operation (although status
bits may be affected). An effective 9-bit address is
obtained by concatenating the 8-bit FSR register and
the IRP bit (STATUS<7>), as shown in Figure 2-6.

A simple program to clear RAM locations 20h-2Fh
using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: INDIRECT ADDRESSING

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING

MOVLW 0x20 ;initialize pointer
MOVWF FSR ;to RAM

NEXT CLRF INDF ;clear INDF register
INCF FSR,F ;inc pointer
BTFSS FSR,4 ;all done?
GOTO NEXT ;no clear next

CONTINUE

: ;yes continue

Note: For memory map detail, see Figure 2-3.

Data
Memory

Indirect AddressingDirect Addressing

Bank Select Location Select

RP1:RP0 6 0From Opcode IRP FSR Register7 0

Bank Select Location Select

00 01 10 11
00h

7Fh

00h

7Fh

Bank 0 Bank 1 Bank 2 Bank 3
DS39544B-page 26 Preliminary  2001-2013 Microchip Technology Inc.

PIC16C925/926
4.6 PORTF and TRISF Register

PORTF is a digital input only port. Each pin is multi-
plexed with an LCD segment driver. These pins have
Schmitt Trigger input buffers.

EXAMPLE 4-6: INITIALIZING PORTF

FIGURE 4-8: PORTF BLOCK DIAGRAM

TABLE 4-11: PORTF FUNCTIONS

TABLE 4-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Note 1: On a Power-on Reset, these pins are
configured as LCD segment drivers.

2: To configure the pins as a digital port, the
corresponding bits in the LCDSE register
must be cleared. Any bit set in the LCDSE
register overrides any bit settings in the
corresponding TRIS register.

 BCF STATUS, RP0 ;Select Bank2
 BSF STATUS, RP1 ;
 BCF LCDSE, SE16 ;Make all PORTF
 BCF LCDSE, SE12 ;digital inputs

RD Port

Schmitt
Trigger
Input
Buffer

EN

Q D

EN

Digital Input/

LCDSE<n>

LCD

LCD Segment

LCD Output pin

LCD

LCD Common

Data Bus

RD TRIS

VDD

Segment Data

Output Enable

Common Data

Output Enable

Name Bit# Buffer Type Function

RF0/SEG12 bit0 ST Digital input or Segment Driver12.

RF1/SEG13 bit1 ST Digital input or Segment Driver13.

RF2/SEG14 bit2 ST Digital input or Segment Driver14.

RF3/SEG15 bit3 ST Digital input or Segment Driver15.

RF4/SEG16 bit4 ST Digital input or Segment Driver16.

RF5/SEG17 bit5 ST Digital input or Segment Driver17.

RF6/SEG18 bit6 ST Digital input or Segment Driver18.

RF7/SEG19 bit7 ST Digital input or Segment Driver19.

Legend: ST = Schmitt Trigger input

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on
Power-on

Reset

Value on all
other

RESETS

107h PORTF RF7 RF6 RF5 RF4 RF3 RF2 RF1 RF0 0000 0000 0000 0000

187h TRISF PORTF Data Direction Control Register 1111 1111 1111 1111

10Dh LCDSE SE29 SE27 SE20 SE16 SE12 SE9 SE5 SE0 1111 1111 1111 1111

Legend: Shaded cells are not used by PORTF.
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 37

PIC16C925/926
4.7 PORTG and TRISG Register

PORTG is a digital input only port. Each pin is multi-
plexed with an LCD segment driver. These pins have
Schmitt Trigger input buffers.

EXAMPLE 4-7: INITIALIZING PORTG

FIGURE 4-9: PORTG BLOCK DIAGRAM

TABLE 4-13: PORTG FUNCTIONS

TABLE 4-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG

Note 1: On a Power-on Reset, these pins are
configured as LCD segment drivers.

2: To configure the pins as a digital port, the
corresponding bits in the LCDSE register
must be cleared. Any bit set in the LCDSE
register overrides any bit settings in the
corresponding TRIS register.

