E·XFL Lattice Semiconductor Corporation - <u>ICE5LP2K-CM36ITR Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Not For New Designs
Number of LABs/CLBs	256
Number of Logic Elements/Cells	2048
Total RAM Bits	81920
Number of I/O	26
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	36-VFBGA
Supplier Device Package	36-UCFBGA (2.5x2.5)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice5lp2k-cm36itr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iCE40 Ultra Family Data Sheet Architecture

June 2016

Data Sheet DS1048

Architecture Overview

The iCE40 Ultra family architecture contains an array of Programmable Logic Blocks (PLB), two Oscillator Generators, two user configurable I²C controllers, two user configurable SPI controllers, and blocks of sysMEM[™] Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1shows the block diagram of the iCE5LP-4K device.

Figure 2-1. iCE5LP-4K Device, Top View

The Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either PLB or EBR blocks. The PIO cells are located at the top and bottom of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the iCE40 Ultra family, there are three sysIO banks, one on top and two at the bottom. User can connect some V_{CCIO} s together, if all the I/Os are using the same voltage standard. Refer to the details in later sections of this document on Power Up Sequence. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO with user logic using PLBs.

Every device in the family has two user SPI ports, one of these (right side) SPI port also supports programming and configuration of the device. The iCE40 Ultra also includes two user I²C ports, two Oscillators, and high current RGB and IR LED sinks.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PLB Blocks

The core of the iCE40 Ultra device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register.

Figure 2-2. PLB Block Diagram

Logic Cells

Each Logic Cell includes three primary logic elements shown in Figure 2-2.

- A four-input Look-Up Table (LUT) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUTs to create wider logic functions.
- A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration.
- Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtracters, comparators, binary counters and some wide, cascaded logic functions.

Function	Туре	Signal Names	Description
Input	Data signal	10, 11, 12, 13	Inputs to LUT
Input	Control signal	Enable	Clock enable shared by all LCs in the PLB
Input	Control signal	Set/Reset ¹	Asynchronous or synchronous local set/reset shared by all LCs in the PLB.
Input	Control signal	Clock	Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB
Input	Inter-PLB signal	FCIN	Fast carry in
Output	Data signals	0	LUT or registered output
Output	Inter-PFU signal	FCOUT	Fast carry out

Table 2-1. Logic Cell Signal Descriptions

1. If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration.

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 Ultra devices have one sys-CLOCK PLL. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin, the internal Oscillator Generators from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 64 (in increments of 2X). The PLLOUT outputs can all be used to drive the iCE40 Ultra global clock network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3.

The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the tLOCK parameter has been satisfied.

There is an additional feature in the iCE40 Ultra PLL. There are 2 FPGA controlled inputs, SCLK and SDI, that allows the user logic to serially shift in data thru SDI, clocked by SCLK clock. The data shifted in would change the configuration settings of the PLL. This feature allows the PLL to be time multiplexed for different functions, with different clock rates. After the data is shifted in, user would simply pulse the RESET input of the PLL block, and the PLL will re-lock with the new settings. For more details, please refer to TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.

Figure 2-3. PLL Diagram

Table 2-3 provides signal descriptions of the PLL block.

Table 2-3. PLL Signal Descriptions

Signal Name	Direction	Description
REFERENCECLK	Input	Input reference clock
BYPASS	Input	The BYPASS control selects which clock signal connects to the PLL- OUT output. 0 = PLL generated signal 1 = REFERENCECLK
EXTFEEDBACK	Input	External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set to EXTERNAL.
DYNAMICDELAY[7:0]	Input	Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE is set to DYNAMIC.
LATCHINPUTVALUE	Input	When enabled, puts the PLL into low-power mode; PLL output is held static at the last input clock value. Set ENABLE ICEGATE_PORTA and PORTB to '1' to enable.
PLLOUTGLOBAL	Output	Output from the Phase-Locked Loop (PLL). Drives a global clock net- work on the FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5.
PLLOUTCORE	Output	Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.
LOCK	Output	When High, indicates that the PLL output is phase aligned or locked to the input reference clock.
RESET	Input	Active low reset.
SCLK	Input	Input, Serial Clock used for re-programming PLL settings.
SDI	Input	Input, Serial Data used for re-programming PLL settings.

