

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc925t-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Data Memory Organization

The data memory is partitioned into four banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1:RP0 (STATUS<6:5>)	Bank
11	3 (180h-1FFh)
10	2 (100h-17Fh)
01	1 (80h-FFh)
00	0 (00h-7Fh)

The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. All four banks contain special function registers. Some "high use" special function registers are mirrored in other banks for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 2.6).

The following General Purpose Registers are not physically implemented:

- F0h-FFh of Bank 1
- 170h-17Fh of Bank 2
- 1F0h-1FFh of Bank 3

These locations are used for common access across banks.

2.3 Special Function Registers

The Special Function Registers (SFRs) are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets, core and peripheral. Those registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Details on page
Bank 0											
00h	INDF	Addressing	this location	uses content	ts of FSR to a	address data	memory (no	t a physical r	egister)	0000 0000	26
01h	TMR0	Timer0 Mod	ule Register							xxxx xxxx	41
02h	PCL	Program Co	ounter (PC) L	east Signific	ant Byte					0000 0000	25
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
04h	FSR	Indirect Data	a Memory Ac	ddress Pointe	er					XXXX XXXX	26
05h	PORTA	—	—	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read		0x 0000	29
06h	PORTB	PORTB Dat	a Latch whe	n written: PO	RTB pins wh	en read				XXXX XXXX	31
07h	PORTC	_	_	PORTC Da	ta Latch whe	n written: PO	RTC pins wh	en read		xx xxxx	33
08h	PORTD	PORTD Dat	a Latch whe	n written: PC	RTD pins wh	en read				0000 0000	34
09h	PORTE	PORTE pins	s when read							0000 0000	36
0Ah	PCLATH	_	—	_	Write Buffer	for the uppe	r 5 bits of the	Program Co	ounter	0 0000	25
0Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21
0Ch	PIR1	LCDIF	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	23
0Dh	_	Unimplemen	nted							—	_
0Eh	TMR1L	Holding regi	ister for the L	east Signific	ant Byte of th	ne 16-bit TMF	R1 Register			XXXX XXXX	47
0Fh	TMR1H	Holding regi	ister for the N	Aost Significa	ant Byte of th	e 16-bit TMR	1 Register			XXXX XXXX	47
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	47
11h	TMR2	Timer2 Mod	ule Register							0000 0000	51
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	52
13h	SSPBUF	Synchronou	s Serial Port	Receive But	fer/Transmit	Register				XXXX XXXX	64, 72
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	60
15h	CCPR1L	Capture/Co	mpare/PWM	Register (LS	iB)					XXXX XXXX	58
16h	CCPR1H	Capture/Co	mpare/PWM	Register (MS	SB)					XXXX XXXX	58
17h	CCP1CON	-	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	53
18h	_	Unimplemen	nted							—	_
19h	_	Unimplemented							—	_	
1Ah	-	Unimplemented —							-		
1Bh	_	Unimplemen	Unimplemented —								-
1Ch	—	Unimplemented —							—		
1Dh	_	Unimplemen	Jnimplemented —							—	
1Eh	ADRESH	A/D Result	Register High	า						xxxx xxxx	80, 81
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 0000	75

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These pixels do not display, but can be used as general purpose RAM.

4.4 PORTD and TRISD Registers

PORTD is an 8-bit port with Schmitt Trigger input buffers. The first five pins are configurable as general purpose I/O pins or LCD segment drivers. Pins RD5, RD6 and RD7 can be digital inputs, or LCD segment, or common drivers.

TRISD controls the direction of pins RD0 through RD4 when PORTD is configured as a digital port.

- Note 1: On a Power-on Reset, these pins are configured as LCD segment drivers.
 - 2: To configure the pins as a digital port, the corresponding bits in the LCDSE register must be cleared. Any bit set in the LCDSE register overrides any bit settings in the corresponding TRIS register.

FXAMPI F 4-4·	INITIAL IZING PORTD

BCF	STATUS, RPO	;Select Bank2
BSF	STATUS, RP1	;
BCF	LCDSE, SE29	;Make RD<7:5> digital
BCF	LCDSE, SE0	;Make RD<4:0> digital
BSF	STATUS, RPO	;Select Bank1
BCF	STATUS, RP1	;
MOVLW	0xE0	;Make RD<4:0> outputs
MOVWF	TRISD	;Make RD<7:5> inputs

PORTD <4:0> BLOCK DIAGRAM

FIGURE 4-7: PORTD<7:5> BLOCK DIAGRAM

PIC16C925/926

NOTES:

7.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for the PWM mode of the CCP module. It can also be used as a time-base for the Master mode SPI clock. The TMR2 register is readable and writable, and is cleared on any device RESET.

The input clock (FOSC/4) has a prescale option of 1:1, 1:4, or 1:16 (selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>)).

