

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

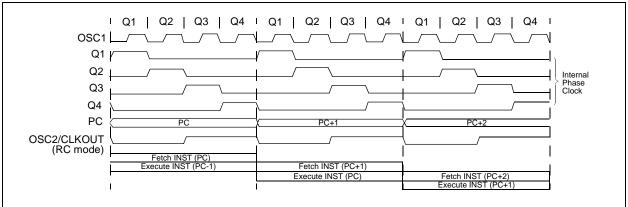
Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	336 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c926t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 1-2.

1.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined, such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO), then two cycles are required to complete the instruction (Example 1-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 1-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 1-1: INSTRUCTION PIPELINE FLOW

	TCY0	TCY1	TCY2	TCY3	TCY4	TCY5
1. MOVLW 55h	Fetch 1	Execute 1				
2. MOVWF PORTB		Fetch 2	Execute 2			
3. CALL SUB_1			Fetch 3	Execute 3]	
4. BSF PORTA, BIT3 (F	orced NOP)			Fetch 4	Flush	
5. Instruction @ addres	s SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.0 I/O PORTS

Some pins for these ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

4.1 PORTA and TRISA Register

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All RA pins have data direction bits (TRISA register), which can configure these pins as output or input.

Setting a bit in the TRISA register puts the corresponding output driver in a Hi-Impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The other PORTA pins are multiplexed with analog inputs and the analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 4-1: INITIALIZING PORTA

BCF BCF	STATUS, RPO STATUS, RP1	; Select Bank0
CLRF	PORTA	; Initialize PORTA
BSF	STATUS, RPO	; Select Bank1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA<5:4> as outputs
		; RA<7:6> are always
		; read as '0'.

FIGURE 4-1: BLOCK DIAGRAM OF

PINS RA3:RA0 AND RA5

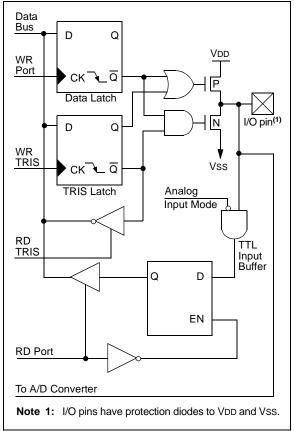
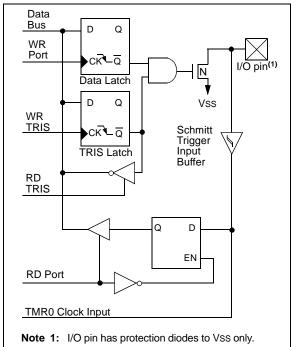
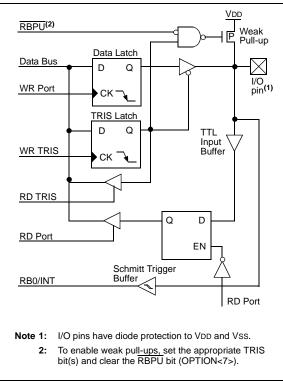



FIGURE 4-2:

BLOCK DIAGRAM OF RA4/T0CKI PIN

4.2 PORTB and TRISB Register


PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a Hi-Impedance Input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 4-2:	INITIALIZING PORTB

BCF	STATUS,	RP0	;	Select Bank0
BCF	STATUS,	RP1		
CLRF	PORTB		;	Initialize PORTB
BSF	STATUS,	RP0	;	Select Bank1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

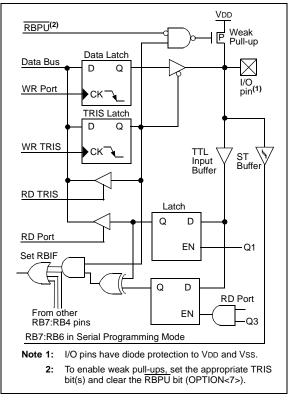
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are also disabled on a Power-on Reset.