sysMEM Embedded Block RAM Memory

Larger iCE40 Ultra device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each 4 kbit in size. This memory can be used for a wide variety of purposes including data buffering, and FIFO.

sysMEM Memory Block

The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources. Each block can be used in a variety of depths and widths as shown in Table 2-4.

sysDSP

The iCE40 Ultra family provides an efficient sysDSP architecture that is very suitable for low-cost Digital Signal Processing (DSP) functions for mobile applications. Typical functions used in these applications are Multiply, Accumulate, and Multiply-Accumulate. The block can also be used for simple Add and Subtract functions.

iCE40 Ultra sysDSP Architecture Features

The iCE40 Ultra sysDSP supports many functions that include the following:

- Single 16-bit x 16-bit Multiplier, or two independent 8-bit x 8-bit Multipliers
- Optional independent pipeline control on Input Register, Output Register, and Intermediate Reg faster clock
 performance
- Single 32-bit Accumulator, or two independent 16-bit Accumulators
- Single 32-bit, or two independent 16-bit Adder/Subtracter functions, registered or asynchronous
- Cascadable to create wider Accumulator blocks

Figure 2-5 shows the block diagram of the sysDSP block. The block consists Multiplier section, with an bypassable Output register. The Input Register, Intermediate register between Multiplier and AC timing to achieve the highest performance.

Figure 2-5. sysDSP Functional Block Diagram (16-bit x 16-bit Multiply-Accumulate)

Table 2-6. sysDSP Input/Output List

Signal	Primitive Port Name	Width	Input / Output	Function	Default
CLK	CLK	1	Input	Clock Input. Applies to all clocked elements in the sysDSP block	
ENA	CE	1	Input	Clock Enable Input. Applies to all clocked elements in the sysDSP block. 0 = Not Enabled 1 = Enabled	0: Enabled
A[15:0]	A[15:0]	16	Input	Input to the A Register. Feeds the Multiplier or is a direct input to the Adder Accumulator	16'b0
B[15:0]	B[15:0]	16	Input	Input to the B Register. Feeds the Multiplier or is a direct input to the Adder Accumulator	16'b0
C[15:0]	C[15:0]	16	Input	Input to the C Register. It is a direct input to the Adder Accumulator	16'b0
D[15:0]	D[15:0]	16	Input	Input to the D Register. It is a direct input to the Adder Accumulator	16'b0
AHLD	AHOLD	1	Input	A Register Hold. 0 = Update 1 = Hold	0: Update
BHLD	BHOLD	1	Input	B Register Hold. 0 = Update 1 = Hold	0: Update
CHLD	CHOLD	1	Input	C Register Hold. 0 = Update 1 = Hold	0: Update
DHLD	DHOLD	1	Input	D Register Hold. 0 = Update 1 = Hold	0: Update
IHRST	IRSTTOP	1	Input	Reset input to A and C input registers, and the pipeline registers in the upper half of the Multiplier Section. 0 = No Reset 1 = Reset	0: No Reset
ILRST	IRSTBOT	1	Input	Reset input to B and D input registers, and the pipeline registers in the lower half of the Multiplier Section. It also resets the Multiplier result pipeline register. 0 = No Reset 1 = Reset	0: No Reset
O[31:0]	O[31:0]	32	Output	Output of the sysDSP block. This output can be: — O[31:0] – 32-bit result of 16x16 Multiplier or MAC — O[31:16] – 16-bit result of 8x8 upper half Multi- plier or MAC — O[15:0] – 16-bit result of 8x8 lower half Multi- plier or MAC	
OHHLD	OHOLDTOP	1	Input	High-order (upper half) Accumulator Register Hold. 0 = Update 1 = Hold	0: Update
OHRST	ORSTTOP	1	Input	Reset input to high-order (upper half) bits of the Accumulator Register. 0 = No Reset 1 = Reset	0: No Reset