The Timer2 module has an 8-bit period register, PR2. TMR2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is set during RESET.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

Timer2 can be shut-off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 7-1 shows the Timer2 control register.

7.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device RESET (Power-on Reset, MCLR Reset, or Watchdog Timer Reset)

TMR2 will not clear when T2CON is written.

7.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module, which optionally uses it to generate the shift clock.

8.3 PWM Mode

In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 8-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 8.3.3.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 8-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period =
$$[(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 prescale value)$$

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (Section 7.0) is not
	used in the determination of the PWM fre-
	quency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

8.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available; the CCPR1L contains the eight MSbs and CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

```
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •
Tosc • (TMR2 prescale value)
```

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock, or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
8Ch	PIE1	LCDIE	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
87h	TRISC			PORTC Da	ata Direction	Control Reg	jister			11 1111	11 1111
0Eh	TMR1L	Holding	Holding register for the Least Significant Byte of the 16-bit TMR1 Register							xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding	register f	for the Most	Significant I	Byte of the 1	6-bit TMR1	Register		xxxx xxxx	uuuu uuuu
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture	Capture/Compare/PWM1 (LSB)								uuuu uuuu
16h	CCPR1H	Capture/Compare/PWM1 (MSB)								xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

TABLE 8-3: REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in these modes.

TABLE 8-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF		—	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
8Ch	PIE1	LCDIE	ADIE		—	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
87h	TRISC	_	—	PORTC Da	ata Direction	Control Re	gister			11 1111	11 1111
11h	TMR2	Timer2 M	limer2 Module Register							0000 0000	0000 0000
92h	PR2	Timer2 M	/lodule Peric	d Register						1111 1111	1111 1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/	Capture/Compare/PWM1 (LSB)							xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/	Capture/Compare/PWM1 (MSB)							xxxx xxxx	uuuu uuuu
17h	CCP1CON		—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode.

PIC16C925/926

TABLE 9-1:	REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
8Ch	PIE1	LCDIE	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
13h	SSPBUF	Synchro	nous Ser	nous Serial Port Receive Buffer/Transmit Register							uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA		—	PORTA Data Direction Control Register					11 1111	11 1111	
87h	TRISC			PORTC Data Direction Control Register					11 1111	11 1111	
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

9.3 SSP I²C Operation

The SSP module in l^2 C mode fully implements all slave functions, except general call support, and provides interrupts on START and STOP bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP enable bit, SSPEN (SSPCON<5>).

FIGURE 9-16: SSP BLOCK DIAGRAM

(I²C MODE)

The SSP module has five registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I²C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I²C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled
- I²C Firmware controlled Master mode, slave is idle

Selection of any I²C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address, if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only.

The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

11.1.2 MULTIPLEX TIMING GENERATION

The timing generation circuitry will generate one to four common clocks based on the display mode selected. The mode is specified by bits LMUX1:LMUX0 (LCDCON<1:0>). Table 11-1 shows the formulas for calculating the frame frequency.

TABLE 11-1: FRAME FREQUENCY FORMULAS

Multiplex	Frame Frequency =
Static	Clock source/(128 * (LP3:LP0 + 1))
1/2	Clock source/(128 * (LP3:LP0 + 1))
1/3	Clock source/(96 * (LP3:LP0 + 1))
1/4	Clock source/(128 * (LP3:LP0 + 1))

TABLE 11-2: APPROXIMATE FRAME FREQUENCY (IN Hz) USING TIMER1 @ 32.768 kHz OR Fosc @ 8 MHz

LP3:LP0	Static	1/2	1/3	1/4
2	85	85	114	85
3	64	64	85	64
4	51	51	68	51
5	43	43	57	43
6	37	37	49	37
7	32	32	43	32

TABLE 11-3: APPROXIMATE FRAME FREQUENCY (IN Hz) USING INTERNAL RC OSC @ 14 kHz

LP3:LP0	Static	1/2	1/3	1/4
0	109	109	146	109
1	55	55	73	55
2	36	36	49	36
3	27	27	36	27

11.4.1 SEGMENT ENABLES

The LCDSE register is used to select the pin function for groups of pins. The selection allows each group of pins to operate as either LCD drivers or digital only pins. To configure the pins as a digital port, the corresponding bits in the LCDSE register must be cleared.

If the pin is a digital I/O the corresponding TRIS bit controls the data direction. Any bit set in the LCDSE register overrides any bit settings in the corresponding TRIS register.

- Note 1: On a Power-on Reset, these pins are configured as LCD drivers.
 - 2: The LMUX1:LMUX0 takes precedence over the LCDSE bit settings for pins RD7, RD6 and RD5.