FIGURE 4-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of the PORTB pins (RB7:RB4) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt-on-mismatch feature, together with software configurable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, "Implementing Wake-Up on Key Stroke" (AN552).

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 4-4:

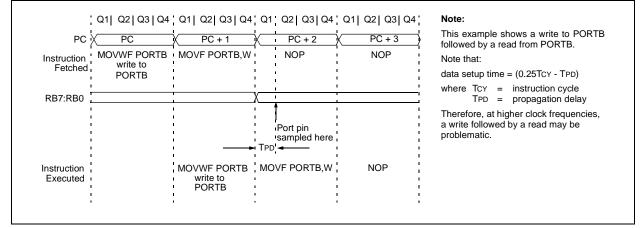
BLOCK DIAGRAM OF RB7:RB4 PINS

4.8 I/O Programming Considerations

4.8.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the contents of the data latch may now be unknown.

Reading the port register reads the values of the port pins. Writing to the port register, writes the value to the port latch. When using read-modify-write instructions (e.g. BCF, BSF) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.


Example 4-8 shows the effect of two sequential read-modify-write instructions on an I/O port. A pin actively outputting a Low or High should not be driven from external devices at the same time, in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 4-8: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

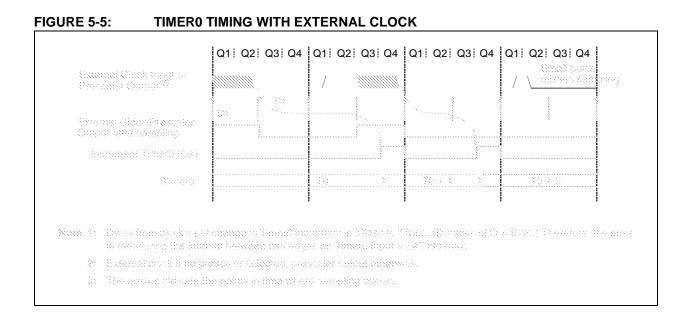
;Initial PORT settings: PORTB<7:4> Inputs	
; PORTB<3:0> Outputs	
;PORTB<7:6> have external pull-ups and are	
;not connected to other circuitry	
;	
; PORT latch PORT pins	
;	
BCF PORTB, 7 ; 01pp pppp 11pp pppp	
BCF PORTB, 6 ; 10pp pppp 11pp pppp	
BCF STATUS, RP1 ; Select Bank1	
BSF STATUS, RPO ;	
BCF TRISB, 7 ; 10pp pppp 11pp pppp	
BCF TRISB, 6 ; 10pp pppp 10pp ppp	
;	
;Note that the user may have expected the	
;pin values to be 00pp ppp. The 2nd BCF	
;caused RB7 to be latched as the pin value	
; (high).	

4.8.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 4-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU, rather than the new state. When in doubt, it is better to separate these instructions with a NOP, or another instruction not accessing this I/O port.

FIGURE 4-10: SUCCESSIVE I/O OPERATION

5.2 Using Timer0 with an External Clock


When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

5.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 5-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

5.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 5-5 shows the delay from the external clock edge to the timer incrementing.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu Powe Res	er-on	all o	e on other SETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	LCDIF	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00	0000	00	0000
8Ch	PIE1	LCDIE	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	00	0000	00	0000
87h	TRISC	—	_	PORTC Da	ata Direction	Control Reg	jister			11	1111	11	1111
0Eh	TMR1L	Holding	register f	or the Least	t Significant	Byte of the 1	6-bit TMR1	I Register		xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding	register f	or the Most	Significant E	Byte of the 1	6-bit TMR1	Register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture	Capture/Compare/PWM1 (LSB)								xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM1 (MSB)									xxxx	uuuu	uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	0 0	0000

TABLE 8-3: REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in these modes.