 BCF STATUS, RP0 ;Select Bank2
 BSF STATUS, RP1 ;
 BCF LCDSE, SE27 ;Make all PORTG
 BCF LCDSE, SE20 ;and PORTE<7>
 ;digital inputs

RD Port

Schmitt
Trigger
Input
Buffer

EN

Q D

EN

Digital Input/

LCDSE<n>

LCD

LCD Segment

LCD Output pin

LCD

LCD Common

Data Bus

RD TRIS

VDD

Segment Data

Output Enable

Common Data

Output Enable

Name Bit# Buffer Type Function

RG0/SEG20 bit0 ST Digital input or Segment Driver20.

RG1/SEG21 bit1 ST Digital input or Segment Driver21.

RG2/SEG22 bit2 ST Digital input or Segment Driver22.

RG3/SEG23 bit3 ST Digital input or Segment Driver23.

RG4/SEG24 bit4 ST Digital input or Segment Driver24.

RG5/SEG25 bit5 ST Digital input or Segment Driver25.

RG6/SEG26 bit6 ST Digital input or Segment Driver26.

RG7/SEG28 bit7 ST Digital input or Segment Driver28 (not available on 64-pin devices).

Legend: ST = Schmitt Trigger input

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on
Power-on

Reset

Value on all
other

RESETS

108h PORTG RG7 RG6 RG5 RG4 RG3 RG2 RG1 RG0 0000 0000 0000 0000

188h TRISG PORTG Data Direction Control Register 1111 1111 1111 1111

10Dh LCDSE SE29 SE27 SE20 SE16 SE12 SE9 SE5 SE0 1111 1111 1111 1111

Legend: Shaded cells are not used by PORTG.
DS39544B-page 38 Preliminary  2001-2013 Microchip Technology Inc.

PIC16C925/926
5.2 Using Timer0 with an External
Clock

When an external clock input is used for Timer0, it must
meet certain requirements. The requirements ensure
the external clock can be synchronized with the internal
phase clock (TOSC). Also, there is a delay in the actual
incrementing of Timer0 after synchronization.

5.2.1 EXTERNAL CLOCK
SYNCHRONIZATION

When no prescaler is used, the external clock input is
the same as the prescaler output. The synchronization
of T0CKI with the internal phase clocks is accom-
plished by sampling the prescaler output on the Q2 and
Q4 cycles of the internal phase clocks (Figure 5-5).
Therefore, it is necessary for T0CKI to be high for at
least 2TOSC (and a small RC delay of 20 ns) and low for
at least 2TOSC (and a small RC delay of 20 ns). Refer
to the electrical specification of the desired device.

When a prescaler is used, the external clock input is
divided by the asynchronous ripple counter type pres-
caler, so that the prescaler output is symmetrical. For
the external clock to meet the sampling requirement,
the ripple counter must be taken into account. There-
fore, it is necessary for T0CKI to have a period of at
least 4TOSC (and a small RC delay of 40 ns) divided by
the prescaler value. The only requirement on T0CKI
high and low time is that they do not violate the mini-
mum pulse width requirement of 10 ns. Refer to param-
eters 40, 41 and 42 in the electrical specification of the
desired device.

5.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the
internal clocks, there is a small delay from the time the
external clock edge occurs to the time the Timer0 mod-
ule is actually incremented. Figure 5-5 shows the delay
from the external clock edge to the timer incrementing.

FIGURE 5-5: TIMER0 TIMING WITH EXTERNAL CLOCK

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

External Clock Input or
Prescaler Output(2)

External Clock/Prescaler
Output after sampling

Increment Timer0 (Q4)

Timer0 T0 T0 + 1 T0 + 2

Small pulse
misses sampling

(3)

(1)

Note 1: Delay from clock input change to Timer0 increment is 3TOSC to 7TOSC. (Duration of Q = TOSC.) Therefore, the error
in measuring the interval between two edges on Timer0 input = 4TOSC max.

2: External clock if no prescaler selected, prescaler output otherwise.

3: The arrows indicate the points in time where sampling occurs.
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 43

PIC16C925/926
6.0 TIMER1 MODULE

Timer1 is a 16-bit timer/counter consisting of two 8-bit
registers (TMR1H and TMR1L), which are readable
and writable. The TMR1 Register pair
(TMR1H:TMR1L) increments from 0000h to FFFFh
and rolls over to 0000h. The TMR1 Interrupt, if enabled,
is generated on overflow, which is latched in interrupt
flag bit, TMR1IF (PIR1<0>). This interrupt can be
enabled/disabled by setting/clearing TMR1 interrupt
enable bit, TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

• As a timer

• As a counter

The operating mode is determined by the clock select
bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction
cycle. In Counter mode, it increments on every rising
edge of the external clock input.