Signal	Primitive Port Name	Width	Input / Output	Function	Default
OHLDA	OLOADTOP	1	Input	High-order (upper half) Accumulator Register Accumulate/Load control. 0 = Accumulate, register is loaded with Adder/Sub- tracter results 1 = Load, register is loaded with Input C or C Reg- ister	0: Accumu- late
OHADS	ADDSUBTOP	1	Input	High-order (upper half) Accumulator Add or Sub- tract select. 0 = Add 1 = Subtract	0: Add
OLHLD	OHOLDBOT	1	Input	Low-order (lower half) Accumulator Register Hold. 0 = Update 1 = Hold	0: Update
OLRST	ORSTBOT	1	Input	Reset input to Low-order (lower half) bits of the Accumulator Register. 0 =No Reset 1 = Reset	0: No Reset
OLLDA	OLOADBOT	1	Input	Low-order (lower half) Accumulator Register Accu- mulate/Load control. 0 = Accumulate, register is loaded with Adder/Sub- tracter results 1 = Load, register is loaded with Input C or C Reg- ister	0: Accumu- late
OLADS	ADDSUBBOT	1	Input	Low-order (lower half) Accumulator Add or Sub- tract select. 0 = Add 1 = Subtract	0: Add
CICAS	ACCUMCI	1	Input	Cascade Carry/Borrow input from previous sys- DSP block	
CI	CI	1	Input	Carry/Borrow input from lower logic tile	
COCAS	ACCUMCO	1	Output	Cascade Carry/Borrow output to next sysDSP block	
CO	CO	1	Output	Carry/Borrow output to higher logic tile	
SIGNEXTIN	SIGNEXTIN	1	Input	Sign extension input from previous sysDSP block	
SIGNEXTOUT	SIGNEXTOUT	1	Output	Sing extension output to next sysDSP block	

The iCE40 Ultra sysDSP can support the following functions:

- 8-bit x 8-bit Multiplier
- 16-bit x 16-bit Multiplier
- 16-bit Adder/Subtracter
- 32-bit Adder/Subtracter
- 16-bit Accumulator
- 32-bit Accumulator
- 8-bit x 8-bit Multiply-Accumulate
- 16-bit x 16-bit Multiply-Accumulate

Figure 2-6 shows the path for an 8-bit x 8-bit Multiplier using the upper half of sysDSP block.

Figure 2-7 shows the path for an 16-bit x 16-bit Multiplier using the upper half of sysDSP block.

Figure 2-9. iCE I/O Register Block Diagram

Table 2-7. PIO Signal List

Pin Name	I/О Туре	Description
OUTPUT_CLK	Input	Output register clock
CLOCK_ENABLE	Input	Clock enable
INPUT_CLK	Input	Input register clock
OUTPUT_ENABLE	Input	Output enable
D_OUT_0/1	Input	Data from the core
D_IN_0/1	Output	Data to the core
LATCH_INPUT_VALUE	Input	Latches/holds the Input Value

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems with LVCMOS interfaces.

User I²C IP

The iCE40 Ultra devices have two I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The pins for the I²C interface are not pre-assigned. User can use any General Purpose I/O pins.

In each of the two cores, there are options to delay the either the input or the output, or both, by 50 ns nominal, using dedicated on-chip delay elements. This provides an easier interface with any external I²C components.

When the IP core is configured as master, it will be able to control other devices on the I^2C bus through the preassigned pin interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I^2C Master. The I^2C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Clock stretching
- Up to 400 kHz data transfer speed
- General Call support
- Optionally delaying input or output data, or both

For further information on the User I²C, please refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide.

User SPI IP

The iCE40 Ultra devices have two SPI IP cores. The pins for the SPI interface are not pre-assigned. User can use any General Purpose I/O pins. Both SPI IP cores can be configured as a SPI master or as a slave. When the SPI IP core is configured as a master, it controls the other SPI enabled devices connected to the SPI Bus. When SPI IP core is configured as a slave, the device will be able to interface to an external SPI master.

The SPI IP core supports the following functions:

- · Configurable Master and Slave modes
- Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- LSB First or MSB First Data Transfer

For further information on the User SPI, please refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide.

High Current LED Drive I/O Pins

The iCE40 Ultra family devices offer multiple high current LED drive outputs in each device in the family to allow the iCE40 Ultra product to drive LED signals directly on mobile applications.

