E. Lattice Semiconductor Corporation - ICE5LP2K-CM36ITR1K Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	256
Number of Logic Elements/Cells	2048
Total RAM Bits	81920
Number of I/O	26
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	36-VFBGA
Supplier Device Package	36-UCFBGA (2.5x2.5)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice5lp2k-cm36itr1k

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 Ultra devices have one sys-CLOCK PLL. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin, the internal Oscillator Generators from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 64 (in increments of 2X). The PLLOUT outputs can all be used to drive the iCE40 Ultra global clock network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3.

The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the tLOCK parameter has been satisfied.

There is an additional feature in the iCE40 Ultra PLL. There are 2 FPGA controlled inputs, SCLK and SDI, that allows the user logic to serially shift in data thru SDI, clocked by SCLK clock. The data shifted in would change the configuration settings of the PLL. This feature allows the PLL to be time multiplexed for different functions, with different clock rates. After the data is shifted in, user would simply pulse the RESET input of the PLL block, and the PLL will re-lock with the new settings. For more details, please refer to TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.

Figure 2-3. PLL Diagram

Table 2-3 provides signal descriptions of the PLL block.

Table 2-4. sysMEM Block Configurations¹

Block RAM Configuration	Block RAM Configuration and Size	WADDR Port Size (Bits)	WDATA Port Size (Bits)	RADDR Port Size (Bits)	RDATA Port Size (Bits)	MASK Port Size (Bits)
SB_RAM256x16 SB_RAM256x16NR SB_RAM256x16NW SB_RAM256x16NRNW	256x16 (4 k)	8 [7:0]	16 [15:0]	8 [7:0]	16 [15:0]	16 [15:0]
SB_RAM512x8 SB_RAM512x8NR SB_RAM512x8NW SB_RAM512x8NRNW	512x8 (4 k)	9 [8:0]	8 [7:0]	9 [8:0]	8 [7:0]	No Mask Port
SB_RAM1024x4 SB_RAM1024x4NR SB_RAM1024x4NW SB_RAM1024x4NRNW	1024x4 (4 k)	10 [9:0]	4 [3:0]	10 [9:0]	4 [3:0]	No Mask Port
SB_RAM2048x2 SB_RAM2048x2NR SB_RAM2048x2NW SB_RAM2048x2NRNW	2048x2 (4 k)	11 [10:0]	2 [1:0]	11 [10:0]	2 [1:0]	No Mask Port

1. For iCE40 Ultra, the primitive name without "Nxx" uses rising-edge Read and Write clocks. "NR" uses rising-edge Write clock, falling-edge Read clock. "NR" uses falling-edge Write clock and rising-edge Read clock. "NRNW" uses falling-edge clocks on both Read and Write.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks.

RAM4k Block

Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array.

Table 2-5. EBR Signal Descriptions

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input.
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit 1 = do not write bit
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.
WE	Input	Write Enable input.
WCLKE	Input	Write Clock Enable input.
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.
RDATA[15:0]	Output	Read Data output.
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.
RE	Input	Read Enable input.
RCLKE	Input	Read Clock Enable input.
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.

For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices.

Signal	Primitive Port Name	Width	Input / Output	Function	Default
OHLDA	OLOADTOP	1	Input	High-order (upper half) Accumulator Register Accumulate/Load control. 0 = Accumulate, register is loaded with Adder/Sub- tracter results 1 = Load, register is loaded with Input C or C Reg- ister	0: Accumu- late
OHADS	ADDSUBTOP	1	Input	High-order (upper half) Accumulator Add or Sub- tract select. 0 = Add 1 = Subtract	0: Add
OLHLD	OHOLDBOT	1	Input	Low-order (lower half) Accumulator Register Hold. 0 = Update 1 = Hold	0: Update
OLRST	ORSTBOT	1	Input	Reset input to Low-order (lower half) bits of the Accumulator Register. 0 =No Reset 1 = Reset	0: No Reset
OLLDA	OLOADBOT	1	Input	Low-order (lower half) Accumulator Register Accu- mulate/Load control. 0 = Accumulate, register is loaded with Adder/Sub- tracter results 1 = Load, register is loaded with Input C or C Reg- ister	0: Accumu- late
OLADS	ADDSUBBOT	1	Input	Low-order (lower half) Accumulator Add or Sub- tract select. 0 = Add 1 = Subtract	0: Add
CICAS	ACCUMCI	1	Input	Cascade Carry/Borrow input from previous sys- DSP block	
CI	CI	1	Input	Carry/Borrow input from lower logic tile	
COCAS	ACCUMCO	1	Output	Cascade Carry/Borrow output to next sysDSP block	
CO	CO	1	Output	Carry/Borrow output to higher logic tile	
SIGNEXTIN	SIGNEXTIN	1	Input	Sign extension input from previous sysDSP block	
SIGNEXTOUT	SIGNEXTOUT	1	Output	Sing extension output to next sysDSP block	

