Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Discontinued at Digi-Key | | Number of LABs/CLBs | 256 | | Number of Logic Elements/Cells | 2048 | | Total RAM Bits | 81920 | | Number of I/O | 26 | | Number of Gates | - | | Voltage - Supply | 1.14V ~ 1.26V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 36-VFBGA | | Supplier Device Package | 36-UCFBGA (2.5x2.5) | | Purchase URL | https://www.e-xfl.com/product-detail/lattice-semiconductor/ice5lp2k-cm36itr50 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # iCE40 Ultra Family Data Sheet Introduction June 2016 Data Sheet DS1048 ## **General Description** iCE40 Ultra family is an ultra-low power FPGA and sensor manager designed for ultra-low power mobile applications, such as smartphones, tablets and hand-held devices. The iCE40 Ultra family includes integrated SPI and I²C blocks to interface with virtually all mobile sensors and application processors. The iCE40 Ultra family also features two on-chip oscillators, 10 kHz and 48 MHz. The LFOSC (10 kHz) is ideal for low power function in always-on applications, while HFOSC (48 MHz) can be used for awaken activities. The iCE40 Ultra family also features DSP functional block to off-load Application Processor to pre-process information sent from the mobile sensors. The embedded RGB PWM IP, with the three 24 mA constant current RGB outputs on the iCE40 Ultra provides all the necessary logic to directly drive the service LED, without the need of external MOSFET or buffer. The 500 mA constant current IR driver output provides a direct interface to external LED for application such as IrDA functions. Users simply implement the modulation logic that meets his needs, and connect the IR driver directly to the LED, without the need of external MOSFET or buffer. This high current IR driver can also be used as Barcode Emulation, sending barcode information to external Barcode Reader. The iCE40 Ultra family of devices are targeting for mobile applications to perform functions such as IrDA, Service LED, Barcode Emulation, GPIO Expander, SDIO Level Shift, and other custom functions. The iCE40 Ultra family features three device densities, from 1100 to 3520 Look Up Tables (LUTs) of logic with programmable I/Os that can be used as either SPI/I²C interface ports or general purpose I/O's. It also has up to 80 kbits of Block RAMs to work with user logic. ## **Features** ## **■** Flexible Logic Architecture - Three devices with 1100 to 3520 LUTs - Offered in WLCS, ucfBGA and QFN packages #### ■ Ultra-low Power Devices - Advanced 40 nm ultra-low power process - As low as 71 μA standby current typical #### **■** Embedded Memory - Up to 80 kbits sysMEM™ Embedded Block RAM - Two Hardened I²C Interfaces - Two Hardened SPI Interfaces #### ■ Two On-Chip Oscillators - Low Frequency Oscillator 10 kHz - High Frequency Oscillator 48 MHz #### ■ 24 mA Current Drive RGB LED Outputs - Three drive outputs in each device - User selectable sink current up to 24 mA #### ■ 500 mA Current Drive IR LED Output - One IR drive output in each device - User selectable sink current up to 500 mA #### On-chip DSP - Signed and unsigned 8-bit or 16-bit functions - Functions include Multiplier, Accumulator, and Multiply-Accumulate (MAC) #### **■** Flexible On-Chip Clocking - Eight low skew global signal resource, six can be directly driven from external pins - One PLL with dynamic interface per device #### ■ Flexible Device Configuration - SRAM is configured through: - Standard SPI Interface - Internal Nonvolatile Configuration Memory (NVCM) #### ■ Ultra-Small Form Factor • As small as 2.078 mm x 2.078 mm ## Applications - Smartphones - Tablets and Consumer Handheld Devices - Handheld Commercial and Industrial Devices - Multi Sensor Management Applications - Sensor Pre-processing and Sensor Fusion - Always-On Sensor Applications - USB 3.1 Type C Cable Detect / Power Delivery Applications © 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. Table 1-1. iCE40 Ultra Family Selection Guide | Part Number | iCE5LP1K | iCE5LP2K | iCE5LP4K | |--|----------|----------------------|----------| | Logic Cells (LUT + Flip-Flop) | 1100 | 2048 | 3520 | | EBR Memory Blocks | 16 | 20 | 20 | | EBR Memory Bits | 64 k | 80 k | 80 k | | PLL Block | 1 | 1 | 1 | | NVCM | Yes | Yes | Yes | | DSP Blocks (MULT16 with 32-bit Accumulator) | 2 | 4 | 4 | | Hardened I2C, SPI | 1,1 | 2,2 | 2,2 | | HF Oscillator (48 MHz) | 1 | 1 | 1 | | LF Oscillator (10 kHz) | 1 | 1 | 1 | | 24 mA LED Sink | 3 | 3 | 3 | | 500 mA LED Sink | 1 | 1 | 1 | | Embedded PWM IP | Yes | Yes | No | | Packages, ball pitch, dimension | | Total User I/O Count | • | | 36-ball WLCSP, 0.35 mm, 2.078 mm x 2.078 mm | 26 | 26 | 26 | | 36-ball ucfBGA, 0.40 mm, 2.5 mm x 2.5 mm | 26 | 26 | 26 | | 48-ball QFN Package, 0.5 mm, 7.0 mm x 7.0 mm | 39 | 39 | 39 | ## Introduction The iCE40 Ultra family of ultra-low power FPGAs has three devices with densities ranging from 1100 to 3520 Look-Up Tables (LUTs) fabricated in a 40 nm Low Power CMOS process. In addition to LUT-based, low-cost programmable logic, these devices also feature Embedded Block RAM (EBR), on-chip Oscillators (LFOSC, HFOSC), two hardened I²C Controllers, two hardened SPI Controllers, three 24 mA RGB LED open-drain drivers, a 500 mA IR LED open-drain drivers, and DSP blocks. These features allow the devices to be used in low-cost, high-volume consumer and mobile applications. The iCE40 Ultra FPGAs are available in very small form factor packages, as small as 2.078 mm x 2.078 mm. The small form factor allows the device to easily fit into a lot of mobile applications, where space can be limited. Table 1-1 shows the LUT densities, package and I/O pin count. The iCE40 Ultra devices offer I/O features such as pull-up resistors. Pull-up features are controllable on a "per-pin" basis. The iCE40 Ultra devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices can also configure themselves from external SPI Flash, or be configured by an external master such as a CPU. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40 Ultra family of devices. Popular logic synthesis tools provide synthesis library support for iCE40 Ultra. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the iCE40 Ultra device. These tools extract the timing from the routing and back-annotate it into the design for timing verification. Lattice provides in the iCE40 Ultra 1K and 2K device the embedded RGB PWM IP at no extra cost of LUT available to the user, to perform controlling the RGB LED function. This embedded IP allow users to control color, LED ON/OFF time, and breathe rate of the LED. For more information, please refer to Usage Guide in Lattice Design Software. Lattice provides many pre-engineered IP (Intellectual Property) modules, including a number of reference designs, licensed free of charge, optimized for the iCE40 Ultra FPGA family. Lattice also can provide fully verified bitstream for some of the widely used target functions in mobile device applications, such as ultra-low power sensor management, gesture recognition, IR remote, barcode emulator functions. Users can use these functions as offered by Lattice, or they can use the design to create their own unique required functions. For more information regarding Lattice's reference designs or fully-verified bitstreams, please contact your local Lattice representative. #### **PLB Blocks** The core of the iCE40 Ultra device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register. Figure 2-2. PLB Block Diagram #### **Logic Cells** Each Logic Cell includes three primary logic elements shown in Figure 2-2. - A four-input Look-Up Table (LUT) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUTs to create wider logic functions. - A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration. - Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtracters, comparators, binary counters and some wide, cascaded logic functions. Table 2-1. Logic Cell Signal Descriptions | Function | Туре | Signal Names | Description | | |----------|------------------|------------------------|--|--| | Input | Data signal | 10, 11, 12, 13 | Inputs to LUT | | | Input | Control signal | Enable | Clock enable shared by all LCs in the PLB | | | Input | Control signal | Set/Reset ¹ | Asynchronous or synchronous local set/reset shared by all LCs in the PLB. | | | Input | Control signal | Clock | Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB | | | Input | Inter-PLB signal | FCIN | Fast carry in | | | Output | Data signals | 0 | LUT or registered output | | | Output | Inter-PFU signal | FCOUT | Fast carry out | | ^{1.} If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration. ## Routing There are many resources provided in the iCE40 Ultra devices to route signals individually with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments. The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient connections in the diagonal, horizontal and vertical directions. The design tool takes the output of the synthesis tool and places and routes the design. #### **Clock/Control Distribution Network** Each iCE40 Ultra device has six global inputs, two pins on the top bank and four pins on the bottom bank These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are identified as Gxx and each drives one of the eight global buffers. The global buffers are identified as GBUF[7:0]. These six inputs may be used as general purpose I/O if they are not used to drive the clock nets. Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input. GBUF[7:6, 3:0] can connect directly to G[7:6, 3:0] pins respectively. GBUF4 and GBUF5 can connect to the two on-chip Oscillator Generators (GBUF4 connects to LFOSC, GBUF5 connects to HFOSC). Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks | Global Buffer | LUT Inputs | Clock | Clock Enable | Reset | |---------------|-----------------|-------|--------------|-------| | GBUF0 | | ✓ | ✓ | | | GBUF1 | | ✓ | | ✓ | | GBUF2 | | ✓ | ✓ | | | GBUF3 | Yes, any 4 of 8 | ✓ | | ✓ | | GBUF4 | GBUF Inputs | ✓ | ✓ | | | GBUF5 | | ✓ | | ✓ | | GBUF6 | | ✓ | ✓ | | | GBUF7 | | ✓ | | ✓ | The maximum frequency for the global buffers are shown in the iCE40 Ultra External Switching Characteristics tables later in this document. #### **Global Hi-Z Control** The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 Ultra device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state. #### **Global Reset Control** The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 Ultra device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application. ## Table 2-3. PLL Signal Descriptions | Signal Name | Direction | Description | | |-------------------|-----------|---|--| | REFERENCECLK | Input | Input reference clock | | | BYPASS | Input | The BYPASS control selects which clock signal connects to the PLL-OUT output. 0 = PLL generated signal 1 = REFERENCECLK | | | EXTFEEDBACK | Input | External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set to EXTERNAL. | | | DYNAMICDELAY[7:0] | Input | Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE is set to DYNAMIC. | | | LATCHINPUTVALUE | Input | When enabled, puts the PLL into low-power mode; PLL output is h static at the last input clock value. Set ENABLE ICEGATE_PORTA PORTB to '1' to enable. | | | PLLOUTGLOBAL | Output | Output from the Phase-Locked Loop (PLL). Drives a global clock network on the FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5. | | | PLLOUTCORE | Output | Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port. | | | LOCK | Output | When High, indicates that the PLL output is phase aligned or locked to the input reference clock. | | | RESET | Input | Active low reset. | | | SCLK | Input | Input, Serial Clock used for re-programming PLL settings. | | | SDI | Input | Input, Serial Data used for re-programming PLL settings. | | ## sysMEM Embedded Block RAM Memory Larger iCE40 Ultra device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each 4 kbit in size. This memory can be used for a wide variety of purposes including data buffering, and FIFO. ## sysMEM Memory Block The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources. Each block can be used in a variety of depths and widths as shown in Table 2-4. #### RAM Initialization and ROM Operation If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM. #### **Memory Cascading** Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks. #### **RAM4k Block** Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. Figure 2-4. sysMEM Memory Primitives Table 2-5. EBR Signal Descriptions | Signal Name | Direction | Description | |-------------|-----------|--| | WDATA[15:0] | Input | Write Data input. | | MASK[15:0] | Input | Masks write operations for individual data bit-lines. 0 = write bit 1 = do not write bit | | WADDR[7:0] | Input | Write Address input. Selects one of 256 possible RAM locations. | | WE | Input | Write Enable input. | | WCLKE | Input | Write Clock Enable input. | | WCLK | Input | Write Clock input. Default rising-edge, but with falling-edge option. | | RDATA[15:0] | Output | Read Data output. | | RADDR[7:0] | Input | Read Address input. Selects one of 256 possible RAM locations. | | RE | Input | Read Enable input. | | RCLKE | Input | Read Clock Enable input. | | RCLK | Input | Read Clock input. Default rising-edge, but with falling-edge option. | For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices. ## Table 2-6. sysDSP Input/Output List | Signal | Signal Primitive Port Name Width Output Function | | Default | | | |---------|--|----|---------|--|-------------| | CLK | CLK | 1 | Input | Clock Input. Applies to all clocked elements in the sysDSP block | | | ENA | CE | 1 | Input | Clock Enable Input. Applies to all clocked elements in the sysDSP block. 0 = Not Enabled 1 = Enabled | 0: Enabled | | A[15:0] | A[15:0] | 16 | Input | Input to the A Register. Feeds the Multiplier or is a direct input to the Adder Accumulator | 16'b0 | | B[15:0] | B[15:0] | 16 | Input | Input to the B Register. Feeds the Multiplier or is a direct input to the Adder Accumulator | 16'b0 | | C[15:0] | C[15:0] | 16 | Input | Input to the C Register. It is a direct input to the Adder Accumulator | 16'b0 | | D[15:0] | D[15:0] | 16 | Input | Input to the D Register. It is a direct input to the Adder Accumulator | 16'b0 | | AHLD | AHOLD | 1 | Input | A Register Hold. 0 = Update 1 = Hold | 0: Update | | BHLD | BHOLD | 1 | Input | B Register Hold. 0 = Update 1 = Hold | 0: Update | | CHLD | CHOLD | 1 | Input | C Register Hold.
0 = Update
1 = Hold | 0: Update | | DHLD | DHOLD | 1 | Input | D Register Hold.
0 = Update
1 = Hold | 0: Update | | IHRST | IRSTTOP | 1 | Input | Reset input to A and C input registers, and the pipeline registers in the upper half of the Multiplier Section. 0 = No Reset 1 = Reset | 0: No Reset | | ILRST | IRSTBOT | 1 | Input | Reset input to B and D input registers, and the pipeline registers in the lower half of the Multiplier Section. It also resets the Multiplier result pipeline register. 0 = No Reset 1 = Reset | 0: No Reset | | O[31:0] | O[31:0] | 32 | Output | Output of the sysDSP block. This output can be: — O[31:0] — 32-bit result of 16x16 Multiplier or MAC — O[31:16] — 16-bit result of 8x8 upper half Multiplier or MAC — O[15:0] — 16-bit result of 8x8 lower half Multiplier or MAC | | | OHHLD | OHOLDTOP | 1 | Input | High-order (upper half) Accumulator Register Hold.