There are three outputs on each device that can sink up to 24 mA current. These outputs are open-drain outputs, and provides sinking current to an LED connecting to the positive supply. These three outputs are designed to drive the RBG LEDs, such as the service LED found in a lot of mobile devices. An embedded RGB PWM IP is also offered in the family. This RGB drive current is user programmable from 4 mA to 24 mA, in increments of 4 mA. This output functions as General Purpose I/O with open-drain when the high current LED drive is not needed.

iCE40 Ultra Family Data Sheet DC and Switching Characteristics

June 2016

Data Sheet DS1048

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V _{CC}	–0.5 V to 1.42 V
Output Supply Voltage V _{CCIO}	–0.5 V to 3.60 V
NVCM Supply Voltage V _{PP_2V5}	–0.5 V to 3.60 V
PLL Supply Voltage V _{CCPLL}	–0.5 V to 1.42 V
I/O Tri-state Voltage Applied	–0.5 V to 3.60 V
Dedicated Input Voltage Applied	–0.5 V to 3.60 V
Storage Temperature (Ambient)	–65 °C to 150 °C
Junction Temperature (T _J)	–65 °C to 125 °C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

Recommended Operating Conditions¹

Symbol	Parame	Parameter			Units
V _{CC} ¹	Core Supply Voltage		1.14	1.26	V
V _{PP_2V5}		Slave SPI Configuration	1.71 ⁴	3.46	V
	VPP_2V5 NVCM Programming and Operating Supply Voltage	Master SPI Configuration	2.30	3.46	V
		Configuration from NVCM	2.30	3.46	V
		NVCM Programming	2.30	3.00	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	V_{CCIO_0} , SPI_ V_{CCIO1} , V_{CCIO_2}	1.71	3.46	V
V _{CCPLL}	PLL Supply	Voltage	1.14	1.26	V
t _{JCOM}	Junction Temperature Co	ommercial Operation	0	85	°C
t _{JIND}	Junction Temperature Ir	ndustrial Operation	-40	100	°C
t _{PROG}	Junction Temperature N	VCM Programming	10.00	30.00	°C

 Like power supplies must be tied together if they are at the same supply voltage and they meet the power up sequence requirement. Please refer to Power-Up Supply Sequencing section. V_{CC} and V_{CCPLL} are recommended to tie to same supply with an RC-based noise filter between them. Please refer to TN1252, iCE40 Hardware Checklist.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

 V_{PP_2V5} can, optionally, be connected to a 1.8 V (+/-5%) power supply in Slave SPI Configuration mode subject to the condition that none of the HFOSC/LFOSC and RGB LED / IR LED driver features are used. Otherwise, V_{PP_2V5} must be connected to a power supply with a minimum 2.30 V level.

Power Supply Ramp Rates^{1, 2}

Symbol	Symbol Parameter		Max.	Units
t _{RAMP}	Power supply ramp rates for all power supplies.	0.6	10	V/ms

1. Assumes monotonic ramp rates.

2. Power up sequence must be followed. Please refer to Power-Up Supply Sequencing section.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 3-2. Power Up Sequence with All Supplies Connected Together

Power-On-Reset Voltage Levels¹

Symbol	Parameter		Min.	Max.	Units
V _{PORUP}	Power-On-Reset ramp-up trip point (circuit monitoring	V _{CC}	0.62	0.92	V
		SPI_V _{CCIO1}	0.87	1.50	V
		V _{PP_2V5}	0.90	1.53	V
V _{PORDN}	Power-On-Reset ramp-down trip point (circuit monitor-	V _{CC}	—	0.79	V
		SPI_V _{CCIO1}	—	1.50	V
		V _{PP_2V5}	_	1.53	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

ESD Performance

Please contact Lattice Semiconductor for additional information.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL}$, $I_{\rm IH}^{1, 3, 4}$	Input or I/O Leakage	$0V < V_{IN} < V_{CCIO} + 0.2 V$	_	_	+/-10	μΑ
C ₁	I/O Capacitance, excluding LED Drivers ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 V$		6	_	pF
C ₂	Global Input Buffer Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 V$		6	_	pF
C ₃	RGB Pin Capacitance ²	$V_{CC} = Typ., V_{IO} = 0 \text{ to } 3.5 \text{ V}$		15	—	pF
C ₄	IRLED Pin Capacitance ²	$V_{CC} = Typ., V_{IO} = 0 \text{ to } 3.5 \text{ V}$		53	—	pF
V _{HYST}	Input Hysteresis	V _{CCIO} = 1.8 V, 2.5 V, 3.3 V	_	200	—	mV
	Internet DIO Dulling	$V_{CCIO} = 1.8 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-3	_	-31	μΑ
I _{PU}	Internal PIO Pull-up Current	$V_{CCIO} = 2.5 \text{ V}, 0 = < V_{IN} < =0.65 \text{ V}_{CCIO}$	-8		-72	μΑ
		$V_{CCIO} = 3.3 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-11	_	-128	μΑ

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled.