The iCE40 Ultra sysDSP can support the following functions:

- 8-bit x 8-bit Multiplier
- 16-bit x 16-bit Multiplier
- 16-bit Adder/Subtracter
- 32-bit Adder/Subtracter
- 16-bit Accumulator
- 32-bit Accumulator
- 8-bit x 8-bit Multiply-Accumulate
- 16-bit x 16-bit Multiply-Accumulate

Figure 2-6 shows the path for an 8-bit x 8-bit Multiplier using the upper half of sysDSP block.

Figure 2-7 shows the path for an 16-bit x 16-bit Multiplier using the upper half of sysDSP block.

User I²C IP

The iCE40 Ultra devices have two I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The pins for the I²C interface are not pre-assigned. User can use any General Purpose I/O pins.

In each of the two cores, there are options to delay the either the input or the output, or both, by 50 ns nominal, using dedicated on-chip delay elements. This provides an easier interface with any external I²C components.

When the IP core is configured as master, it will be able to control other devices on the I^2C bus through the preassigned pin interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I^2C Master. The I^2C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Clock stretching
- Up to 400 kHz data transfer speed
- General Call support
- Optionally delaying input or output data, or both

For further information on the User I²C, please refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide.

User SPI IP

The iCE40 Ultra devices have two SPI IP cores. The pins for the SPI interface are not pre-assigned. User can use any General Purpose I/O pins. Both SPI IP cores can be configured as a SPI master or as a slave. When the SPI IP core is configured as a master, it controls the other SPI enabled devices connected to the SPI Bus. When SPI IP core is configured as a slave, the device will be able to interface to an external SPI master.

The SPI IP core supports the following functions:

- · Configurable Master and Slave modes
- Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- LSB First or MSB First Data Transfer

For further information on the User SPI, please refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide.

High Current LED Drive I/O Pins

The iCE40 Ultra family devices offer multiple high current LED drive outputs in each device in the family to allow the iCE40 Ultra product to drive LED signals directly on mobile applications.

There are three outputs on each device that can sink up to 24 mA current. These outputs are open-drain outputs, and provides sinking current to an LED connecting to the positive supply. These three outputs are designed to drive the RBG LEDs, such as the service LED found in a lot of mobile devices. An embedded RGB PWM IP is also offered in the family. This RGB drive current is user programmable from 4 mA to 24 mA, in increments of 4 mA. This output functions as General Purpose I/O with open-drain when the high current LED drive is not needed.

iCE40 Ultra Family Data Sheet DC and Switching Characteristics

June 2016

Data Sheet DS1048

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V _{CC}	–0.5 V to 1.42 V
Output Supply Voltage V _{CCIO}	–0.5 V to 3.60 V
NVCM Supply Voltage V _{PP_2V5}	–0.5 V to 3.60 V
PLL Supply Voltage V _{CCPLL}	–0.5 V to 1.42 V
I/O Tri-state Voltage Applied	–0.5 V to 3.60 V
Dedicated Input Voltage Applied	–0.5 V to 3.60 V
Storage Temperature (Ambient)	–65 °C to 150 °C
Junction Temperature (T _J)	–65 °C to 125 °C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

Recommended Operating Conditions¹

Symbol	Parameter			Max.	Units
V _{CC} ¹	Core Supply	Core Supply Voltage		1.26	V
V _{PP_2V5}		Slave SPI Configuration	1.71 ⁴	3.46	V
	VPP_2V5 NVCM Programming and Operating Supply Voltage	Master SPI Configuration	2.30	3.46	V
		Configuration from NVCM	2.30	3.46	V
		NVCM Programming	2.30	3.00	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	V_{CCIO_0} , SPI_ V_{CCIO1} , V_{CCIO_2}	1.71	3.46	V
V _{CCPLL}	PLL Supply	Voltage	1.14	1.26	V
t _{JCOM}	Junction Temperature Commercial Operation		0	85	°C
t _{JIND}	Junction Temperature Industrial Operation		-40	100	°C
t _{PROG}	Junction Temperature N	VCM Programming	10.00	30.00	°C