0 = Update
1 = Hold | 0: Update | | OHRST | ORSTTOP | 1 | Input | Reset input to high-order (upper half) bits of the Accumulator Register. 0 = No Reset 1 = Reset | 0: No Reset | Figure 2-7. DSP 16-bit x 16-bit Multiplier There is one output on each device that can sink up to 500 mA current. This output is open-drain, and provides sinking current to drive an external IR LED connecting to the positive supply. This IR drive current is user programmable from 50 mA to 500 mA in increments of 50 mA. This output functions as General Purpose I/O with open-drain when the high current LED drive is not needed. #### **Embedded PWM IP** To provide an easier usage of the RGB high current drivers to drive RGB LED, a Pulse-Width Modulator IP can be embedded into the user design. This PWM IP provides the flexibility for user to dynamically change the settings on the ON-time duration, OFF-time duration, and ability to turn the LED lights on and off gradually with user set breath-on and breath-off time. For additional information on the embedded PWM IP, please refer to TN1288, iCE40 LED Driver Usage Guide. ## **Non-Volatile Configuration Memory** All iCE40 Ultra devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device. For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration. ## iCE40 Ultra Programming and Configuration This section describes the programming and configuration of the iCE40 Ultra family. ## **Device Programming** The NVCM memory can be programmed through the SPI port. The SPI port is located in Bank 1, using SPI_{CCIO1} power supply. ## **Device Configuration** There are various ways to configure the Configuration RAM (CRAM), using SPI port, including: - From a SPI Flash (Master SPI mode) - System microprocessor to drive a Serial Slave SPI port (SSPI mode) For more details on configuring the iCE40 Ultra, please see TN1248, iCE40 Programming and Configuration. ## **Power Saving Options** The iCE40 Ultra devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. Table 2-10 describes the function of these features. Table 2-10. iCE40 Ultra Power Saving Features Description | Device Subsystem | Feature Description | |------------------|---| | IPLI | When LATCHINPUTVALUE is enabled, puts the PLL into low-power mode; PLL output held static at last input clock value. | | iCEGate | To save power, the optional iCEGate latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control. | # iCE40 Ultra Family Data Sheet DC and Switching Characteristics June 2016 Data Sheet DS1048 ## **Absolute Maximum Ratings**^{1, 2, 3} | Supply Voltage V _{CC} | V | |---|---| | Output Supply Voltage V _{CCIO} | V | | NVCM Supply Voltage V _{PP_2V5} | ٧ | | PLL Supply Voltage V _{CCPLL} 0.5 V to 1.42 \ | V | | I/O Tri-state Voltage Applied0.5 V to 3.60 \ | V | | Dedicated Input Voltage Applied | V | | Storage Temperature (Ambient)—65 °C to 150 °C | С | | Junction Temperature (T _J) | С | ^{1.} Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. ## Recommended Operating Conditions¹ | Symbol | Parameter | | | Max. | Units | |--------------------------------------|---|--|--------|-------|-------| | V _{CC} ¹ | Core Supply | Voltage | 1.14 | 1.26 | V | | | | Slave SPI Configuration | 1.71 4 | 3.46 | V | | N/ | VPP_2V5 NVCM Programming and | Master SPI Configuration | 2.30 | 3.46 | V | | | Operating Supply Voltage | Configuration from NVCM | 2.30 | 3.46 | V | | | | NVCM Programming | 2.30 | 3.00 | V | | V _{CCIO} ^{1, 2, 3} | I/O Driver Supply Voltage | V _{CCIO_0} , SPI_V _{CCIO1} , V _{CCIO_2} | 1.71 | 3.46 | V | | V _{CCPLL} | PLL Supply Voltage | | 1.14 | 1.26 | V | | t _{JCOM} | Junction Temperature Commercial Operation | | 0 | 85 | °C | | t _{JIND} | Junction Temperature Industrial Operation | | -40 | 100 | °C | | t _{PROG} | Junction Temperature N | VCM Programming | 10.00 | 30.00 | °C | Like power supplies must be tied together if they are at the same supply voltage and they meet the power up sequence requirement. Please refer to Power-Up Supply Sequencing section. V_{CC} and V_{CCPLL} are recommended to tie to same supply with an RC-based noise filter between them. Please refer to TN1252, iCE40 Hardware Checklist. ## Power Supply Ramp Rates^{1, 2} | Symbol | Parameter | Min. | Max. | Units | |-------------------|---|------|------|-------| | t _{RAMP} | Power supply ramp rates for all power supplies. | 0.6 | 10 | V/ms | ^{1.} Assumes monotonic ramp rates. ^{2.} Compliance with the Lattice Thermal Management document is required. ^{3.} All voltages referenced to GND. ^{2.} See recommended voltages by I/O standard in subsequent table. ^{3.