TABLE 8-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value Power Rese	r-on		e on other ETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 (000x	0000	000u
0Ch	PIR1	LCDIF	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0	0000	00	0000
8Ch	PIE1	LCDIE	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0	0000	00	0000
87h	TRISC	_	—	PORTC Da	ata Direction	Control Re	gister			11 1	1111	11	1111
11h	TMR2	Timer2 N	/lodule Regi	ster						0000 0	0000	0000	0000
92h	PR2	Timer2 N	Nodule Peric	d Register						1111 1	1111	1111	1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0	0000	-000	0000
15h	CCPR1L	Capture/	Capture/Compare/PWM1 (LSB)									uuuu	uuuu
16h	CCPR1H	Capture/	Capture/Compare/PWM1 (MSB)									uuuu	uuuu
17h	CCP1CON			CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode.

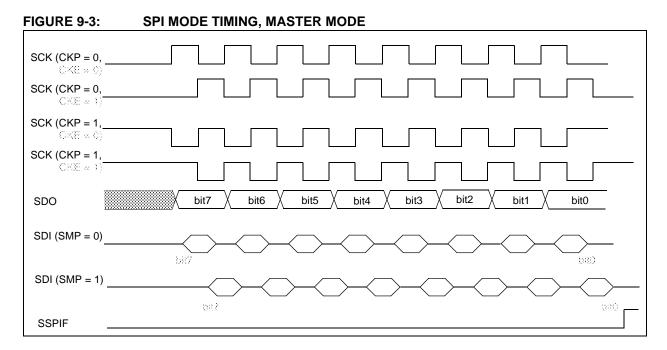
9.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

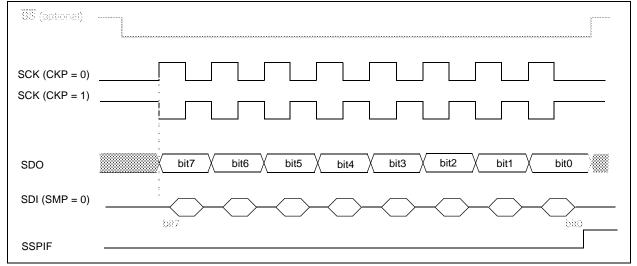
- Serial Peripheral Interface (SPI™)
- Inter-Integrated Circuit (I²C[™])

Refer to Application Note AN578, "Use of the SSP Module in the I $^2\mathrm{C}$ Multi-Master Environment."

REGISTER 9-1: SSPSTAT: SERIAL PORT STATUS REGISTER (ADDRESS 94h)


	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0					
	SMP	CKE	D/A	Р	S	R/W	UA	BF					
	bit 7							bit 0					
bit 7	SMP: SPI D	ata Input Sam	ple Phase bit										
	SPI Master r												
		ta sampled at											
	0 = Input data sampled at middle of data output time <u>SPI Slave mode:</u>												
	SMP must be cleared when SPI is used in Slave mode												
bit 6	CKE: SPI Clock Edge Select bit (see Figure 9-3, Figure 9-4, and Figure 9-5)												
	CKE: SPI Clock Edge Select bit (see Figure 9-3, Figure 9-4, and Figure 9-5) CKP = 0:												
		nsmitted on ris											
		nsmitted on fa	Illing edge of	SCK									
	<u>CKP = 1:</u> 1 = Data transmitted on falling edge of SCK												
		nsmitted on ris											
bit 5		ddress bit (I ² C											
	1 = Indicate	s that the last	byte received	l or transmitte	ed was data								
		s that the last	•										
bit 4		(I ² C mode on	ly. This bit is o	cleared when	the SSP mod	dule is disable	ed, or when th	e START					
	bit was deter	cted last.) s that a STOP	hit haa haan	detected leas	(this hit is '0'								
		it was not dete		uelecteu las		UN RESET)							
bit 3		t (I ² C mode o		cleared whe	n the SSP mo	odule is disab	led, or when t	he STOP					
	bit was dete	cted last.)					,						
	1 = Indicate	s that a STAR	T bit has bee	n detected la	st (this bit is '()' on RESET)							
1.11.0	_	bit was not de											
bit 2		Vrite bit Inforn Is the R/W bi			last address	match This	hit is only y	alid from the					
		ch to the next					DIL IS UTILY V						
	1 = Read												
	0 = Write												
bit 1		Address (10-b		• /									
		s that the use			ess in the SS	PADD registe	r						
hit O	0 = Address	does not nee		eu									
bit 0		I and I ² C mod	les).										
		complete, SS											
	0 = Receive	not complete		empty									
		C mode only)											
		t in progress, t complete, SS											
		t complete, St	וווש פו יוסט יכ	pry									
	Legend:												
	R = Readab	le bit	W = Wr	itable bit	U = Unim	plemented bit	, read as '0'						
	- n = Value a	at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is un	known					
			i = Dil	13 301		CIEdleu		KIOWII					