 Like power supplies must be tied together if they are at the same supply voltage and they meet the power up sequence requirement. Please refer to Power-Up Supply Sequencing section. V_{CC} and V_{CCPLL} are recommended to tie to same supply with an RC-based noise filter between them. Please refer to TN1252, iCE40 Hardware Checklist.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

 V_{PP_2V5} can, optionally, be connected to a 1.8 V (+/-5%) power supply in Slave SPI Configuration mode subject to the condition that none of the HFOSC/LFOSC and RGB LED / IR LED driver features are used. Otherwise, V_{PP_2V5} must be connected to a power supply with a minimum 2.30 V level.

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter	Min.	Max.	Units
t _{RAMP}	Power supply ramp rates for all power supplies.	0.6	10	V/ms

1. Assumes monotonic ramp rates.

2. Power up sequence must be followed. Please refer to Power-Up Supply Sequencing section.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Power-On Reset

All iCE40 Ultra devices have on-chip Power-On-Reset (POR) circuitry to ensure proper initialization of the device. Only three supply rails are monitored by the POR circuitry as follows: (1) V_{CC} , (2) SPI_ V_{CCIO1} and (3) V_{PP_2V5} . All other supply pins have no effect on the power-on reset feature of the device. Note that all supply voltage pins must be connected to power supplies for normal operation (including device configuration).

Power-Up Supply Sequencing

It is recommended to bring up the power supplies in the following order. Note that there is no specified timing delay between the power supplies, however, there is a requirement for each supply to reach a level of 0.5V, or higher, before any subsequent power supplies in the sequence are applied.

- V_{CC} and V_{CCPLL} should be the first two supplies to be applied. Note that these two supplies can be tied together subject to the recommendation to include a RC-based noise filter on the V_{CCPLL} (Please refer to TN1252, iCE40 Hardware Checklist.)
- SPI_V_{CCI01} should be the next supply, and can be applied any time after the previous supplies (V_{CC} and V_{CCPLL}) have reached as level of 0.5 V or higher.
- 3. **V_{PP_2V5}** should be the next supply, and can be applied any time after previous supplies (V_{CC}, V_{CCPLL} and SPI_V_{CCIO1}) have reached a level of 0.5 V or higher.
- 4. **Other Supplies** (V_{CCIO0} and V_{CCIO2}) do not affect device power-up functionality, and they can be applied any time after the initial power supplies (V_{CC} and V_{CCPLI}) have reached a level of 0.5 V or greater.

There is no power down sequence required. However, when partial power supplies are powered down, it is required the above sequence to be followed when these supplies are repowered up again.

External Reset

When all power supplies have reached to their minimum operating voltage defined in Minimum Operation Condition Table, it is required to either keep CRESET_B LOW, or toggle CRESET_B from HIGH to LOW, for a duration of t_{CRESET_B}, and release it to go HIGH, to start configuration download from either the internal NVCM or the external Flash memory.

Figure 3-1 shows Power-Up sequence when SPI_V_{CCIO1} and V_{PP_2V5} are connected separately, and the CRESET_B signal triggers configuration download. Figure 3-2 shows when SPI_V_{CCIO1} and V_{PP_2V5} connected together.

All power supplies should be powered up during configuration. Before and during configuration, the I/Os are held in tri-state. I/Os are released to user functionality once the device has finished configuration.

Figure 3-1. Power Up Sequence with SPI_V_{CCIO1} and V_{PP 2V5} Not Connected Together

Internal Oscillators (HFOSC, LFOSC)¹

Para	ameter	Parameter Description	Spec/Recommended		Units	
Symbol	Conditions		Min	Тур	Max	
f	Commercial Temp	HFOSC clock frequency ($t_J = 0 \ ^{\circ}C-85 \ ^{\circ}C$)	-10%	48	10%	MHz
CLKHF	Industrial Temp	HFOSC clock frequency ($t_J = -40 \text{ °C}-100 \text{ °C}$)	-20%	48	20%	MHz
f _{CLKLF}		LFOSC CLKK clock frequency	-10%	10	10%	kHz
DCH	Commercial Temp	HFOSC clock frequency ($t_J = 0 \ ^{\circ}C-85 \ ^{\circ}C$)	45	50	55	%
DCI ICLKHF	Industrial Temp	HFOSC clock frequency ($t_J = -45 \text{ °C}-100 \text{ °C}$)	40	50	60	%
DCH _{CLKLF}		LFOSC Duty Cycle (Clock High Period)	45	50	55	%
Tsync_on		Oscillator output synchronizer delay		—	5	Cycles
Tsync_off		Oscillator output disable delay	_	—	5	Cycles