} V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards. V_{PP_2V5} can, optionally, be connected to a 1.8 V (+/-5%) power supply in Slave SPI Configuration mode subject to the condition that none of the HFOSC/LFOSC and RGB LED / IR LED driver features are used. Otherwise, V_{PP_2V5} must be connected to a power supply with a minimum 2.30 V level. ^{2.} Power up sequence must be followed. Please refer to Power-Up Supply Sequencing section. ## Supply Current 1, 2, 3, 4, 5 | Symbol | Parameter | Typ. V _{CC} = 1.2 V ⁴ | Units | |------------------------------|--|---|-------| | I _{CCSTDBY} | Core Power Supply Static Current | 71 | μΑ | | I _{PP2V5STDBY} | V _{PP_2V5} Power Supply Static Current | 0.55 | μΑ | | I _{SPI_VCCIO1STDBY} | SPI_V _{CCIO1} Power Supply Static Current | 0.5 | μΑ | | ICCIOSTDBY | V _{CCIO} Power Supply Static Current | 0.5 | μΑ | | I _{CCPEAK} | Core Power Supply Startup Peak Current | 8.0 | mA | | I _{PP_2V5PEAK} | V _{PP_2V5} Power Supply Startup Peak Current | 7.0 | mA | | I _{SPI_VCCIO1PEAK} | SPI_V _{CCIO1} Power Supply Startup Peak Current | 9.0 | mA | | ICCIOPEAK | V _{CCIO} Power Supply Startup Peak Current | 7.5 | mA | Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher. - 2. Frequency = 0 MHz. - 3. TJ = 25 °C, power supplies at nominal voltage, on devices processed in nominal process conditions. - 4. Does not include pull-up. - 5. Startup Peak Currents are measured with decoupling capacitance of 0.1 uF, 10 nF, and 1 nF to the power supply. Higher decoupling capacitance causes higher current. ## **User I²C Specifications** | Parameter | | spec (STD Mode) | | | spec (FAST Mode) | | | | |---------------------|--------------------------------------|-----------------|-----|-----|------------------|----------|-----|-------| | Symbol | Parameter Description | Min | Тур | Max | Min | Тур | Max | Units | | f _{SCL} | Maximum SCL clock frequency | _ | _ | 100 | _ | _ | 400 | kHz | | t _{HI} | SCL clock HIGH Time | 4 | _ | _ | 0.6 | _ | _ | μs | | t _{LO} | SCL clock LOW Time | 4.7 | _ | | 1.3 | | _ | μs | | t _{SU,DAT} | Setup time (DATA) | 250 | _ | | 100 | | _ | ns | | t _{HD,DAT} | Hold time (DATA) | 0 | _ | | 0 | _ | _ | ns | | t _{SU,STA} | Setup time (START condition) | 4.7 | _ | _ | 0.6 | _ | _ | μs | | t _{HD,STA} | Hold time (START condition) | 4 | _ | _ | 0.6 | _ | _ | μs | | t _{SU,STO} | Setup time (STOP condition) | 4 | _ | | 0.6 | | _ | μs | | t _{BUF} | Bus free time between STOP and START | 4.7 | _ | _ | 1.3 | _ | _ | μs | | t _{CO,DAT} | SCL LOW to DATAOUT valid | - | _ | 3.4 | <u> </u> | <u> </u> | 0.9 | μs | ## User SPI Specifications^{1, 2} | Parameter
Symbol | Parameter Description | Min | Тур | Max | Units | |---------------------|-----------------------------|-----|-----|-----|-------| | f_{MAX} | Maximum SCK clock frequency | | | 45 | MHz | ^{1.} All setup and hold time parameters on external SPI interface are design-specific and, therefore, generated by the Lattice Design Software tools. These parameters include the following: t_{SUmaster} master Setup time (master mode) t_{HOLDmaster} master Hold time (master mode) t_{SUslave} slave Setup time (slave mode) t_{HOLDslave} slave Hold time (slave mode) t_{SCK2OUT} SCK to out (slave mode) ^{2.} The SCLK duty cycle needs to be specified in the Lattice Design Software as a timing constraint in order to ensure proper timing check on SCLK HIGH and LOW (t_{HI}, t_{LO}) time. ## sysCLOCK PLL Timing ## **Over Recommended Operating Conditions** | Parameter | Descriptions | Conditions | Min. | Max. | Units | |---------------------------------------|---|-----------------------------|------|-------|---------------| | f _{IN} | Input Clock Frequency (REFERENCECLK, EXTFEEDBACK) | | 10 | 133 | MHz | | f _{OUT} | Output Clock Frequency (PLLOUT) | | 16 | 275 | MHz | | f_{VCO} | PLL VCO Frequency | | 533 | 1066 | MHz | | f _{PFD} | Phase Detector Input Frequency | | 10 | 133 | MHz | | AC Characterist | tics | | • | | | | t _{DT} | Output Clock Duty Cycle | | 40 | 60 | % | | t _{PH} | Output Phase Accuracy | | _ | +/-12 | deg | | | Output Clock Poriod litter | f _{OUT} >= 100 MHz | _ | 450 | ps p-p | | t _{OPJIT} ^{1, 5, 6} | Output Clock Period Jitter | f _{OUT} < 100 MHz | _ | 0.05 | UIPP | | | Output Clock Cycle-to-cycle Jitter | f _{OUT} >= 100 MHz | _ | 750 | ps p-p | | | | f _{OUT} < 100 MHz | _ | 0.10 | UIPP | | | Output Clock Phase Jitter | f _{PFD} >= 25 MHz | _ | 275 | ps p-p | | | | f _{PFD} < 25 MHz | _ | 0.05 | UIPP | | t _W | Output Clock Pulse Width | At 90% or 10% | 1.33 | _ | ns | | t _{LOCK} ^{2, 3} | PLL Lock-in Time | | _ | 50 | μs | | t _{UNLOCK} | PLL Unlock Time | | _ | 50 | ns | | + 4 | Input Clock Period Jitter | f _{PFD} ≥ 20 MHz | _ | 1000 | ps p-p | | t _{IPJIT} ⁴ | Input Clock Feriod Sitter | f _{PFD} < 20 MHz | _ | 0.02 | UIPP | | t _{STABLE} ³ | LATCHINPUTVALUE LOW to PLL Stable | | _ | 500 | ns | | t _{STABLE_PW} 3 | LATCHINPUTVALUE Pulse Width | | 100 | _ | ns | | t _{RST} | RESET Pulse Width | | 10 | _ | ns | | t _{RSTREC} | RESET Recovery Time | | 10 | _ | μs | | t _{DYNAMIC_WD} | DYNAMICDELAY Pulse Width | | 100 | _ | VCO