2. T_J 25 °C, f = 1.0 MHz.

4. Input pins are clamped to V_{CCIO} and GND by a diode. When input is higher than V_{CCIO} or lower than GND, the Input Leakage current will be higher than the I_{IL} and I_{IH}.

^{3.} Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

Internal Oscillators (HFOSC, LFOSC)¹

Parameter		Parameter Description	Spec/Recommended		ended	Units
Symbol	Conditions		Min	Тур	Max	
f _{CLKHF}	Commercial Temp	HFOSC clock frequency ($t_J = 0 \circ C - 85 \circ C$)	-10%	48	10%	MHz
	Industrial Temp	HFOSC clock frequency ($t_J = -40 \text{ °C}-100 \text{ °C}$)	-20%	48	20%	MHz
f _{CLKLF}		LFOSC CLKK clock frequency	-10%	10	10%	kHz
DCH	Commercial Temp	HFOSC clock frequency ($t_J = 0 \circ C - 85 \circ C$)	45	50	55	%
DCI ICLKHF	Industrial Temp	HFOSC clock frequency ($t_J = -45 \text{ °C}-100 \text{ °C}$)	40	50	60	%
DCH _{CLKLF}		LFOSC Duty Cycle (Clock High Period)	45	50	55	%
Tsync_on		Oscillator output synchronizer delay	_	_	5	Cycles
Tsync_off		Oscillator output disable delay	_	_	5	Cycles

1. Glitchless enabling and disabling OSC clock outputs.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)			
Standard	Min.	Тур.	Max.	
LVCMOS 3.3	3.14	3.3	3.46	
LVCMOS 2.5	2.37	2.5	2.62	
LVCMOS 1.8	1.71	1.8	1.89	

sysIO Single-Ended DC Electrical Characteristics

Input/	V _{IL}		V _{IH}		V _{IH}										
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)							
	-0.3	0.8	2.0	2.0		0.4	$V_{CCIO} - 0.4$	8	-8						
20000000	0.0	0.0		V CCIO + 0.2 V	0.2	V _{CCIO} – 0.2	0.1	-0.1							
	-0.3	0.7	1.7	1.7	1.7	1.7	1.7 Vacue $\pm 0.2V$	0.4	$V_{CCIO} - 0.4$	6	-6				
20010002.0	-0.5	0.7						1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7 V CCIO + 0.2 V
	-0.3	0.35\/0.65\/	0.351/2010	0.25\/	0.651/	0.251/ 0.651/		0.4	$V_{CCIO} - 0.4$	4	-4				
	-0.5	0.33 v CCIO	0.03 ¢ CCIO	V CCIO + 0.2 V	0.2	V _{CCIO} – 0.2	0.1	-0.1							

Differential Comparator Electrical Characteristics

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Units
V _{REF}	Reference Voltage to compare, on V_{INM}	$V_{CCIO} = 2.5 V$	0.25	V _{CCIO} –0.25 V	V
V _{DIFFIN_H}	Differential input HIGH (V _{INP} - V _{INM})	V _{CCIO} = 2.5 V	250	_	mV
V _{DIFFIN_L}	Differential input LOW (V _{INP} - V _{INM})	$V_{CCIO} = 2.5 V$	_	-250	mV
I _{IN}	Input Current, V_{INP} and V_{INM}	$V_{CCIO} = 2.5 V$	-10	10	μA

SPI Master or NVCM Configuration Time^{1, 2}

Symbol	Parameter	Conditions	Max.	Units
	CONFIG POR/CRESET_B to Device I/O Active	All devices – Low Frequency (Default)	95	ms
t _{CONFIG}		All devices – Medium frequency	35	ms
		All devices – High frequency	18	ms

