

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	256
Number of Logic Elements/Cells	2048
Total RAM Bits	81920
Number of I/O	39
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice5lp2k-sg48itr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	iCE40 Ultra	Familv	Selection	Guide

Part Number	iCE5LP1K	iCE5LP2K	iCE5LP4K
Logic Cells (LUT + Flip-Flop)	1100	2048	3520
EBR Memory Blocks	16	20	20
EBR Memory Bits	64 k	80 k	80 k
PLL Block	1	1	1
NVCM	Yes	Yes	Yes
DSP Blocks (MULT16 with 32-bit Accumulator)	2	4	4
Hardened I2C, SPI	1,1	2,2	2,2
HF Oscillator (48 MHz)	1	1	1
LF Oscillator (10 kHz)	1	1	1
24 mA LED Sink	3	3	3
500 mA LED Sink	1	1	1
Embedded PWM IP	Yes	Yes	No
Packages, ball pitch, dimension		Total User I/O Count	
36-ball WLCSP, 0.35 mm, 2.078 mm x 2.078 mm	26	26	26
36-ball ucfBGA, 0.40 mm, 2.5 mm x 2.5 mm	26	26	26
48-ball QFN Package, 0.5 mm, 7.0 mm x 7.0 mm	39	39	39

Introduction

The iCE40 Ultra family of ultra-low power FPGAs has three devices with densities ranging from 1100 to 3520 Look-Up Tables (LUTs) fabricated in a 40 nm Low Power CMOS process. In addition to LUT-based, low-cost programmable logic, these devices also feature Embedded Block RAM (EBR), on-chip Oscillators (LFOSC, HFOSC), two hardened I²C Controllers, two hardened SPI Controllers, three 24 mA RGB LED open-drain drivers, a 500 mA IR LED open-drain drivers, and DSP blocks. These features allow the devices to be used in low-cost, high-volume consumer and mobile applications.

The iCE40 Ultra FPGAs are available in very small form factor packages, as small as 2.078 mm x 2.078 mm. The small form factor allows the device to easily fit into a lot of mobile applications, where space can be limited. Table 1-1 shows the LUT densities, package and I/O pin count.

The iCE40 Ultra devices offer I/O features such as pull-up resistors. Pull-up features are controllable on a "per-pin" basis.

The iCE40 Ultra devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices can also configure themselves from external SPI Flash, or be configured by an external master such as a CPU.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40 Ultra family of devices. Popular logic synthesis tools provide synthesis library support for iCE40 Ultra. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the iCE40 Ultra device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides in the iCE40 Ultra 1K and 2K device the embedded RGB PWM IP at no extra cost of LUT available to the user, to perform controlling the RGB LED function. This embedded IP allow users to control color, LED ON/ OFF time, and breathe rate of the LED. For more information, please refer to Usage Guide in Lattice Design Software.

Lattice provides many pre-engineered IP (Intellectual Property) modules, including a number of reference designs, licensed free of charge, optimized for the iCE40 Ultra FPGA family. Lattice also can provide fully verified bitstream for some of the widely used target functions in mobile device applications, such as ultra-low power sensor management, gesture recognition, IR remote, barcode emulator functions. Users can use these functions as offered by Lattice, or they can use the design to create their own unique required functions. For more information regarding Lattice's reference designs or fully-verified bitstreams, please contact your local Lattice representative.

Table 2-3. PLL Signal Descriptions

Signal Name	Direction	Description
REFERENCECLK	Input	Input reference clock
BYPASS	Input	The BYPASS control selects which clock signal connects to the PLL- OUT output. 0 = PLL generated signal 1 = REFERENCECLK
EXTFEEDBACK	Input	External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set to EXTERNAL.
DYNAMICDELAY[7:0]	Input	Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE is set to DYNAMIC.
LATCHINPUTVALUE	Input	When enabled, puts the PLL into low-power mode; PLL output is held static at the last input clock value. Set ENABLE ICEGATE_PORTA and PORTB to '1' to enable.
PLLOUTGLOBAL	Output	Output from the Phase-Locked Loop (PLL). Drives a global clock net- work on the FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5.
PLLOUTCORE	Output	Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.
LOCK	Output	When High, indicates that the PLL output is phase aligned or locked to the input reference clock.
RESET	Input	Active low reset.
SCLK	Input	Input, Serial Clock used for re-programming PLL settings.
SDI	Input	Input, Serial Data used for re-programming PLL settings.