Cycles | ^{1.} Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B. ## sysDSP Timing ## **Over Recommended Operating Conditions** | Parameter | Description | Min. | Max. | Units | |-----------------------------|--|------|------|-------| | f _{MAX8x8SMULT} | Max frequency signed MULT8x8 bypassing pipeline register | 50 | _ | MHz | | f _{MAX16x16} SMULT | Max frequency signed MULT16x16 bypassing pipeline register | 50 | _ | MHz | ^{2.} Output clock is valid after $t_{\mbox{\scriptsize LOCK}}$ for PLL reset and dynamic delay adjustment. ^{3.} At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed. ^{4.} Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table. ^{5.} The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise. ## SPI Master or NVCM Configuration Time^{1, 2} | Symbol | Parameter | Conditions | Max. | Units | |---------------------|--|--------------------------------|------|-------| | | All devices – Low Frequency (Default) | 95 | ms | | | t _{CONFIG} | CONFIG POR/CRESET_B to Device I/O Active | All devices – Medium frequency | 35 | ms | | | | All devices – High frequency | 18 | ms | ^{1.} Assumes sysMEM Block is initialized to an all zero pattern if they are used. ## sysCONFIG Port Timing Specifications | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |-------------------------|--|-------------------------------|------|------|------|-----------------| | All Configurat | tion Modes | | | l | | | | t _{CRESET_B} | Minimum CRESET_B LOW pulse width required to restart configuration, from falling edge to rising edge | | 200 | _ | _ | ns | | t _{DONE_IO} | Number of configuration clock cycles after CDONE goes HIGH before the PIO pins are activated | | 49 | _ | _ | Clock
Cycles | | Slave SPI | , | | | l | | | | ^t cr_sck | Minimum time from a rising edge on CRESET_B until the first SPI WRITE operation, first SPI_XCK clock. During this time, the iCE40 Ultra device is clearing its internal configuration memory | | 1200 | _ | _ | μѕ | | ſ | CCL K alask fragueray | Write | 1 | _ | 25 | MHz | | f _{MAX} | CCLK clock frequency | Read ¹ | _ | 15 | _ | MHz | | t _{CCLKH} | CCLK clock pulsewidth HIGH | | 20 | _ | _ | ns | | t _{CCLKL} | CCLK clock pulsewidth LOW | | 20 | _ | _ | ns | | t _{STSU} | CCLK setup time | | 12 | _ | _ | ns | | t _{STH} | CCLK hold time | | 12 | _ | _ | ns | | t _{STCO} | CCLK falling edge to valid output | | 13 | _ | _ | ns | | Master SPI ³ | | | | | • | • | | | | Low Frequency
(Default) | 7.0 | 12.0 | 17.0 | MHz | | f _{MCLK} | MCLK clock frequency | Medium Frequency ² | 21.0 | 33.0 | 45.0 | MHz | | | | High Frequency ² | 33.0 | 53.0 | 71.0 | MHz | | t _{MCLK} | CRESET_B HIGH to first MCLK edge | | 1200 | _ | _ | μs | | t _{SU} | CCLK setup time ⁴ | | 9.9 | _ | _ | ns | | t _{HD} | CCLK hold time | | 1 | _ | _ | ns | ^{1.} Supported with 1.2 V Vcc and at 25 °C. ^{2.} The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point. ^{2.} Extended range fMAX Write operations support up to 53 MHz with 1.2 V Vcc and at 25 °C. ^{3.} t_{SU} and t_{HD} timing must be met for all MCLK frequency choices. ^{4.} For considerations of SPI Master Configuration Mode, please refer to TN1248, iCE40 Programming and Configuration. ## **RGB LED and IR LED Drive** | Symbol | Parameter | Min. | Max. | Units | |---------------|---|----------------|------|-------| | ILED_ACCURACY | RGB0, RGB1, RGB2 Sink Current Accuracy to selected current @ V _{LEDOUT} >= 0.5 V | -12 | +12 | % | | ILED_MATCH | RGB0, RGB1, RGB2 Sink Current Matching among the 3 outputs @ V _{LEDOUT} >= 0.5 V | - 5 | +5 | % | | IIR_ACCURACY | IR LED Sink Current Accuracy to selected current @ V _{IROUT} >= 0.8 V | -14 | +14 | % | ## **Switching Test Conditions** Figure 3-3 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-1. Figure 3-3. Output Test Load, LVCMOS Standards Table 3-1. Test Fixture Required Components, Non-Terminated Interfaces | Test Condition | R ₁ | CL | Timing Reference | V_{T} | |----------------------------------|----------------|------|-----------------------------------|-----------------| | LVCMOS settings (L -> H, H -> L) | | 0 pF | LVCMOS 3.3 = 1.5 V | _ | | | ∞ | | LVCMOS 2.5 = V _{CCIO} /2 | _ | | | | | LVCMOS 1.8 = V _{CCIO} /2 | _ | | LVCMOS 3.3 (Z -> H) | | | 1.5 V | V_{OL} | | LVCMOS 3.3 (Z -> L) | | 0 pF | 1.5 V | V_{OH} | | Other LVCMOS (Z -> H) | 188 | | V _{CCIO} /2 | V_{OL} | | Other LVCMOS (Z -> L) | 100 | | V _{CCIO} /2 | V _{OH} | | LVCMOS (H -> Z) | | | V _{OH} – 0.15 V | V_{OL} | | LVCMOS (L -> Z) | | | V _{OL} – 0.15 V | V _{OH} | Note: Output