1. Assumes sysMEM Block is initialized to an all zero pattern if they are used.

2. The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

sysCONFIG Port Timing Specifications

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
All Configurati	on Modes			•	•	•
t _{CRESET_B}	Minimum CRESET_B LOW pulse width required to restart configuration, from falling edge to rising edge		200	—	_	ns
t _{DONE_IO}	Number of configuration clock cycles after CDONE goes HIGH before the PIO pins are activated		49	—	_	Clock Cycles
Slave SPI	·					
^t ся_scк	Minimum time from a rising edge on CRESET_B until the first SPI WRITE operation, first SPI_XCK clock. During this time, the iCE40 Ultra device is clearing its internal configuration mem- ory		1200	_	_	μs
f	CCLK clock frequency	Write	1	—	25	MHz
MAX		Read ¹	_	15	—	MHz
t _{CCLKH}	CCLK clock pulsewidth HIGH		20	—	—	ns
t _{CCLKL}	CCLK clock pulsewidth LOW		20		—	ns
t _{STSU}	CCLK setup time		12	—	—	ns
t _{STH}	CCLK hold time		12	—	—	ns
t _{STCO}	CCLK falling edge to valid output		13	—	—	ns
Master SPI ³	·					
		Low Frequency (Default)	7.0	12.0	17.0	MHz
f _{MCLK}	MCLK clock frequency	Medium Frequency ²	21.0	33.0	45.0	MHz
		High Frequency ²	33.0	53.0	71.0	MHz
t _{MCLK}	CRESET_B HIGH to first MCLK edge		1200	—	—	μs
t _{SU}	CCLK setup time ⁴		9.9		_	ns
t _{HD}	CCLK hold time		1		_	ns

1. Supported with 1.2 V Vcc and at 25 $^{\circ}\text{C}.$

2. Extended range fMAX Write operations support up to 53 MHz with 1.2 V Vcc and at 25 °C.

3. t_{SU} and t_{HD} timing must be met for all MCLK frequency choices.

4. For considerations of SPI Master Configuration Mode, please refer to TN1248, iCE40 Programming and Configuration.

iCE40 Ultra Family Data Sheet Pinout Information

June 2016

Data Sheet DS1048

Signal Descriptions

Signal Name		Function	I/O	Description		
Power Supplie	S					
V _{CC}		Power		Core Power Supply		
V_{CCIO_0} , SPI_ V_{CCIO1} , V_{CCIO_2}		Power		Power for I/Os in Bank 0, 1 and 2.		
V _{PP_2V5}		Power		Power for NVCM programming and operations.		
V _{CCPLL}		Power		Power for PLL		
GND		GROUND		Ground		
GND_LED		GROUND	_	Ground for LED drivers. Should connect to GND on board.		
Configuration						
CRESETB		Configuration	Ι	Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to V_{CCIO_1} .		
CDONE		Configuration	I/O	Configuration Done. Includes a weak pull-up resistor to SPI_V_{CCIO1} .		
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.		
Config SPI		-				
Primary	Secondary					
CRESETB	—	Configuration	I	Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to SPI_V _{CCIO1} .		
PIOB_xx	CDONE	Configuration	I/O	Configuration Done. Includes a weak pull-up resistor to SPI_V _{CCIO1} .		
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.		
Config SPI						
Primary	Secondary					
PIOB_34a	SPI_SCK	Configuration	I/O	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the clock to external SPI memory. In Slave SPI mode, this pin inputs the clock from external processor.		
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function		
PIOB_32a	SPI_SDO	Configuration	Output	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the command data to external SPI memory. In Slave SPI mode, this pin connects to the MISO pin of the external processor.		
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.		

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pinout Information iCE40 Ultra Family Data Sheet

Signal Name	Function	I/O	Description
RGB2	General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be pro- grammed as open drain I/O in user function
	LED	Open-Drain Output	In user mode, with user's choice, this pin can be pro- grammed as open drain 24mA output to drive exter- nal LED
IRLED	General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be pro- grammed as open drain I/O in user function
	LED	Open-Drain Output	In user mode, with user's choice, this pin can be pro- grammed as open drain 500mA output to drive exter- nal LED
PIOT_xx	General I/O	I/O	In user mode, with user's choice, this pin can be pro- grammed as I/O in user function in the top (xx = I/O location)
PIOB_xx	General I/O	I/O	In user mode, with user's choice, this pin can be programmed as I/O in user function in the bottom ($xx = I/O$ location)