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the Synchronous Slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.


Note 1: When the SPI is in Slave mode with SS pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the SS pin is set to VDD.

> 2: If the SPI is used in Slave mode with CKE = '1', then the SS pin control must be enabled.

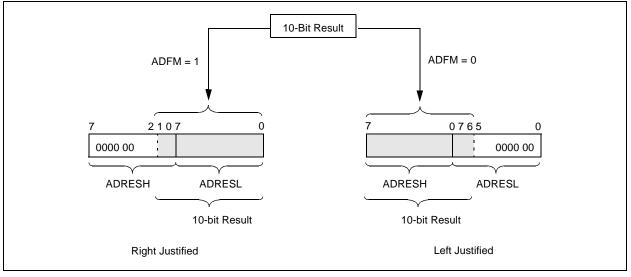

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 9-4: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)

10.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS<1:0> = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

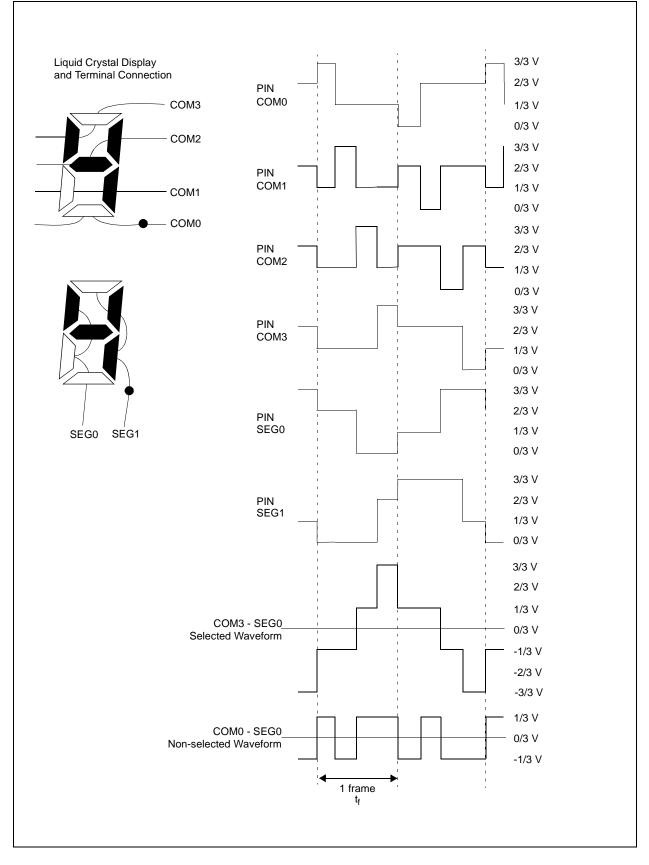
When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note:	For the A/D module to operate in SLEEP,
	the A/D clock source must be set to RC
	(ADCS < 1:0 > = 11). To allow the conver-
	sion to occur during SLEEP, ensure the
	SLEEP instruction immediately follows the
	instruction that sets the GO/DONE bit.

10.6 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. All A/D input pins are configured as analog inputs.