test conditions for all other interfaces are determined by the respective standards. # iCE40 Ultra Family Data Sheet Pinout Information June 2016 Data Sheet DS1048 ## **Signal Descriptions** | Signal Name | | Function | I/O | Description | |---------------------|----------------|---------------|--------|---| | Power Supplie | es | 1 | | | | V _{CC} | | Power | _ | Core Power Supply | | | CCIO1, VCCIO_2 | Power | _ | Power for I/Os in Bank 0, 1 and 2. | | V _{PP_2V5} | | Power | _ | Power for NVCM programming and operations. | | V _{CCPLL} | | Power | _ | Power for PLL | | GND | | GROUND | _ | Ground | | GND_LED | | GROUND | _ | Ground for LED drivers. Should connect to GND on board. | | Configuration | | · | | | | CRESETB | | Configuration | I | Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to V_{CCIO_1} . | | CDONE | | Configuration | I/O | Configuration Done. Includes a weak pull-up resistor to ${\rm SPI_V_{CCIO1}}$. | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function. | | Config SPI | | | | | | Primary | Secondary | | | | | CRESETB | _ | Configuration | I | Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to SPI_V _{CCIO1} . | | PIOB_xx | CDONE | Configuration | I/O | Configuration Done. Includes a weak pull-up resistor to SPI_V _{CCIO1} . | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function. | | Config SPI | | · | | | | Primary | Secondary | | | | | PIOB_34a | SPI_SCK | Configuration | I/O | This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the clock to external SPI memory. In Slave SPI mode, this pin inputs the clock from external processor. | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | PIOB_32a | SPI_SDO | Configuration | Output | This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the command data to external SPI memory. In Slave SPI mode, this pin connects to the MISO pin of the external processor. | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function. | | Signa | al Name | Function | I/O | Description | |----------------|-----------|---------------|----------------------|--| | PIOB_33b | SPI_SI | Configuration | Input | This pin is shared with device configuration. During configuration: In Master SPI mode, this pin receives data from external SPI memory. In Slave SPI mode, this pin connects to the MOSI pin of the external processor. | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function. | | PIOB_35b | SPI_SS_B | Configuration | I/O | This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs to the external SPI memory. In Slave SPI mode, this pin inputs from the external processor. | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function. | | Global Signals | | | | | | Primary | Secondary | | | | | PIOT_46b | G0 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G0 pin drives the GBUF0 global buffer | | PIOT_45a | G1 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G1 pin drives the GBUF1 global buffer | | PIOT_25b | G3 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G3 pin drives the GBUF3 global buffer | | PIOT_12a | G4 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G4 pin drives the GBUF4 global buffer | | PIOT_11b | G5 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G5 pin drives the GBUF5 global buffer | | PIOB_3b | G6 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G6 pin drives the GBUF6 global buffer | | LED Signals | • | • | • | | | RGB0 | | General I/O | Open-Drain I/O | In user mode, with user's choice, this pin can be programmed as open drain I/O in user function | | | | LED | Open-Drain
Output | In user mode, with user's choice, this pin can be programmed as open drain 24mA output to drive external LED | | RGB1 | | General I/O | Open-Drain I/O | In user mode, with user's choice, this pin can be programmed as open drain I/O in user function | | | | LED | Open-Drain
Output | In user mode, with user's choice, this pin can be programmed as open drain 24mA output to drive external LED | # Pinout Information iCE40 Ultra Family Data Sheet | Signal Name | Function | I/O | Description | |-------------|-------------|----------------------|---| | RGB2 | General I/O | Open-Drain I/O | In user mode, with user's choice, this pin can be programmed as open drain I/O in user function | | | LED | Open-Drain
Output | In user mode, with user's choice, this pin can be programmed as open drain 24mA output to drive external LED | | IRLED | General I/O | Open-Drain I/O | In user mode, with user's choice, this pin can be programmed as open drain I/O in user function | | | LED | Open-Drain