Timer1 can be turned on and off using the control bit
TMR1ON (T1CON<0>).

Timer1 also has an internal “RESET input”. This
RESET can be generated by the CCP module
(Section 8.0). Register 6-1 shows the Timer1 control
register.

When the Timer1 oscillator is enabled (T1OSCEN is
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins
become inputs, regardless of the TRISC<1:0>. RC1
and RC0 will be read as ‘0’.

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON

bit 7 bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits

11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value

bit 3 T1OSCEN: Timer1 Oscillator Enable Control bit

1 = Oscillator is enabled
0 = Oscillator is shut-off

Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain.

bit 2 T1SYNC: Timer1 External Clock Input Synchronization Control bit

TMR1CS = 1:

1 = Do not synchronize external clock input
0 = Synchronize external clock input

TMR1CS = 0:

This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.

bit 1 TMR1CS: Timer1 Clock Source Select bit

1 = External clock from pin T1CKI (on the rising edge)
0 = Internal clock (FOSC/4)

bit 0 TMR1ON: Timer1 On bit

1 = Enables Timer1
0 = Stops Timer1

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 47

PIC16C925/926
6.3 Timer1 Operation in
Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external
clock input is not synchronized. The timer continues to
increment asynchronous to the internal phase clocks.
The timer will continue to run during SLEEP and can
generate an interrupt-on-overflow which will wake-up
the processor. However, special precautions in soft-
ware are needed to read from, or write to the Timer1
register pair (TMR1H:TMR1L) (Section 6.3.2).

In Asynchronous Counter mode, Timer1 cannot be
used as a time-base for capture or compare opera-
tions.

6.3.1 EXTERNAL CLOCK INPUT TIMING
WITH UNSYNCHRONIZED CLOCK

If control bit T1SYNC is set, the timer will increment
completely asynchronously. The input clock must meet
certain minimum high time and low time requirements,
as specified in timing parameters 45, 46, and 47.

6.3.2 READING AND WRITING TMR1 IN
ASYNCHRONOUS COUNTER
MODE

Reading TMR1H or TMR1L, while the timer is running
from an external asynchronous clock, will ensure a
valid read (taken care of in hardware). However, the
user should keep in mind that reading the 16-bit timer
in two 8-bit values itself, poses certain problems, since
the timer may overflow between the reads.

For writes, it is recommended that the user simply stop
the timer and write the desired values. A write conten-
tion may occur by writing to the timer registers while the
register is incrementing. This may produce an unpre-
dictable value in the timer register.

Reading the 16-bit value requires some care.
Example 6-1 is an example routine to read the 16-bit
timer value. This is useful if the timer cannot be
stopped.

EXAMPLE 6-1: READING A 16-BIT FREE-RUNNING TIMER
; All interrupts are disabled
;
 MOVF TMR1H, W ;Read high byte
 MOVWF TMPH ;
 MOVF TMR1L, W ;Read low byte
 MOVWF TMPL ;
 MOVF TMR1H, W ;Read high byte
 SUBWF TMPH, W ;Sub 1st read with 2nd read
 BTFSC STATUS,Z ;Is result = 0
 GOTO CONTINUE ;Good 16-bit read
;
; TMR1L may have rolled over between the read of the high and low bytes.
; Reading the high and low bytes now will read a good value.
;
 MOVF TMR1H, W ;Read high byte
 MOVWF TMPH ;
 MOVF TMR1L, W ;Read low byte
 MOVWF TMPL ;
; Re-enable the Interrupt (if required)
;
CONTINUE ;Continue with your code
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 49

PIC16C925/926
8.0 CAPTURE/COMPARE/PWM
(CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a
16-bit register which can operate as a 16-bit capture
register, as a 16-bit compare register, or as a PWM
master/slave duty cycle register. Table 8-1 shows the
timer resources used by the CCP module.

The Capture/Compare/PWM Register1 (CCPR1) is
comprised of two 8-bit registers: CCPR1L (low byte)
and CCPR1H (high byte). The CCP1CON register con-
trols the operation of CCP1. All three are readable and
writable.

Register 8-1 shows the CCP1CON register.

For use of the CCP module, refer to the Embedded
Control Handbook, “Using the CCP Modules” (AN594).