1. Glitchless enabling and disabling OSC clock outputs.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)				
Standard	Min.	Тур.	Max.		
LVCMOS 3.3	3.14	3.3	3.46		
LVCMOS 2.5	2.37	2.5	2.62		
LVCMOS 1.8	1.71	1.8	1.89		

sysIO Single-Ended DC Electrical Characteristics

Input/	V _{IL}		V _{IH}					
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	V _{OH} Min. (V)	l _{OL} Max. (mA)	l _{OH} Max. (mA)
	-0.3	0.8	2.0	$V_{able} \pm 0.2V$	0.4	$V_{CCIO} - 0.4$	8	-8
	0.0	0.0	2.0 VCCI	VCCIO + 0.2 V	0.2	V _{CCIO} – 0.2	0.1	-0.1
	-0.3	0.7	17	Varia L 0 2V	0.4	$V_{CCIO} - 0.4$	6	-6
20010032.5	-0.5	0.7	1.7	V CCIO + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1
	-0.3	0.35\/	0.651/	$V_{a} = 0.2 V_{a}$	0.4	$V_{CCIO} - 0.4$	4	-4
	-0.5	0.33 V CCIO	0.03 ¢ CCIO	V CCIO + 0.2 V	0.2	V _{CCIO} – 0.2	0.1	-0.1

Differential Comparator Electrical Characteristics

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Units
V _{REF}	Reference Voltage to compare, on V _{INM}	$V_{CCIO} = 2.5 V$	0.25	V _{CCIO} –0.25 V	V
V _{DIFFIN_H}	Differential input HIGH (V _{INP} - V _{INM})	V _{CCIO} = 2.5 V	250	_	mV
V _{DIFFIN_L}	Differential input LOW (V _{INP} - V _{INM})	$V_{CCIO} = 2.5 V$	_	-250	mV
I _{IN}	Input Current, V_{INP} and V_{INM}	$V_{CCIO} = 2.5 V$	-10	10	μA

Typical Building Block Function Performance^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	16.5	ns
4:1 MUX	18.0	ns
16:1 MUX	19.5	ns

Register-to-Register Performance

Function	Timing	Units
Basic Functions	·	
16:1 MUX	110	MHz
16-bit adder	100	MHz
16-bit counter	100	MHz
64-bit counter	40	MHz
Embedded Memory Functions	·	
256x16 Pseudo-Dual Port RAM	150	MHz

1. The above timing numbers are generated using the Lattice Design Software tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Under worst case operating conditions.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

Maximum sysIO Buffer Performance¹

I/O Standard Max. Speed Ur				
	Inputs			
LVCMOS33	250	MHz		
LVCMOS25	250	MHz		
LVCMOS18	250	MHz		
Outputs				
LVCMOS33	250	MHz		
LVCMOS25	250	MHz		
LVCMOS18	155	MHz		

1. Measured with a toggling pattern

iCE40 Ultra Family Timing Adders

Over Recommended Commercial Operating Conditions^{1, 2, 3}

Buffer Type Description		Timing (Typ.)	Units
Input Adjusters			
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.18	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.19	ns
Output Adjusters			
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	-0.12	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.32	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. Commercial timing numbers are shown.