sysMEM Embedded Block RAM Memory

Larger iCE40 Ultra device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each 4 kbit in size. This memory can be used for a wide variety of purposes including data buffering, and FIFO.

sysMEM Memory Block

The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources. Each block can be used in a variety of depths and widths as shown in Table 2-4.

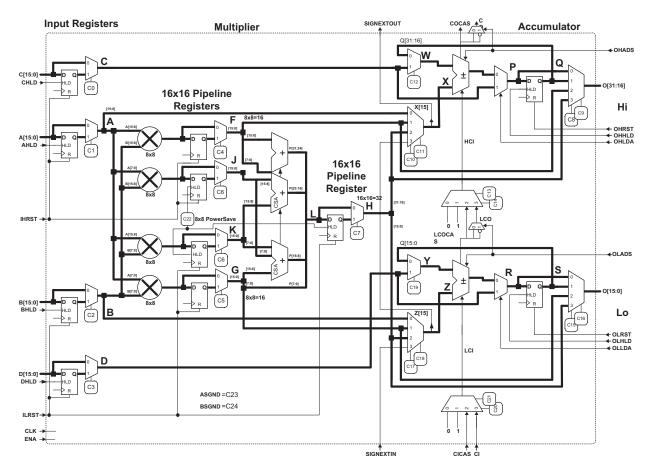
Table 2-4. sysMEM Block Configurations¹

Block RAM Configuration	Block RAM Configuration and Size	WADDR Port Size (Bits)	WDATA Port Size (Bits)	RADDR Port Size (Bits)	RDATA Port Size (Bits)	MASK Port Size (Bits)
SB_RAM256x16 SB_RAM256x16NR SB_RAM256x16NW SB_RAM256x16NRNW	256x16 (4 k)	8 [7:0]	16 [15:0]	8 [7:0]	16 [15:0]	16 [15:0]
SB_RAM512x8 SB_RAM512x8NR SB_RAM512x8NW SB_RAM512x8NRNW	512x8 (4 k)	9 [8:0]	8 [7:0]	9 [8:0]	8 [7:0]	No Mask Port
SB_RAM1024x4 SB_RAM1024x4NR SB_RAM1024x4NW SB_RAM1024x4NRNW	1024x4 (4 k)	10 [9:0]	4 [3:0]	10 [9:0]	4 [3:0]	No Mask Port
SB_RAM2048x2 SB_RAM2048x2NR SB_RAM2048x2NW SB_RAM2048x2NRNW	2048x2 (4 k)	11 [10:0]	2 [1:0]	11 [10:0]	2 [1:0]	No Mask Port

1. For iCE40 Ultra, the primitive name without "Nxx" uses rising-edge Read and Write clocks. "NR" uses rising-edge Write clock, falling-edge Read clock. "NR" uses falling-edge Write clock and rising-edge Read clock. "NRNW" uses falling-edge clocks on both Read and Write.

sysDSP

The iCE40 Ultra family provides an efficient sysDSP architecture that is very suitable for low-cost Digital Signal Processing (DSP) functions for mobile applications. Typical functions used in these applications are Multiply, Accumulate, and Multiply-Accumulate. The block can also be used for simple Add and Subtract functions.


iCE40 Ultra sysDSP Architecture Features

The iCE40 Ultra sysDSP supports many functions that include the following:

- Single 16-bit x 16-bit Multiplier, or two independent 8-bit x 8-bit Multipliers
- Optional independent pipeline control on Input Register, Output Register, and Intermediate Reg faster clock
 performance
- Single 32-bit Accumulator, or two independent 16-bit Accumulators
- Single 32-bit, or two independent 16-bit Adder/Subtracter functions, registered or asynchronous
- Cascadable to create wider Accumulator blocks