TABLE 8-1: CCP MODE - TIMER
RESOURCE

REGISTER 8-1: CCP1CON REGISTER (ADDRESS 17h)

CCP Mode Timer Resource

Capture
Compare

PWM

Timer1
Timer1
Timer2

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0

bit 7 bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 CCP1X:CCP1Y: PWM Least Significant bits

Capture mode:
Unused

Compare mode:
Unused

PWM mode:
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.

bit 3-0 CCP1M3:CCP1M0: CCP1 Mode Select bits

0000 = Capture/Compare/PWM disabled (resets CCP1 module)
0100 = Capture mode, every falling edge
0101 = Capture mode, every rising edge
0110 = Capture mode, every 4th rising edge
0111 = Capture mode, every 16th rising edge
1000 = Compare mode, set output on match (bit CCP1IF is set)
1001 = Compare mode, clear output on match (bit CCP1IF is set)
1010 = Compare mode, generate software interrupt-on-match (bit CCP1IF is set, CCP1 pin is

unaffected)
1011 = Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1)
11xx = PWM mode

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 53

PIC16C925/926
To enable the serial port, SSP enable bit, SSPEN
(SSPCON<5>) must be set. To reset or reconfigure
SPI mode, clear bit SSPEN, re-initialize the SSPCON
register, and then set bit SSPEN. This configures the
SDI, SDO, SCK, and SS pins as serial port pins. For the
pins to behave as the serial port function, they must
have their data direction bits (in the TRISC register)
appropriately programmed. That is:

• SDI must have TRISC<4> set

• SDO must have TRISC<5> cleared

• SCK (Master mode) must have TRISC<3>
cleared

• SCK (Slave mode) must have TRISC<3> set

• SS must have TRISA<5> set and ADCON must
be configured such that RA5 is a digital I/O

Any serial port function that is not desired may be over-
ridden by programming the corresponding data direc-
tion (TRIS) register to the opposite value. An example
would be in Master mode, where you are only sending
data (to a display driver), then both SDI and SS could
be used as general purpose outputs by clearing their
corresponding TRIS register bits.

Figure 9-2 shows a typical connection between two
microcontrollers. The master controller (Processor 1)
initiates the data transfer by sending the SCK signal.
Data is shifted out of both shift registers on their pro-
grammed clock edge, and latched on the opposite
edge of the clock. Both processors should be pro-
grammed to same Clock Polarity (CKP), then both con-
trollers would send and receive data at the same time.
Whether the data is meaningful (or dummy data),
depends on the application software. This leads to
three scenarios for data transmission:

• Master sends data—Slave sends dummy data

• Master sends data—Slave sends data

• Master sends dummy data—Slave sends data

The master can initiate the data transfer at any time
because it controls the SCK. The master determines
when the slave (Processor 2) is to broadcast data by
the firmware protocol.

In Master mode, the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI is
only going to receive, the SCK output could be disabled
(programmed as an input). The SSPSR register will
continue to shift in the signal present on the SDI pin at
the programmed clock rate. As each byte is received, it
will be loaded into the SSPBUF register as if a normal
received byte (interrupts and status bits appropriately
set). This could be useful in receiver applications as a
“line activity monitor” mode.

In Slave mode, the data is transmitted and received as
the external clock pulses appear on SCK. When the
last bit is latched, the interrupt flag bit SSPIF (PIR1<3>)
is set.

The clock polarity is selected by appropriately program-
ming bit CKP (SSPCON<4>). This then, would give
waveforms for SPI communication as shown in
Figure 9-3, Figure 9-4, and Figure 9-5, where the MSB
is transmitted first. In Master mode, the SPI clock rate
(bit rate) is user programmable to be one of the
following:

• FOSC/4 (or TCY)

• FOSC/16 (or 4 • TCY)

• FOSC/64 (or 16 • TCY)

• Timer2 output/2

This allows a maximum bit clock frequency (at 8 MHz)
of 2 MHz. When in Slave mode, the external clock must
meet the minimum high and low times.

In SLEEP mode, the slave can transmit and receive
data and wake the device from SLEEP.