iCE40 Ultra External Switching Characteristics

Over Recommended Commercial Operating Conditions

Parameter	Description	Device	Min	Max	Units			
Clocks	Clocks							
Global Clocks								
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All devices		185	MHz			
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All devices	2	—	ns			
t _{SKEW_GBUF}	Global Buffer Clock Skew Within a Device	All devices	_	500	ps			
Pin-LUT-Pin Propaga	ation Delay							
t _{PD}	Best case propagation delay through one LUT logic	All devices	—	9.0	ns			
General I/O Pin Para	meters (Using Global Buffer Clock withou	t PLL) ¹						
t _{SKEW_IO}	Data bus skew across a bank of IOs	All devices	_	410	ps			
t _{CO}	Clock to Output – PIO Output Register	All devices	—	9.0	ns			
t _{SU} Clock to Data Setup – PIO Input Register		All devices	-0.5	—	ns			
t _H	Clock to Data Hold – PIO Input Register	All devices	5.55	_	ns			
General I/O Pin Parameters (Using Global Buffer Clock with PLL)								
t _{COPLL}	Clock to Output – PIO Output Register	All Devices		2.9	ns			
t _{SUPLL}	Clock to Data Setup – PIO Input Register	All Devices	5.9	_	ns			
t _{HPLL}	Clock to Data Hold – PIO Input Register	All Devices	-0.6	_	ns			

1. All the data is from the worst case condition.

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (REFERENCECLK, EXTFEEDBACK)		10	133	MHz
f _{OUT}	Output Clock Frequency (PLLOUT)		16	275	MHz
f _{VCO}	PLL VCO Frequency		533	1066	MHz
f _{PFD}	Phase Detector Input Frequency		10	133	MHz
AC Characteristi	ics	•	•		
t _{DT}	Output Clock Duty Cycle		40	60	%
t _{PH}	Output Phase Accuracy		—	+/-12	deg
	Output Clock Pariod littar	f _{OUT} >= 100 MHz	—	450	ps p-p
	Output Clock Feriod Siller	f _{OUT} < 100 MHz	—	0.05	UIPP
+ 1, 5, 6	Output Clock Cycle-to-cycle Jitter	f _{OUT} >= 100 MHz	—	750	ps p-p
^I OPJIT		f _{OUT} < 100 MHz	—	0.10	UIPP
	Output Clock Phase Jitter	f _{PFD} >= 25 MHz	—	275	ps p-p
		f _{PFD} < 25 MHz	—	0.05	UIPP
t _W	Output Clock Pulse Width	At 90% or 10%	1.33		ns
t _{LOCK} ^{2, 3}	PLL Lock-in Time		—	50	μs
t _{UNLOCK}	PLL Unlock Time		—	50	ns
+ 4	Input Clock Period litter	$f_{PFD} \ge 20 \text{ MHz}$	—	1000	ps p-p
IPJIT		f _{PFD} < 20 MHz	—	0.02	UIPP
t _{STABLE} ³	LATCHINPUTVALUE LOW to PLL Stable		—	500	ns
t _{STABLE_PW} ³	LATCHINPUTVALUE Pulse Width		100		ns
t _{RST}	RESET Pulse Width		10		ns
t _{RSTREC}	RESET Recovery Time		10		μs
^t DYNAMIC_WD	DYNAMICDELAY Pulse Width		100	—	VCO Cycles

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

4. Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table.

5. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

sysDSP Timing

Over Recommended Operating Conditions

Parameter	Description	Min.	Max.	Units
f _{MAX8x8SMULT}	Max frequency signed MULT8x8 bypassing pipeline register	50	—	MHz
f _{MAX16x16SMULT}	Max frequency signed MULT16x16 bypass- ing pipeline register	50	—	MHz

SPI Master or NVCM Configuration Time^{1, 2}

Symbol	Parameter	Conditions	Max.	Units
	t _{CONFIG} POR/CRESET_B to Device I/O Active	All devices – Low Frequency (Default)	95	ms
t _{CONFIG}		All devices – Medium frequency	35	ms
		All devices – High frequency	18	ms