EXAMPLE 11-1: STATIC MUX WITH 32 SEGMENTS

BCF	STATUS, RPO	;Select Bank 2
BSF	STATUS, RP1	;
BCF	LCDCON,LMUX1	;Select Static MUX
BCF	LCDCON,LMUX0	;
MOVLW	OxFF	;Make PortD,E,F,G
MOVWF	LCDSE	;LCD pins
		;configure rest of LCD

EXAMPLE 11-2: ONE-THIRD DUTY CYCLE WITH 13 SEGMENTS

BCF	STATUS, RPO	;Select Bank 2
BSF	STATUS, RP1	;
BSF	LCDCON,LMUX1	;Select 1/3 MUX
BCF	LCDCON,LMUX0	;
MOVLW	0x87	;Make PORTD<7:0> &
MOVWF	LCDSE	;PORTE<6:0> LCD pins
		;configure rest of LCD

REGISTER 11-4: LCDSE REGISTER (ADDRESS 10Dh)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	SE29	SE27	SE20	SE16	SE12	SE9	SE5	SE0
	bit 7							bit 0
bit 7	SE29 : Pin	Function Se	lect RD7/	COM1/SEG	31 - RD5/COM	3/SEG29		
	1 = Pins ha 0 = Pins ha	ave LCD driv ave digital In	/e function put functior	1				
bit 6	SE27 : Pin	Function Se	lect RG7/	SEG28 and	RE7/SEG27			
	1 = Pins ha 0 = Pins ha	ave LCD driv ave LCD driv	/e function /e function					
bit 5	SE20 : Pin	Function Se	elect RG6	/SEG26 - R	G0/SEG20			
	1 = Pins ha 0 = Pins ha	ave LCD driv ave digital In	/e function put functior	1				
bit 4	SE16 : Pin	Function Se	lect RF7/	SEG19 - RF	4/SEG16			
	1 = Pins ha	ave LCD driv	e function					
	0 = Pins ha	ave digital In	put functior	n				
bit 3	SE12 : Pin	Function Se	lect RF3/	SEG15 - RF	0/SEG12			
	1 = Pins ha 0 = Pins ha	ave LCD driv ave digital In	e function put functior	1				
bit 2	SE9: Pin	Function Se	lect RE6/	SEG11 - RE	4/SEG09			
	1 = Pins ha 0 = Pins ha	 1 = Pins have LCD drive function 0 = Pins have digital Input function 						
bit 1	SE5: Pin	Function Se	lect RE3/	SEG08 - RE	0/SEG05			
	1 = Pins ha 0 = Pins ha	 1 = Pins have LCD drive function 0 = Pins have digital Input function 						
bit 0	SE0: Pin	Function Se	lect RD4/	SEG04 - RE	00/SEG00			
	1 = Pins ha 0 = Pins ha	ave LCD driv ave digital In	ve function put functior	ì				
	Legend:							
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimp	lemented b	it, read as ')'
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is o	cleared	x = Bit is ur	nknown

11.5 Voltage Generation

There are two methods for LCD voltage generation: internal charge pump, or external resistor ladder.

11.5.1 CHARGE PUMP

The LCD charge pump is shown in Figure 11-9. The 1.0V - 2.3V regulator will establish a stable base voltage from the varying battery voltage. This regulator is adjustable through the range by connecting a variable external resistor from VLCDADJ to ground. The potentiometer provides contrast adjustment for the LCD. This base voltage is connected to VLCD1 on the charge

pump. The charge pump boosts VLCD1 into VLCD2 = 2*VLCD1 and VLCD3 = 3*VLCD1. When the charge pump is not operating, Vlcd3 will be internally tied to VDD. See the Electrical Specifications section for charge pump capacitor and potentiometer values.

11.5.2 EXTERNAL R-LADDER

The LCD module can also use an external resistor ladder (R-Ladder) to generate the LCD voltages. Figure 11-9 shows external connections for static and 1/3 bias. The VGEN (LCDCON<4>) bit must be cleared to use an external R-Ladder.

ADDLW	Add Literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Encoding:	11 111x kkkk kkkk				
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1 Q2 Q3 Q4				
	Decode Read Process Write to literal 'k' data W				
Example:	ADDLW 0x15				
Before Instruction: W = 0x10					
After Instruction: W = 0x25					

13.1 Instruction Descriptions

ADDWF	Add W ar	nd f			
Syntax:	[label] A	DDWF	f [,d]		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7			
Operation:	(W) + (f) -	\rightarrow (destin	ation)		
Status Affected:	C, DC, Z				
Encoding:	00	0111	dfff	ffff	
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to destination	
Example	ADDWF F	SR,	0		
Before Instruc	Before Instruction:				
W = FSR =	= 0x17 = 0xC2				
After Instructio	on: = 0xD9				