FIGURE 9-2: SPI MASTER/SLAVE CONNECTION

Serial Input Buffer
(SSPBUF)

Shift Register
(SSPSR)

MSb LSb

SDO

SDI

PROCESSOR 1

SCK

SPI Master SSPM3:SSPM0 = 00xxb

Serial Input Buffer
(SSPBUF)

Shift Register
(SSPSR)

LSbMSb

SDI

SDO

PROCESSOR 2

SCK

SPI Slave SSPM3:SSPM0 = 010xb

Serial Clock
DS39544B-page 62 Preliminary  2001-2013 Microchip Technology Inc.

PIC16C925/926
9.3.2 MASTER MODE

Master mode of operation is supported, in firmware,
using interrupt generation on the detection of the
START and STOP conditions. The STOP (P) and
START (S) bits are cleared from a RESET, or when the
SSP module is disabled. The STOP and START bits
will toggle based on the START and STOP conditions.
Control of the I2C bus may be taken when the P bit is
set, or the bus is idle with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipu-
lated by clearing the corresponding TRISC<4:3> bit(s).
The output level is always low, irrespective of the
value(s) in PORTC<4:3>. So when transmitting data, a
'1' data bit must have the TRISC<4> bit set (input) and
a '0' data bit must have the TRISC<4> bit cleared (out-
put). The same scenario is true for the SCL line with the
TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit,
SSPIF, to be set (SSP Interrupt if enabled):

• START condition

• STOP condition

• Data transfer byte transmitted/received

Master mode of operation can be done with either the
Slave mode idle (SSPM3:SSPM0 = 1011), or with the
slave active. When both Master and Slave modes are
enabled, the software needs to differentiate the
source(s) of the interrupt.

9.3.3 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the
detection of the START and STOP conditions allows
the determination of when the bus is free. The STOP
(P) and START (S) bits are cleared from a RESET or
when the SSP module is disabled. The STOP and
START bits will toggle based on the START and STOP
conditions. Control of the I2C bus may be taken when
bit P (SSPSTAT<4>) is set, or the bus is idle, with both
the S and P bits clear. When the bus is busy, enabling
the SSP interrupt will generate the interrupt when the
STOP condition occurs.

In multi-master operation, the SDA line must be moni-
tored to see if the signal level is the expected output
level. This check only needs to be done when a high
level is output. If a high level is expected and a low level
is present, the device needs to release the SDA and
SCL lines (set TRISC<4:3>). There are two stages
where this arbitration can be lost, they are:

• Address Transfer

• Data Transfer

When the slave logic is enabled, the slave continues to
receive. If arbitration was lost during the address trans-
fer stage, communication to the device may be in
progress. If addressed, an ACK pulse will be gener-
ated. If arbitration was lost during the data transfer
stage, the device will need to re-transfer the data at a
later time.

TABLE 9-4: REGISTERS ASSOCIATED WITH I2C OPERATION

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on
Power-on

Reset

Value on all
other

RESETS

0Bh, 8Bh,
10Bh, 18Bh

INTCON GIE PEIE TMR0IE INTE RBIE TMR0IF INTF RBIF 0000 000x 0000 000u

0Ch PIR1 LCDIF ADIF — — SSPIF CCP1IF TMR2IF TMR1IF 00-- 0000 00-- 0000

8Ch PIE1 LCDIE ADIE — — SSPIE CCP1IE TMR2IE TMR1IE 00-- 0000 00-- 0000

13h SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register xxxx xxxx uuuu uuuu

93h SSPADD Synchronous Serial Port (I2C mode) Address Register 0000 0000 0000 0000

14h SSPCON WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000

94h SSPSTAT SMP CKE D/A P S R/W UA BF 0000 0000 0000 0000

87h TRISC — — PORTC Data Direction Control Register --11 1111 --11 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by SSP in I2C mode.
DS39544B-page 72 Preliminary  2001-2013 Microchip Technology Inc.

PIC16C925/926
NOTES:
DS39544B-page 74 Preliminary  2001-2013 Microchip Technology Inc.

PIC16C925/926

BCF Bit Clear f

Syntax: [label] BCF f [,b]

Operands: 0  f  127
0  b  7

Operation: 0  (f)

Status Affected: None

Encoding: 01 00bb bfff ffff

Description: Bit 'b' in register 'f' is cleared.