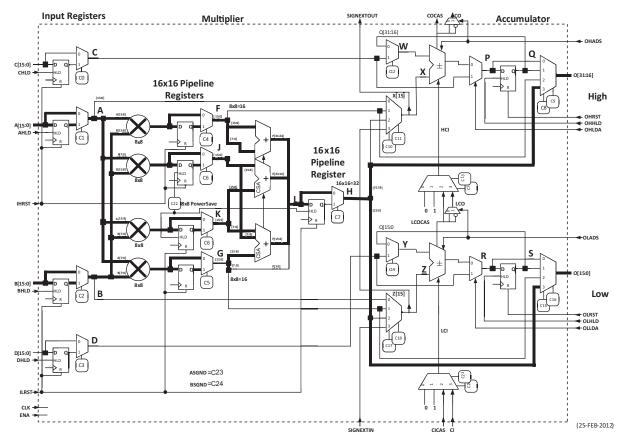

Figure 2-5 shows the block diagram of the sysDSP block. The block consists Multiplier section, with an bypassable Output register. The Input Register, Intermediate register between Multiplier and AC timing to achieve the highest performance.

Figure 2-5. sysDSP Functional Block Diagram (16-bit x 16-bit Multiply-Accumulate)

Figure 2-7. DSP 16-bit x 16-bit Multiplier

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , SPI_ V_{CCIO1} , and V_{PP_2V5} reach the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. You must ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins maintain the pre-configuration state until V_{CC} , SPI_ V_{CCIO1} , and V_{PP_2V5} reach the defined levels. The I/Os take on the software user-configured settings only after POR signal is deactivated and the device performs a proper download/configuration. Unused I/Os are automatically blocked and the pull-up termination is disabled.

Supported Standards

The iCE40 Ultra sysIO buffer supports both single-ended input/output standards, and used as differential comparators. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none).

Table 2-8 and Table 2-9 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 Ultra devices.

Differential Comparators

The iCE40 Ultra devices provide differential comparator on pairs of I/O pins. These comparators are useful in some mobile applications. Please refer to the Pin Information Summary section to locate the corresponding paired I/Os with differential comparators.

Input Standard	V _{CCIO} (Typical)				
input Standard	3.3 V	2.5 V	1.8 V		
Single-Ended Interfaces					
LVCMOS33	✓				
LVCMOS25		✓			
LVCMOS18			✓		

Table 2-8. Supported Input Standards

Table 2-9. Supported Output Standards

Output Standard	V _{CCIO} (Typical)
Single-Ended Interfaces	
LVCMOS33	3.3 V
LVCMOS25	2.5 V
LVCMOS18	1.8 V

On-Chip Oscillator

The iCE40 Ultra devices feature two different frequency Oscillator. One is tailored for low-power operation that runs at low frequency (LFOSC). Both Oscillators are controlled with internally generated current.

The LFOSC runs at nominal frequency of 10 kHz. The high frequency oscillator (HFOSC) runs at a nominal frequency of 48 MHz, divisible to 24 MHz, 12 MHz, or 6 MHz by user option. The LFOSC can be used to perform all always-on functions, with the lowest power possible. The HFOSC can be enabled when the always-on functions detect a condition that would need to wake up the system to perform higher frequency functions.

There is one output on each device that can sink up to 500 mA current. This output is open-drain, and provides sinking current to drive an external IR LED connecting to the positive supply. This IR drive current is user programmable from 50 mA to 500 mA in increments of 50 mA. This output functions as General Purpose I/O with open-drain when the high current LED drive is not needed.

Embedded PWM IP

To provide an easier usage of the RGB high current drivers to drive RGB LED, a Pulse-Width Modulator IP can be embedded into the user design. This PWM IP provides the flexibility for user to dynamically change the settings on the ON-time duration, OFF-time duration, and ability to turn the LED lights on and off gradually with user set breath-on and breath-off time.