The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
0Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	r0rr 0000	r0rr 0000
8Ch	PIE1	LCDIE	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	r0rr 0000	r0rr 0000
1Eh	ADRESH	A/D Resu	lt Registe	r High Byt	е					xxxx xxxx	uuuu uuuu
9Eh	ADRESL	A/D Resu	lt Registe	r Low Byte	9					xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	_	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000
85h	TRISA		_	PORTA D	ata Direc	tion Regis		11 1111	11 1111		
05h	PORTA	—	_	PORTA D	ata Latch	when wri	tten: PORTA	pins wher	n read	0x 0000	0u 0000

TABLE 10-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion. **Note 1:** These bits are reserved; always maintain these bits clear.

FIGURE 11-5: WAVEFORMS IN QUARTER-DUTY CYCLE DRIVE (B TYPE)

12.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC16CXXX family has a host of such features, intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming

The PIC16CXXX has a Watchdog Timer which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space and can be accessed only during programming.

PIC16C925/926

CLRF	Clear f				
Syntax:	[label] CLRF f				
Operands:	$0 \le f \le 12$.7			
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	0 0	0001	lfff	ffff	
Description:		The contents of register 'f' are cleared and the Z bit is set.			
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write register 'f'	
Example	CLRF	FLAG_RE	G		
Before Instruction: FLAG_REG = 0x5A					
After Instruction: $FLAG_REG = 0x00$ Z = 1					

CLRW	Clear W					
Syntax:	[label]	CLRW				
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$					
Status Affected:	Z					
Encoding:	00	0001	0xxx	xxxx		
Description:	W register is cleared. Zero bit (Z) is set.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	No Operation	Process data	Write to W		
Example	CLRW					

Before Instruction:					
W	=	0x5A			
After Instruction:					
W	=	0x00			
Z	=	1			

14.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

14.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

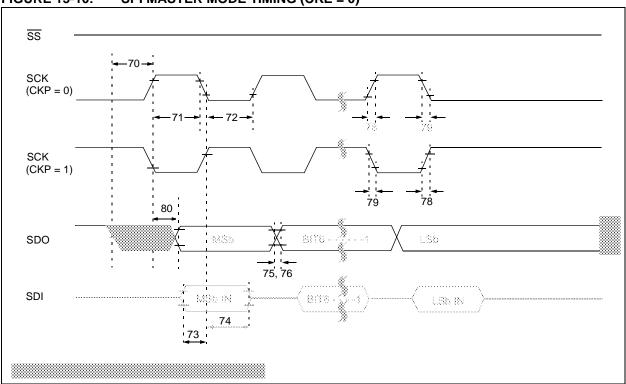
- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

14.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.


The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

14.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

FIGURE 15-11: SPI MASTER MODE TIMING (CKE = 1)

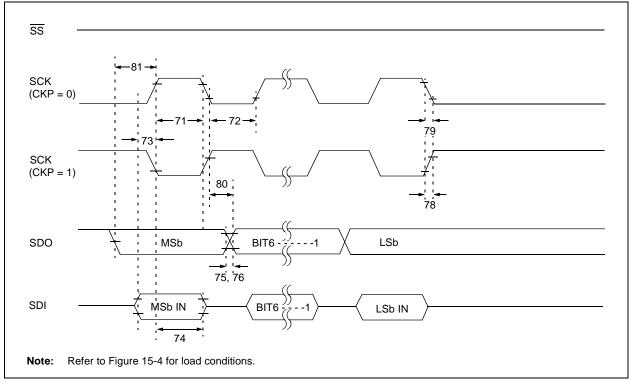
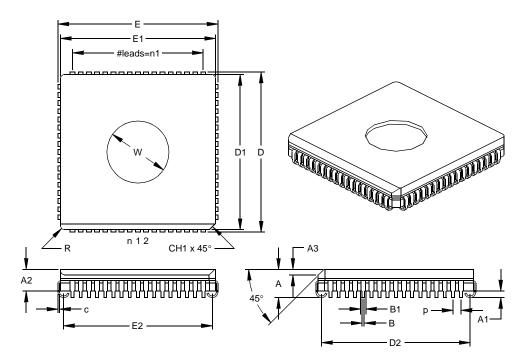