Words: 1

Cycles: 1

Q Cycle Activity: Q1 Q2 Q3 Q4

Decode
Read

register
'f'

Process
data

Write
register 'f'

Example BCF FLAG_REG, 7

Before Instruction:
FLAG_REG = 0xC7

After Instruction:
FLAG_REG = 0x47

BSF Bit Set f

Syntax: [label] BSF f [,b]

Operands: 0  f  127
0  b  7

Operation: 1  (f)

Status Affected: None

Encoding: 01 01bb bfff ffff

Description: Bit 'b' in register 'f' is set.

Words: 1

Cycles: 1

Q Cycle Activity: Q1 Q2 Q3 Q4

Decode Read
register

'f'

Process
data

Write
register 'f'

Example BSF FLAG_REG, 7

Before Instruction:
FLAG_REG = 0x0A

After Instruction:
FLAG_REG = 0x8A

BTFSC Bit Test, Skip if Clear

Syntax: [label] BTFSC f [,b]

Operands: 0  f  127
0  b  7

Operation: skip if (f) = 0

Status Affected: None

Encoding: 01 10bb bfff ffff

Description: If bit 'b' in register 'f' is '1', then the
next instruction is executed.
If bit 'b' in register 'f' is '0', then the
next instruction is discarded, and a
NOP is executed instead, making this a
2TCY instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity: Q1 Q2 Q3 Q4

Decode
Read

register 'f'
Process

data
No

 Operation

If Skip: (2nd Cycle)

Q1 Q2 Q3 Q4

 No
 Operation

No
 Operation

No
 Operation

No
 Operation

Example HERE
FALSE
TRUE

BTFSC
GOTO
•
•
•

FLAG,1
PROCESS_CODE

Before Instruction:
PC = address HERE

After Instruction:
if FLAG<1> = 0,
PC = address TRUE
if FLAG<1> = 1,
PC = address FALSE
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 117

PIC16C925/926

DECF Decrement f

Syntax: [label] DECF f [,d]

Operands: 0  f  127
d  [0,1]

Operation: (f) - 1  (destination)

Status Affected: Z

Encoding: 00 0011 dfff ffff

Description: Decrement register 'f'. If 'd' is 0, the
result is stored in the W register. If 'd'
is 1, the result is stored back in
register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity: Q1 Q2 Q3 Q4

Decode
Read

register
'f'

Process
data

Write to
destination

Example DECF CNT, 1

Before Instruction:
CNT = 0x01
Z = 0

After Instruction:
CNT = 0x00
Z = 1

DECFSZ Decrement f, Skip if 0

Syntax: [label] DECFSZ f [,d]

Operands: 0  f  127
d  [0,1]

Operation: (f) - 1  (destination);
skip if result = 0

Status Affected: None

Encoding: 00 1011 dfff ffff

Description: The contents of register 'f' are decre-
mented. If 'd' is 0, the result is placed
in the W register. If 'd' is 1, the result
is placed back in register 'f'.
If the result is 1, the next instruction is
executed. If the result is 0, then a NOP
is executed instead, making it a 2TCY
instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity: Q1 Q2 Q3 Q4

Decode
Read

register 'f'
Process

data
Write to

destination

If Skip: (2nd Cycle)

Q1 Q2 Q3 Q4

 No
 Operation

No
 Operation

No
 Operation

No
 Operation

Example HERE DECFSZ CNT, 1
 GOTO LOOP
CONTINUE •
 •
 •

Before Instruction:
PC = address HERE

After Instruction:
CNT = CNT - 1
if CNT = 0,
PC = address CONTINUE
if CNT  0,
PC = address HERE+1
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 121

PIC16C925/926
GOTO Unconditional Branch

Syntax: [label] GOTO k

Operands: 0  k  2047

Operation: k  PC<10:0>
PCLATH<4:3>  PC<12:11>

Status Affected: None

Encoding: 10 1kkk kkkk kkkk

Description: GOTO is an unconditional branch. The
eleven-bit immediate value is loaded
into PC bits <10:0>. The upper bits of
PC are loaded from PCLATH<4:3>.
GOTO is a two-cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity: Q1 Q2 Q3 Q4

1st Cycle
Decode Read

literal 'k'
Process

data
Write to

PC

2nd Cycle
 No

 Operation
No

 Operation
No

 Operation
No

 Operation

Example GOTO THERE

After Instruction:
PC = Address THERE

INCF Increment f

Syntax: [label] INCF f [,d]

Operands: 0  f  127
d  [0,1]

Operation: (f) + 1  (destination)

Status Affected: Z

Encoding: 00 1010 dfff ffff

Description: The contents of register 'f' are incre-
mented. If 'd' is 0, the result is placed
in the W register. If 'd' is 1, the result
is placed back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity: Q1 Q2 Q3 Q4

Decode
Read

register
'f'

Process
data

Write to
destination

Example INCF CNT, 1

Before Instruction:
CNT = 0xFF
Z = 0

After Instruction:
CNT = 0x00
Z = 1
DS39544B-page 122 Preliminary  2001-2013 Microchip Technology Inc.