1. Assumes sysMEM Block is initialized to an all zero pattern if they are used.

2. The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

sysCONFIG Port Timing Specifications

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
All Configurati	All Configuration Modes						
t _{CRESET_B}	Minimum CRESET_B LOW pulse width required to restart configuration, from falling edge to rising edge		200	—	_	ns	
t _{DONE_IO}	Number of configuration clock cycles after CDONE goes HIGH before the PIO pins are activated		49	—	_	Clock Cycles	
Slave SPI	·						
^t ся_scк	Minimum time from a rising edge on CRESET_B until the first SPI WRITE operation, first SPI_XCK clock. During this time, the iCE40 Ultra device is clearing its internal configuration mem- ory		1200	_	_	μs	
f		Write	1	—	25	MHz	
MAX		Read ¹	_	15	—	MHz	
t _{CCLKH}	CCLK clock pulsewidth HIGH		20		—	ns	
t _{CCLKL}	CCLK clock pulsewidth LOW		20	—	—	ns	
t _{STSU}	CCLK setup time		12		—	ns	
t _{STH}	CCLK hold time		12		—	ns	
t _{STCO}	CCLK falling edge to valid output		13	—	—	ns	
Master SPI ³		· · · ·					
		Low Frequency (Default)	7.0	12.0	17.0	MHz	
^f MCLK	MCLK clock frequency	Medium Frequency ²	21.0	33.0	45.0	MHz	
		High Frequency ²	33.0	53.0	71.0	MHz	
t _{MCLK}	CRESET_B HIGH to first MCLK edge		1200	—	—	μs	
t _{SU}	CCLK setup time ⁴		9.9		_	ns	
t _{HD}	CCLK hold time		1		_	ns	

1. Supported with 1.2 V Vcc and at 25 $^{\circ}\text{C}.$

2. Extended range fMAX Write operations support up to 53 MHz with 1.2 V Vcc and at 25 °C.

3. t_{SU} and t_{HD} timing must be met for all MCLK frequency choices.

4. For considerations of SPI Master Configuration Mode, please refer to TN1248, iCE40 Programming and Configuration.

iCE40 Ultra Family Data Sheet Pinout Information

June 2016

Data Sheet DS1048

Signal Descriptions

Signal Name		Function	I/O	Description
Power Supplie	S	1 •		
V _{CC}		Power		Core Power Supply
V _{CCIO_0} , SPI_V _{CCIO1} , V _{CCIO_2}		Power		Power for I/Os in Bank 0, 1 and 2.
V _{PP_2V5}		Power		Power for NVCM programming and operations.
V _{CCPLL}		Power		Power for PLL
GND		GROUND		Ground
GND_LED		GROUND	_	Ground for LED drivers. Should connect to GND on board.
Configuration				
CRESETB		Configuration	Ι	Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to V_{CCIO_1} .
CDONE		Configuration	I/O	Configuration Done. Includes a weak pull-up resistor to SPI_V _{CCIO1} .
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.
Config SPI				
Primary	Secondary			
CRESETB	—	Configuration	I	Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to SPI_V _{CCIO1} .
PIOB_xx	CDONE	Configuration	I/O	Configuration Done. Includes a weak pull-up resistor to SPI_V _{CCIO1} .
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.
Config SPI				
Primary	Secondary			
PIOB_34a	SPI_SCK	Configuration	I/O	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the clock to external SPI memory. In Slave SPI mode, this pin inputs the clock from external processor.
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function
PIOB_32a	SPI_SDO	Configuration	Output	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the command data to external SPI memory. In Slave SPI mode, this pin connects to the MISO pin of the external processor.
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pinout Information iCE40 Ultra Family Data Sheet

Signal Name	Function	I/O	Description
RGB2	General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be pro- grammed as open drain I/O in user function
	LED	Open-Drain Output	In user mode, with user's choice, this pin can be pro- grammed as open drain 24mA output to drive exter- nal LED
IRLED	General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be pro- grammed as open drain I/O in user function
	LED	Open-Drain Output	In user mode, with user's choice, this pin can be pro- grammed as open drain 500mA output to drive exter- nal LED
PIOT_xx	General I/O	I/O	In user mode, with user's choice, this pin can be pro- grammed as I/O in user function in the top (xx = I/O location)
PIOB_xx	General I/O	I/O	In user mode, with user's choice, this pin can be programmed as I/O in user function in the bottom ($xx = I/O$ location)

iCE40 Ultra Family Data Sheet Supplemental Information

October 2014

Data Sheet DS1048

For Further Information

A variety of technical notes for the iCE40 Ultra family are available on the Lattice web site.

- TN1248, iCE40 Programming and Configuration
- TN1274, iCE40 SPI/I2C Hardened IP Usage Guide
- TN1276, Advanced iCE40 SPI/I2C Hardened IP Usage Guide
- TN1250, Memory Usage Guide for iCE40 Devices
- TN1251, iCE40 sysCLOCK PLL Design and Usage Guide
- TN1252, iCE40 Hardware Checklist
- TN1288, iCE40 LED Driver Usage Guide
- TN1295, DSP Function Usage Guide for iCE40 Devices
- TN1296, iCE40 Oscillator Usage Guide
- iCE40 Ultra Pinout Files
- iCE40 Ultra Pin Migration Files
- Thermal Management document
- Lattice design tools
- Schematic Symbols