For additional information on the embedded PWM IP, please refer to TN1288, iCE40 LED Driver Usage Guide.

Non-Volatile Configuration Memory

All iCE40 Ultra devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device.

For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration.

iCE40 Ultra Programming and Configuration

This section describes the programming and configuration of the iCE40 Ultra family.

Device Programming

The NVCM memory can be programmed through the SPI port. The SPI port is located in Bank 1, using SPI_{CCIO1} power supply.

Device Configuration

There are various ways to configure the Configuration RAM (CRAM), using SPI port, including:

- From a SPI Flash (Master SPI mode)
- System microprocessor to drive a Serial Slave SPI port (SSPI mode)

For more details on configuring the iCE40 Ultra, please see TN1248, iCE40 Programming and Configuration.

Power Saving Options

The iCE40 Ultra devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. Table 2-10 describes the function of these features.

Table 2-10. iCE40 Ultra Power Saving Features Description

Device Subsystem	Feature Description
	When LATCHINPUTVALUE is enabled, puts the PLL into low-power mode; PLL output held static at last input clock value.
	To save power, the optional iCEGate latch can selectively freeze the state of individual, non-regis- tered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control.

iCE40 Ultra Family Data Sheet DC and Switching Characteristics

June 2016

Data Sheet DS1048

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V _{CC}	–0.5 V to 1.42 V
Output Supply Voltage V _{CCIO}	–0.5 V to 3.60 V
NVCM Supply Voltage V _{PP_2V5}	–0.5 V to 3.60 V
PLL Supply Voltage V _{CCPLL}	–0.5 V to 1.42 V
I/O Tri-state Voltage Applied.	–0.5 V to 3.60 V
Dedicated Input Voltage Applied	–0.5 V to 3.60 V
Storage Temperature (Ambient)	–65 °C to 150 °C
Junction Temperature (T _J)	–65 °C to 125 °C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

Recommended Operating Conditions¹

Symbol	Parameter		Min.	Max.	Units
V _{CC} ¹	Core Supply Voltage		1.14	1.26	V
		Slave SPI Configuration	1.71 ⁴	3.46	V
V	VPP_2V5 NVCM Programming and	Master SPI Configuration	2.30	3.46	V
V _{PP_2V5}	Operating Supply Voltage	Configuration from NVCM	2.30	3.46	V
		NVCM Programming	2.30	3.00	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	V_{CCIO_0} , SPI_ V_{CCIO1} , V_{CCIO_2}	1.71	3.46	V
V _{CCPLL}	PLL Supply Voltage		1.14	1.26	V
t _{JCOM}	Junction Temperature Commercial Operation		0	85	°C
t _{JIND}	Junction Temperature Industrial Operation		-40	100	°C
t _{PROG}	Junction Temperature N	VCM Programming	10.00	30.00	°C

 Like power supplies must be tied together if they are at the same supply voltage and they meet the power up sequence requirement. Please refer to Power-Up Supply Sequencing section. V_{CC} and V_{CCPLL} are recommended to tie to same supply with an RC-based noise filter between them. Please refer to TN1252, iCE40 Hardware Checklist.

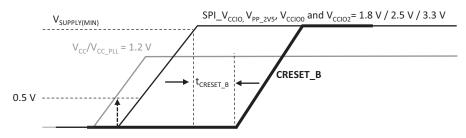
2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

 V_{PP_2V5} can, optionally, be connected to a 1.8 V (+/-5%) power supply in Slave SPI Configuration mode subject to the condition that none of the HFOSC/LFOSC and RGB LED / IR LED driver features are used. Otherwise, V_{PP_2V5} must be connected to a power supply with a minimum 2.30 V level.