PIC16C925/926
SUBLW Subtract W from Literal

Syntax: [label] SUBLW k

Operands: 0 k 255

Operation: k - (W) W)

Status Affected: C, DC, Z

Encoding: 11 110x kkkk kkkk

Description: The W register is subtracted (2’s
complement method) from the eight-
bit literal 'k'. The result is placed in the
W register.

Words: 1

Cycles: 1

Q Cycle Activity: Q1 Q2 Q3 Q4

Decode
Read

literal 'k'
Process

data
Write to W

Example 1: SUBLW 0x02

Before Instruction:
W = 1
C = ?
Z = ?

After Instruction:
W = 1
C = 1; result is positive
Z = 0

Example 2:

Before Instruction:
W = 2
C = ?
Z = ?

After Instruction:
W = 0
C = 1; result is zero
Z = 1

Example 3:

Before Instruction:
W = 3
C = ?
Z = ?

After Instruction:
W = 0xFF
C = 0; result is negative
Z = 0

SUBWF Subtract W from f

Syntax: [label] SUBWF f [,d]

Operands: 0  f 127
d  [0,1]

Operation: (f) - (W) destination)

Status Affected: C, DC, Z

Encoding: 00 0010 dfff ffff

Description: Subtract (2’s complement method) W
register from register 'f'. If 'd' is 0, the
result is stored in the W register. If 'd' is
1, the result is stored back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity: Q1 Q2 Q3 Q4

Decode
Read

register 'f'
Process

data
Write to

destination

Example 1: SUBWF REG1,1

Before Instruction:
REG1 = 3
W = 2
C = ?
Z = ?

After Instruction:
REG1 = 1
W = 2
C = 1; result is positive
Z = 0

Example 2:

Before Instruction:
REG1 = 2
W = 2
C = ?
Z = ?

After Instruction:
REG1 = 0
W = 2
C = 1; result is zero
Z = 1

Example 3:

Before Instruction:
REG1 = 1
W = 2
C = ?
Z = ?

After Instruction:
REG1 = 0xFF
W = 2
C = 0; result is negative
Z = 0
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 129