iCE40 Ultra Family Data Sheet Revision History

June 2016

Data Sheet DS1048

Date	Version	Section	Change Summary
June 2016	2.0	Introduction	Updated General Description section. Changed "high current driver" to "high current IR driver".
			Updated Features section. In Table 1-1, iCE40 Ultra Family Selection Guide, corrected HF Oscillator (48 kHz) to (48 MHz).
		Architecture	Updated Architecture Overview section. — Changed content to "The Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either PLB or EBR blocks." — Changed "high current LED sink" to "high current RGB and IR LED sinks".
			Updated sysCLOCK Phase Locked Loops (PLLs) section. Corrected V _{CCPLL} character format in Figure 2-3, PLL Diagram.
			Updated sysMEM Embedded Block RAM Memory section. Updated footnote in Table 2-4, sysMEM Block Configurations.
			Updated sysIO Buffer Banks section. — Changed statement to "The configuration SPI interface signals are powered by SPI_V _{CCIO1} ." — Corrected V _{CCIO} character format in Figure 2-8, I/O Bank and Pro- grammable I/O Cell.
			Updated Typical I/O Behavior During Power-up section. Modified text content.
			Updated Supported Standards section. Changed statement to "The iCE40 Ultra sysIO buffer supports both single-ended input/output stan- dards, and used as differential comparators."
			Updated On-Chip Oscillator section. Changed statement to "The high frequency oscillator (HFOSC) runs at a nominal frequency of 48 MHz, divisible to 24 MHz, 12 MHz, or 6 MHz by user option."
			Updated section heading to High Current LED Drive I/O Pins. Changed "high current drive" to "high current LED drive".
			Removed Power On Reset section.
		DC and Switching Characteristics	Updated Absolute Maximum Ratings section. — Corrected symbol character format.
			Updated Recommended Operating Conditions section. — Corrected symbol character format. — Revised footnote 1. — Added footnote 4.
			Updated Power Supply Ramp Rates section. Changed t _{RAMP} Max. value.
			Added Power-On Reset section.
			Updated section heading to Power-Up Supply Sequencing. Revised text content.
			Added External Reset section.
			Updated DC Electrical Characteristics section. Revised footnote 4.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
			Updated Supply Current section. — Corrected I _{PP2V5STDBY} parameter. — Added Typ. VCC = 1.2 V values for I _{CCPEAK} , I _{PP_2V5PEAK} , I _{SPL_VCCI01PEAK} , and I _{CCI0PEAK} . — Added footnote 5. — Corrected S _{PL_VCCI01} character format.
			Updated User SPI Specifications section. Removed parameters and added footnotes.
			Updated Internal Oscillators (HFOSC, LFOSC) section. Added Com- mercial and Industrial Temp values for DCH _{CLKHF}
			Updated sysIO Single-Ended DC Electrical Characteristics section. Removed footnote.
			Updated Register-to-Register Performance section. Modified footnotes.
			Updated iCE40 Ultra External Switching Characteristics section. Modi- fied footnote.
			Updated sysCLOCK PLL Timing section. Reversed t _{OPJIT} conditions.
			Updated sysCONFIG Port Timing Specifications section. — Modified t _{CR_SCK} Min. value. — Added footnote 4 to t _{SU} parameter. — Modified t _{SU} Min. value. — Modified t _{HD} parameter.
			Updated section heading to RGB LED and IR LED Drive. Modified ILED_ACCURACY and IIR_ACCURACY parameters, Min. and Max. values.
		Pinout Information	Updated Signal Descriptions section. Changed V _{CCIO_1} to SPI_V _{CCIO1} in the CDONE, CRESETB and PIOB_xx descriptions.
			Updated Pin Information Summary section. — Corrected symbol character format. — Corrected VCPP_2V5 to V _{PP_2V5} .
	1.9	Introduction	Updated Features section. Updated BGA package to ucfBGA.
		DC and Switching Characteristics	Updated Differential Comparator Electrical Characteristics section. Corrected typo in V_{REF} Max. value.
		Pinout Information	Updated Signal Descriptions section. — Changed PIOB_12a to PIOB_xx — Changed SPI_CSN to SPI_SS_B and revised description when in Slave SPI mode. — Corrected minor typo errors.
			Updated Pin Information Summary section. Added tootnote to SG48.
		Ordering Information	Updated ICE5LP Part Number Description section. Updated BGA pack- age to ucfBGA.
			Updated Ordering Part Numbers section. Updated BGA package to ucf- BGA.
June 2015	1.8	DC and Switching Characteristics	Updated Internal Oscillators (HFOSC, LFOSC) section. Removed deci- mals.
		Ordering Information	Updated iCE5LP Part Number Description section. — Added TR items. — Corrected formatting errors.
			Updated Ordering Part Numbers section. Updated CM36 and SG48 packages.