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

iCE40 Ultra Family Data Sheet Revision History

June 2016

Data Sheet DS1048

Date	Version	Section	Change Summary
June 2016	2.0	Introduction	Updated General Description section. Changed "high current driver" to "high current IR driver".
			Updated Features section. In Table 1-1, iCE40 Ultra Family Selection Guide, corrected HF Oscillator (48 kHz) to (48 MHz).
		Architecture	Updated Architecture Overview section. — Changed content to "The Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either PLB or EBR blocks." — Changed "high current LED sink" to "high current RGB and IR LED sinks".
			Updated sysCLOCK Phase Locked Loops (PLLs) section. Corrected V _{CCPLL} character format in Figure 2-3, PLL Diagram.
			Updated sysMEM Embedded Block RAM Memory section. Updated footnote in Table 2-4, sysMEM Block Configurations.
			Updated sysIO Buffer Banks section. — Changed statement to "The configuration SPI interface signals are powered by SPI_V _{CCIO1} ." — Corrected V _{CCIO} character format in Figure 2-8, I/O Bank and Pro- grammable I/O Cell.
			Updated Typical I/O Behavior During Power-up section. Modified text content.
			Updated Supported Standards section. Changed statement to "The iCE40 Ultra sysIO buffer supports both single-ended input/output stan- dards, and used as differential comparators."
			Updated On-Chip Oscillator section. Changed statement to "The high frequency oscillator (HFOSC) runs at a nominal frequency of 48 MHz, divisible to 24 MHz, 12 MHz, or 6 MHz by user option."
			Updated section heading to High Current LED Drive I/O Pins. Changed "high current drive" to "high current LED drive".
			Removed Power On Reset section.
		DC and Switching Characteristics	Updated Absolute Maximum Ratings section. — Corrected symbol character format.
			Updated Recommended Operating Conditions section. — Corrected symbol character format. — Revised footnote 1. — Added footnote 4.
			Updated Power Supply Ramp Rates section. Changed t _{RAMP} Max. value.
			Added Power-On Reset section.
			Updated section heading to Power-Up Supply Sequencing. Revised text content.
			Added External Reset section.
			Updated DC Electrical Characteristics section. Revised footnote 4.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
			Updated Supply Current section. — Corrected I _{PP2V5STDBY} parameter. — Added Typ. VCC = 1.2 V values for I _{CCPEAK} , I _{PP_2V5PEAK} , I _{SPL_VCCI01PEAK} , and I _{CCI0PEAK} . — Added footnote 5. — Corrected S _{PL_VCCI01} character format.
			Updated User SPI Specifications section. Removed parameters and added footnotes.
			Updated Internal Oscillators (HFOSC, LFOSC) section. Added Com- mercial and Industrial Temp values for DCH _{CLKHF}
			Updated sysIO Single-Ended DC Electrical Characteristics section. Removed footnote.
			Updated Register-to-Register Performance section. Modified footnotes.
			Updated iCE40 Ultra External Switching Characteristics section. Modi- fied footnote.
			Updated sysCLOCK PLL Timing section. Reversed t _{OPJIT} conditions.
			Updated sysCONFIG Port Timing Specifications section. — Modified t _{CR_SCK} Min. value. — Added footnote 4 to t _{SU} parameter. — Modified t _{SU} Min. value. — Modified t _{HD} parameter.
			Updated section heading to RGB LED and IR LED Drive. Modified ILED_ACCURACY and IIR_ACCURACY parameters, Min. and Max. values.
		Pinout Information	Updated Signal Descriptions section. Changed V _{CCIO_1} to SPI_V _{CCIO1} in the CDONE, CRESETB and PIOB_xx descriptions.
			Updated Pin Information Summary section. — Corrected symbol character format. — Corrected VCPP_2V5 to V _{PP_2V5} .
	1.9	Introduction	Updated Features section. Updated BGA package to ucfBGA.
		DC and Switching Characteristics	Updated Differential Comparator Electrical Characteristics section. Corrected typo in V_{REF} Max. value.
		Pinout Information	Updated Signal Descriptions section. — Changed PIOB_12a to PIOB_xx — Changed SPI_CSN to SPI_SS_B and revised description when in Slave SPI mode. — Corrected minor typo errors.
			Updated Pin Information Summary section. Added tootnote to SG48.
		Ordering Information	Updated ICE5LP Part Number Description section. Updated BGA pack- age to ucfBGA.
			Updated Ordering Part Numbers section. Updated BGA package to ucf- BGA.
June 2015	1.8	DC and Switching Characteristics	Updated Internal Oscillators (HFOSC, LFOSC) section. Removed deci- mals.
		Ordering Information	Updated iCE5LP Part Number Description section. — Added TR items. — Corrected formatting errors.
			Updated Ordering Part Numbers section. Updated CM36 and SG48 packages.