Output | In user mode, with user's choice, this pin can be programmed as open drain 500mA output to drive external LED | | PIOT_xx | General I/O | I/O | In user mode, with user's choice, this pin can be programmed as I/O in user function in the top $(xx = I/O location)$ | | PIOB_xx | General I/O | I/O | In user mode, with user's choice, this pin can be programmed as I/O in user function in the bottom ($xx = I/O$ location) | # iCE40 Ultra Family Data Sheet Ordering Information June 2016 Data Sheet DS1048 ## **iCE5LP Part Number Description** ## **Tape and Reel Quantity** | Package | TR Quantity | |---------|-------------| | CM36 | 4,000 | | SWG36 | 5,000 | | SG48 | 2,000 | ## **Ordering Part Numbers** ## Industrial | Part Number | LUTs | Supply Voltage | Package | Pins | Temp. | |---------------------|------|----------------|---------------------|------|-------| | iCE5LP1K-CM36ITR | 1100 | 1.2 V | Halogen-Free ucfBGA | 36 | IND | | iCE5LP1K-CM36ITR50 | 1100 | 1.2 V | Halogen-Free ucfBGA | 36 | IND | | iCE5LP1K-CM36ITR1K | 1100 | 1.2 V | Halogen-Free ucfBGA | 36 | IND | | iCE5LP1K-SWG36ITR | 1100 | 1.2 V | Halogen-Free WLCSP | 36 | IND | | iCE5LP1K-SWG36ITR50 | 1100 | 1.2 V | Halogen-Free WLCSP | 36 | IND | | iCE5LP1K-SWG36ITR1K | 1100 | 1.2 V | Halogen-Free WLCSP | 36 | IND | | iCE5LP1K-SG48ITR | 1100 | 1.2 V | Halogen-Free QFN | 48 | IND | | iCE5LP1K-SG48ITR50 | 1100 | 1.2 V | Halogen-Free QFN | 48 | IND | | iCE5LP2K-CM36ITR | 2048 | 1.2 V | Halogen-Free ucfBGA | 36 | IND | | iCE5LP2K-CM36ITR50 | 2048 | 1.2 V | Halogen-Free ucfBGA | 36 | IND | | iCE5LP2K-CM36ITR1K | 2048 | 1.2 V | Halogen-Free ucfBGA | 36 | IND | | iCE5LP2K-SWG36ITR | 2048 | 1.2 V | Halogen-Free WLCSP | 36 | IND | | iCE5LP2K-SWG36ITR50 | 2048 | 1.2 V | Halogen-Free WLCSP | 36 | IND | | iCE5LP2K-SWG36ITR1K | 2048 | 1.2 V | Halogen-Free WLCSP | 36 | IND | | iCE5LP2K-SG48ITR | 2048 | 1.2 V | Halogen-Free QFN | 48 | IND | | iCE5LP2K-SG48ITR50 | 2048 | 1.2 V | Halogen-Free QFN | 48 | IND | | iCE5LP4K-CM36ITR | 3520 | 1.2 V | Halogen-Free ucfBGA | 36 | IND | | iCE5LP4K-CM36ITR50 | 3520 | 1.2 V | Halogen-Free ucfBGA | 36 | IND | | iCE5LP4K-CM36ITR1K | 3520 | 1.2 V | Halogen-Free ucfBGA | 36 | IND | | iCE5LP4K-SWG36ITR | 3520 | 1.2 V | Halogen-Free WLCSP | 36 | IND | | iCE5LP4K-SWG36ITR50 | 3520 | 1.2 V | Halogen-Free WLCSP | 36 | IND | | iCE5LP4K-SWG36ITR1K | 3520 | 1.2 V | Halogen-Free WLCSP | 36 | IND | | iCE5LP4K-SG48ITR | 3520 | 1.2 V | Halogen-Free QFN | 48 | IND | | iCE5LP4K-SG48ITR50 | 3520 | 1.2 V | Halogen-Free QFN | 48 | IND | # iCE40 Ultra Family Data Sheet Revision History June 2016 Data Sheet DS1048 | Date | Version | Section | Change Summary | |---------------|---------|-------------------------------------|--| | June 2016 2.0 | 2.0 | Introduction | Updated General Description section. Changed "high current driver" to "high current IR driver". | | | | | Updated Features section. In Table 1-1, iCE40 Ultra Family Selection Guide, corrected HF Oscillator (48 kHz) to (48 MHz). | | | | Architecture | Updated Architecture Overview section. — Changed content to "The Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either PLB or EBR blocks." — Changed "high current LED sink" to "high current RGB and IR LED sinks". | | | | | Updated sysCLOCK Phase Locked Loops (PLLs) section. Corrected V _{CCPLL} character format in Figure 2-3, PLL Diagram. | | | | | Updated sysMEM Embedded Block RAM Memory section. Updated footnote in Table 2-4, sysMEM Block Configurations. | | | | | Updated sysIO Buffer Banks section. — Changed statement to "The configuration SPI interface signals are powered by SPI_V _{CCIO1} ." — Corrected V _{CCIO} character format in Figure 2-8, I/O Bank and Programmable I/O Cell. | | | | | Updated Typical I/O Behavior During Power-up section. Modified text content. | | | | | Updated Supported Standards section. Changed statement to "The iCE40 Ultra sysIO buffer supports both single-ended input/output standards, and used as differential comparators." | | | | | Updated On-Chip Oscillator section. Changed statement to "The high frequency oscillator (HFOSC) runs at a nominal frequency of 48 MHz, divisible to 24 MHz, 12 MHz, or 6 MHz by user option." | | | | | Updated section heading to High Current LED Drive I/O Pins. Changed "high current drive" to "high current LED drive". | | | | | Removed Power On Reset section. | | | | DC and Switching
Characteristics | Updated Absolute Maximum Ratings section. — Corrected symbol character format. | | | | | Updated Recommended Operating Conditions section. — Corrected symbol character format. — Revised footnote 1. — Added footnote 4. | | | | | Updated Power Supply Ramp Rates section. Changed t _{RAMP} Max. value. | | | | | Added Power-On Reset section. | | | | | Updated section heading to Power-Up Supply Sequencing. Revised text content. | | | | | Added External Reset section. | | | | | Updated DC Electrical Characteristics section. Revised footnote 4. |