W = 0xD9FSR = 0xC2

PIC16C925/926

GOTO	Uncondi	tional Bra	anch		INCF		Increm	ent f		
Syntax:	[label]	GOTO I	ĸ		Syntax		[label]	INCF	f [,d]	
Operands:	$0 \le k \le 20$)47			Operar	nds:	$0 \leq f \leq$	127		
Operation:	$k \rightarrow PC <$	10:0>					d ∈ [0,	1]		
	PCLATH.	$<4:3> \rightarrow F$	PC<12:11:	>	Operat	ion:	(f) + 1 -	\rightarrow (destination)	ation)	
Status Affected:	None				Status	Affected:	Z			
Encoding:	10	1kkk	kkkk	kkkk	Encodi	ng:	0 0	1010	dfff	ffff
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>.			Descri	ption:	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.			are incre- t is placed the result f'.	
	GOTO is a	two-cycle	e instructio	on.	Words	:	1			
Words:	1				Cycles	:	1			
Cycles:	2				Q Cvcl	e Activitv:	Q1	Q2	Q3	Q4
Q Cycle Activity:	Q1	Q2	Q3	Q4	j	· · ,		Read		「
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC			Decode	e register 'f'	Process data	Write to destination
2nd Cycle	No Operation	No Operation	No Operation	No Operation	Examp	le	INCF	CNT,	1	
Example	GOTO THE	RE			Be	ofore Instru CNT 7	ction: = 0xF = 0	F		
PC =	Address T	HERE			Af	ter Instruct	ion:			
						CNT	= 0x0	0		

Z = 1

15.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †	
Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0V to +7.5V
Voltage on MCLR with respect to Vss	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Voltage on VLCD2, VLCD3 with respect to Vss	0V to +10V
Total power dissipation (Note 1)	1.0 W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iικ (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all Ports combined	200 mA
Maximum current sourced by all Ports combined	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD -	VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

15.3 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	S	3. Tcc:st (I ² 0	3. Tcc:st (I ² C specifications only)			
2. TppS		4. Ts (I ² C spe	ecifications only)			
	_	-	_			
<u> </u> ⊦	Frequency	Ι	lime			
Lowercase	letters (pp) and their meanings:					
рр						
CC	CCP1	OSC	OSC1			
ck	CLKOUT	rd	RD			
CS	CS	rw	RD or WR			
di	SDI	SC	SCK			
do	SDO	SS	SS			
dt	Data in	tO	ТОСКІ			
io	I/O port	t1	T1CKI			
mc	MCLR	wr	WR			
Uppercase	letters and their meanings:					
S						
F	Fall	Р	Period			
Н	High	R	Rise			
I	Invalid (Hi-impedance)	V	Valid			
L	Low	Z	Hi-impedance			
I ² C only						
AA	output access	High	High			
BUF	Bus free	Low	Low			
TCC:ST (I ² C	specifications only)					
CC						
HD	Hold	SU	Setup			
ST						
DAT	DATA input hold	STO	STOP condition			
STA	START condition					

FIGURE 15-4: LOAD CONDITIONS

TABLE 15-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Symbol	Charact	eristic	Min	Тур	Max	Units	Conditions
90	Tsu:sta	START condition Setup time	100 kHz mode	4700	ſŢ		ns	Only relevant for Repeated
91	THD:STA	START condition	100 kHz mode	4000	A		ns	After this period the first clock pulse is generated
92	TSU:STO	STOP condition Setup time	100 kHz mode	4700	—	—	ns	
93		STOP condition Hold time	100 kHz mode	4000	_	—	ns	

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Graphs and Tables are not available at this time.

PIC16C925/926 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	─ X /XX XXX │ │ │ │ Temperature Package Pattern Range	Examples: a) PIC16C926/P 301 = Commercial Temp., normal VDD limits, QTP pattern #301
Device	PIC16C92X ⁽¹⁾ , PIC16C92XT ⁽²⁾ ; VDD range 4.0V to 5.5V PIC16LC92X ⁽¹⁾ , PIC16LC92XT ⁽²⁾ ; VDD range 2.5V to 5.5V	 b) PIC16LC925/PT = Commercial Temp., TQFP package, extended VDD limits c) PIC16C925-I/CL = Industrial Temp., windowed CERQUAD package,
Temperature Range	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	normal VDD limits Note 1: C = Standard Voltage range LC = Wide Voltage Range 2: T = in tape and reel -
Package	CL = Windowed CERQUAD ⁽³⁾ PT = TQFP (Thin Quad Flatpack) L = PLCC QTP, SQTP, Code or Special Requirements	PLCC and TQFP packages only. 3: CL Devices are UV erasable and can be programmed to any device configuration. CL devices meet the electrical
	(blank otherwise)	requirement of each oscillator type (including LC devices).

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)