Date	Version	Section	Change Summary
August 2014	1.4	All	Removed Preliminary document status.
		Introduction	Updated General Description section. Added information on high current driver.
			 Updated Features section. Changed standby current typical to as low as 71 μA. Changed feature to Embedded Memory. Updated Table 1-1, iCE40 Ultra Family Selection Guide. Added NVCM and Embedded PWM IP rows. Added (MULT16 with 32-bit Accumulator) to DSP Block. Added Total I/O (Dedicated I/O) Count data.
			General update to Introduction section.
		Architecture	Updated Architecture Overview section. — Revised and added information on sysIO banks. — Updated reference for embedded PWM IP.
			Updated iCE40 Ultra Programming and Configuration section. — Changed SPI1 to SPI. — Changed VCCIO_1 to SPI_V _{CCIO1} .
		DC and Switching Characteristics	Updated Absolute Maximum Ratings section. Changed PLL Supply Voltage VCCPLL value.
			Updated Recommended Operating Conditions section. Added footnote to VCCPLL.
			Updated Power-up Sequence section. General update.
			Updated Power-On-Reset Voltage Levels section. Changed the V _{PORUP} V _{CC} Max.value.
			Updated DC Electrical Characteristics section. Added C_3 and C_4 information.
			Updated Supply Current section. — Completed Typ. VCC =1.2 V4 data. — Changed symbols to I _{SPI_VCCIO1STDBY} and I _{SPI_VCCIO1PEAK} . — Added information to footnote 3.
			Updated Internal Oscillators (HFOSC, LFOSC) section. General update.
			Updated iCE40 Ultra External Switching Characteristics section. Added Max. value for t_{COPLL} . Added Min. values for t_{SUPLL} and t_{HPLL} .
			Updated sysCLOCK PLL Timing section. Added Max. value for t _{OPJIT} .
			Updated sysCONFIG Port Timing Specifications section. — Added T _{SU} and T _{HD} information. — Added footnote 3 to Master SPI.
			Updated High Current LED and IR LED Drive section. Updated Min. value.
July 2014	1.3	All	Changed document status from Advance to Preliminary.
		Introduction	Updated Features section. Adjusted Ultra-low Power Devices standby current.
		DC and Switching Characteristics	Updated AC/DC specifications numbers.

Date	Version	Section	Change Summary
June 2014	1.2	All	Product name changed to iCE40 Ultra.
		Introduction	Updated Table 1-1, iCE40 Ultra Family Selection Guide. Removed 30- ball WLCSP.
		DC and Switching Characteristics	Updated values in the following sections: — Supply Current — Internal Oscillators (HFOSC, LFOSC) — Power Supply Ramp Rates — Power-On-Reset Voltage Levels — SPI Master or NVCM Configuration Time
			Indicated TBD for values to be determined.
		Pinout Information	Updated Signal Descriptions section. Removed 30-pin WLCSP.
			Updated Pin Information Summary section. Removed SWG30 values.
		Ordering Information	Updated iCE5LP Part Number Description section. Removed 30-ball WLCSP.
			Updated Ordering Part Numbers section. Removed SWG30 and UWG30 part numbers.
May 2014	01.1	Introduction	Updated General Description, Features, and Introduction sections. Removed hardened RGB PWM IP information.
		Architecture	Updated Architecture Overview section. Removed the RGB IP block in Figure 2-1, iCE5LP-4K Device, Top View, Figure 2-8, I/O Bank and Programmable I/O, and in the text content.
			Updated High Current Drive I/O Pins section. Removed hardened RGB PWM IP information.
			Updated Power On Reset section. Removed content on Vccio_2 power down option.
			Replaced RGB PWM Block section with Embedded PWM IP section.
		DC and Switching Characteristics	Removed RGB PWM Block Timing section.
April 2014	01.0	All	Initial release.