PIC16C925/926
TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC12CXXX

PIC14000

PIC16C5X

PIC16C6X

PIC16CXXX

PIC16F62X

PIC16C7X

PIC16C7XX

PIC16C8X

PIC16F8XX

PIC16C9XX

PIC17C4X

PIC17C7XX

PIC18CXX2

24CXX/
25CXX/
93CXX

HCSXXX

MCRFXXX

MCP2510

Software Tools

M
P

L
A

B
®
 In

te
g

ra
te

d
D

ev
e

lo
p

m
en

t
E

n
vi

ro
n

m
en

t






















M
P

L
A

B
®
 C

1
7

C
 C

o
m

p
il

er




M
P

L
A

B
®
 C

1
8

C
 C

o
m

p
il

er


M
P

A
S

M
T

M
 A

s
se

m
b

le
r/

M
P

L
IN

K
T

M
 O

b
je

c
t

L
in

ke
r

























Emulators

M
P

L
A

B
®
 IC

E
 In

-C
ir

cu
it

 E
m

u
la

to
r










**













IC
E

P
IC

T
M
 In

-C
ir

cu
it

 E
m

u
la

to
r













 Debugger

M
P

L
A

B
®
 IC

D
 In

-C
ir

cu
it

D

eb
u

g
g

e
r


*


*



Programmers

P
IC

S
T

A
R

T
®
 P

lu
s

E
n

tr
y

L
e

ve
l

D
ev

e
lo

p
m

en
t

P
ro

g
ra

m
m

er









**













P
R

O
 M

A
T

E
®
 I

I
U

n
iv

er
sa

l D
ev

ic
e

 P
ro

g
ra

m
m

e
r










**
















Demo Boards and Eval Kits

P
IC

D
E

M
T

M
 1

 D
em

o
n

st
ra

ti
o

n

B
o

a
rd





†




P
IC

D
E

M
T

M
 2

 D
em

o
n

st
ra

ti
o

n

B
o

a
rd


†


†



P
IC

D
E

M
T

M
 3

 D
em

o
n

st
ra

ti
o

n

B
o

a
rd



P
IC

D
E

M
T

M
 1

4A
 D

e
m

o
n

st
ra

ti
o

n

B
o

a
rd



P
IC

D
E

M
T

M
 1

7
D

e
m

o
n

s
tr

at
io

n

B
o

a
rd



K
E

E
L

O
Q

®
 E

va
lu

a
ti

o
n

 K
it



K
E

E
L

O
Q

®
 T

ra
n

sp
o

n
d

e
r

K
it



m
ic

ro
ID

T
M
 P

ro
g

ra
m

m
er

’s
 K

it


12
5

 k
H

z
m

ic
ro

ID
T

M

D
ev

e
lo

p
e

r’
s

 K
it



12
5

 k
H

z
A

n
ti

c
o

lli
si

o
n

 m
ic

ro
ID

T
M

D
ev

e
lo

p
e

r’
s

 K
it



13
.5

6
M

H
z

A
n

ti
co

lli
si

o
n

m

ic
ro

ID
T

M
 D

ev
el

o
p

er
’s

 K
it



M
C

P
25

10
 C

A
N

 D
ev

el
o

p
er

’s
 K

it


*
C

o
nt

a
ct

 th
e

M
ic

ro
ch

ip
 T

ec
h

no
lo

gy
 I

nc
.

w
eb

 s
ite

 a
t w

w
w

.m
ic

ro
ch

ip
.c

om
 fo

r
in

fo
rm

at
io

n
o

n
h

ow
 to

 u
se

 th
e

M
P

LA
B

®
 IC

D
 In

-C
irc

u
it

D
eb

ug
g

er
 (

D
V

16
40

01
)

w
ith

 P
IC

16
C

62
,

63
, 6

4
, 6

5
, 7

2,
 7

3,
 7

4,
 7

6,
 7

7
.

**
C

o
nt

a
ct

 M
ic

ro
ch

ip
 T

ec
h

no
lo

gy
 I

nc
. f

or
 a

va
ila

bi
lit

y
d

at
e

.
†

D
e

ve
lo

p
m

e
nt

 t
oo

l i
s

av
a

ila
bl

e
 o

n
 s

el
e

ct
 d

e
vi

ce
s.
 2001-2013 Microchip Technology Inc. Preliminary DS39544B-page 137

PIC16C925/926
TABLE 15-8: SPI MODE REQUIREMENTS

Param
No.

Symbol Characteristic Min Typ† Max Units Conditions

70 TssL2scH,
TssL2scL

SS to SCK or SCK input TCY — — ns

71

71A

TscH SCK input high time (Slave
mode)

Continuous 1.25TCY + 30 — — ns

Single Byte 40 — — ns

72

72A

TscL SCK input low time (Slave
mode)

Continuous 1.25TCY + 30 — — ns

Single Byte 40

73 TdiV2scH,
TdiV2scL

Setup time of SDI data input to SCK edge 50 — — ns

74 TscH2diL,
TscL2diL

Hold time of SDI data input to SCK edge 50 — — ns

75 TdoR SDO data output rise time — 10 25 ns

76 TdoF SDO data output fall time — 10 25 ns

77 TssH2doZ SS to SDO output hi-impedance 10 — 50 ns

78 TscR SCK output rise time (Master mode) — 10 25 ns

79 TscF SCK output fall time (Master mode) — 10 25 ns

80 TscH2doV,
TscL2doV

SDO data output valid after SCK edge — — 50 ns

81 TdoV2scH,
TdoV2scL

SDO data output setup to SCK edge TCY — — ns

82 TssL2doV SDO data output valid after SS edge — — 50 ns

83 TscH2ssH,
TscL2ssH

SS after SCK edge 1.5TCY + 40 — — ns

84 Tb2b Delay between consecutive bytes 1.5TCY + 40 — — ns

† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS39544B-page 154 Preliminary  2001-2013 Microchip Technology Inc.