FIGURE 15-10: SPI MASTER MODE TIMING (CKE = 0)

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	—	—	ns		
71	TscH	SCK input high time (Slave	Continuous	1.25Tcy + 30	_		ns	
71A		mode)	Single Byte	40	—	—	ns	
72	TscL	SCK input low time (Slave	Continuous	1.25Tcy + 30	—	≤ 1	ns	
72A		mode)	Single Byte	40	D	$) \leq \langle$		
73	TdiV2scH, TdiV2scL	Setup time of SDI data input	50	X H	>	ns		
74	TscH2diL, TscL2diL	Hold time of SDI data input to	50	<u> </u>	—	ns		
75	TdoR	SDO data output rise time		<u> </u>	10	25	ns	
76	TdoF	SDO data output fall time		—	10	25	ns	
77	TssH2doZ	55 to SDO output himpedance		10	—	50	ns	
78	TscR	SCK output rise time (Master mode)		—	10	25	ns	
79	TscF	SCK output fall time (Master mode)		—	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge		—	—	50	ns	
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge		Тсү	—	—	ns	
82	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		—	—	50	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	—	ns	
84	Tb2b	Delay between consecutive bytes		1.5TCY + 40			ns	

TABLE 15-8: SPI MODE REQUIREMENTS


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C925/926

NOTES:

68-Lead Ceramic Leaded (CL) Chip Carrier with Window - Square (CERQUAD)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		68			68	
Pitch	р		.050			1.27	
Overall Height	А	.165	.175	.185	4.19	4.45	4.70
Package Thickness	A2	.118	.137	.155	3.00	3.48	3.94
Standoff §	A1	.030	.040	.050	0.76	1.02	1.27
Side One Chamfer Dim.	A3	.030	.035	.040	0.76	0.89	1.02
Corner Chamfer (1)	CH1	.030	.040	.050	0.76	1.02	1.27
Corner Radius (Others)	R	.020	.025	.030	0.51	0.64	0.76
Overall Package Width	E	.983	.988	.993	24.97	25.10	25.22
Overall Package Length	D	.983	.988	.993	24.97	25.10	25.22
Ceramic Package Width	E1	.942	.950	.958	23.93	24.13	24.33
Ceramic Package Length	D1	.942	.950	.958	23.93	24.13	24.33
Footprint Width	E2	.890	.910	.930	22.61	23.11	23.62
Footprint Length	D2	.890	.910	.930	22.61	23.11	23.62
Pins each side	n1		17			17	
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.026	.029	.031	0.66	0.72	0.79
Lower Lead Width	В	.015	.018	.021	0.38	0.46	0.53
Window Diameter	W	.370	.380	.390	9.40	9.65	9.91

* Controlling Parameter § Significant Characteristic JEDEC Equivalent: MO-087 Drawing No. C04-097

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting to the devices listed in this data sheet from previous device types are summarized in Table C-1.

TABLE C-1:	 ONVERSION ONSIDERATIO	NS

Feature	PIC16C923/ 924	PIC16C925/ 926
Operating Frequency	DC - 8 MHz	DC - 20 MHz
EPROM Program Memory (words)	4K	4K (925) 8K (926)
Data Memory (bytes)	176	176 (925) 336 (926)
A/D Converter Resolution	8-bit (924 only)	10-bit
A/D Converter Channels	none (923) 5 (924)	5
Interrupt Sources	8 (923) 9 (924)	9
Brown-out Reset	No	Yes

PIC16C925/926

Code Protection	2
Associated Registers58	3
Block Diagram	5
Pin Configuration55	5
Software Interrupt Mode55	5
Special Event Trigger55	5
Timer1 Mode55	5
Computed GOTO 58	