Date	Version	Section	Change Summary
August 2014	1.4	All	Removed Preliminary document status.
		Introduction	Updated General Description section. Added information on high current driver.
			Updated Features section. — Changed standby current typical to as low as 71 μA. — Changed feature to Embedded Memory. — Updated Table 1-1, iCE40 Ultra Family Selection Guide. Added NVCM and Embedded PWM IP rows. Added (MULT16 with 32-bit Accu- mulator) to DSP Block. Added Total I/O (Dedicated I/O) Count data.
			General update to Introduction section.
		Architecture	Updated Architecture Overview section. — Revised and added information on sysIO banks. — Updated reference for embedded PWM IP.
			Updated iCE40 Ultra Programming and Configuration section. — Changed SPI1 to SPI. — Changed VCCIO_1 to SPI_V _{CCIO1} .
		DC and Switching Characteristics	Updated Absolute Maximum Ratings section. Changed PLL Supply Voltage VCCPLL value.
			Updated Recommended Operating Conditions section. Added footnote to VCCPLL.
			Updated Power-up Sequence section. General update.
			Updated Power-On-Reset Voltage Levels section. Changed the V _{PORUP} V _{CC} Max.value.
			Updated DC Electrical Characteristics section. Added C_3 and C_4 information.
			Updated Supply Current section. — Completed Typ. VCC =1.2 V4 data. — Changed symbols to I _{SPI_VCCIO1STDBY} and I _{SPI_VCCIO1PEAK} . — Added information to footnote 3.
			Updated Internal Oscillators (HFOSC, LFOSC) section. General update.
			Updated iCE40 Ultra External Switching Characteristics section. Added Max. value for t_{COPLL} . Added Min. values for t_{SUPLL} and t_{HPLL} .
			Updated sysCLOCK PLL Timing section. Added Max. value for t _{OPJIT} .
			Updated sysCONFIG Port Timing Specifications section. — Added T _{SU} and T _{HD} information. — Added footnote 3 to Master SPI.
			Updated High Current LED and IR LED Drive section. Updated Min. value.
July 2014	1.3	All	Changed document status from Advance to Preliminary.
		Introduction	Updated Features section. Adjusted Ultra-low Power Devices standby current.
		DC and Switching Characteristics	Updated AC/DC specifications numbers.

Date	Version	Section	Change Summary
June 2014	1.2	All	Product name changed to iCE40 Ultra.
		Introduction	Updated Table 1-1, iCE40 Ultra Family Selection Guide. Removed 30- ball WLCSP.
		DC and Switching Characteristics	Updated values in the following sections: — Supply Current — Internal Oscillators (HFOSC, LFOSC) — Power Supply Ramp Rates — Power-On-Reset Voltage Levels — SPI Master or NVCM Configuration Time
			Indicated TBD for values to be determined.
		Pinout Information	Updated Signal Descriptions section. Removed 30-pin WLCSP.
			Updated Pin Information Summary section. Removed SWG30 values.
		Ordering Information	Updated iCE5LP Part Number Description section. Removed 30-ball WLCSP.
			Updated Ordering Part Numbers section. Removed SWG30 and UWG30 part numbers.
May 2014	01.1	Introduction	Updated General Description, Features, and Introduction sections. Removed hardened RGB PWM IP information.
		Architecture	Updated Architecture Overview section. Removed the RGB IP block in Figure 2-1, iCE5LP-4K Device, Top View, Figure 2-8, I/O Bank and Programmable I/O, and in the text content.
			Updated High Current Drive I/O Pins section. Removed hardened RGB PWM IP information.
			Updated Power On Reset section. Removed content on Vccio_2 power down option.
			Replaced RGB PWM Block section with Embedded PWM IP section.
		DC and Switching Characteristics	Removed RGB PWM Block Timing section.
April 2014	01.0	All	Initial release.