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter	Min.	Max.	Units
t _{RAMP}	Power supply ramp rates for all power supplies.	0.6	10	V/ms


1. Assumes monotonic ramp rates.

2. Power up sequence must be followed. Please refer to Power-Up Supply Sequencing section.

^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 3-2. Power Up Sequence with All Supplies Connected Together

Power-On-Reset Voltage Levels¹

Symbol	Parameter		Min.	Max.	Units
		V _{CC}	0.62	0.92	V
	Power-On-Reset ramp-up trip point (circuit monitoring V _{CC} , SPI_V _{CCIO1} , V _{PP 2V5})	SPI_V _{CCIO1}	0.87	1.50	V
		V _{PP_2V5}	0.90	1.53	V
	Power-On-Reset ramp-down trip point (circuit monitor- ing V _{CC} , SPI_V _{CCIO1} , V _{PP 2V5})	V _{CC}		0.79	V
		SPI_V _{CCIO1}		1.50	V
		V _{PP_2V5}		1.53	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

ESD Performance

Please contact Lattice Semiconductor for additional information.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL,} I_{\rm IH}^{1, 3, 4}$	Input or I/O Leakage	$0V < V_{IN} < V_{CCIO} + 0.2 V$	_	_	+/-10	μΑ
C ₁	I/O Capacitance, excluding LED Drivers ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 V$		6	_	pF
C ₂	Global Input Buffer Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 V$		6	_	pF
C ₃	RGB Pin Capacitance ²	V_{CC} = Typ., V_{IO} = 0 to 3.5 V		15	—	pF
C ₄	IRLED Pin Capacitance ²	V_{CC} = Typ., V_{IO} = 0 to 3.5 V		53	—	pF
V _{HYST}	Input Hysteresis	V _{CCIO} = 1.8 V, 2.5 V, 3.3 V	_	200	—	mV
	Internet DIO Dulling	$V_{CCIO} = 1.8 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-3	_	-31	μΑ
	Internal PIO Pull-up Current	$V_{CCIO} = 2.5 \text{ V}, 0 = < V_{IN} < =0.65 \text{ V}_{CCIO}$	-8	_	-72	μΑ
		$V_{CCIO} = 3.3 \text{ V}, 0 = < V_{IN} < =0.65 \text{ V}_{CCIO}$	-11	_	-128	μΑ

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled.

2. T_J 25 °C, f = 1.0 MHz.

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. Input pins are clamped to V_{CCIO} and GND by a diode. When input is higher than V_{CCIO} or lower than GND, the Input Leakage current will be higher than the I_{IL} and I_{IH}.

Typical Building Block Function Performance^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	16.5	ns
4:1 MUX	18.0	ns
16:1 MUX	19.5	ns

Register-to-Register Performance

Function	Timing	Units	
Basic Functions		•	
16:1 MUX	110	MHz	
16-bit adder	100	MHz	
16-bit counter	100	MHz	
64-bit counter	40	MHz	
Embedded Memory Functions		•	
256x16 Pseudo-Dual Port RAM	150	MHz	

1. The above timing numbers are generated using the Lattice Design Software tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Under worst case operating conditions.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

Maximum sysIO Buffer Performance¹

I/O Standard	Max. Speed	Units					
Inputs							
LVCMOS33	250	MHz					
LVCMOS25	250	MHz					
LVCMOS18	250	MHz					
	Outputs						
LVCMOS33	250	MHz					
LVCMOS25	250	MHz					
LVCMOS18	155	MHz					

1. Measured with a toggling pattern

iCE40 Ultra Family Timing Adders

Over Recommended Commercial Operating Conditions^{1, 2, 3}

Buffer Type	Description	Timing (Typ.)	Units
Input Adjusters	· · · · ·		
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.18	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.19	ns
Output Adjusters	· · · · ·		
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	-0.12	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.32	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. Commercial timing numbers are shown.

iCE40 Ultra External Switching Characteristics

Over Recommended Commercial Operating Conditions

Parameter	Description Device		Min	Max	Units
Clocks	I		1		
Global Clocks					
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All devices	—	185	MHz
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All devices	2	—	ns
t _{SKEW_GBUF}	Global Buffer Clock Skew Within a Device	All devices	—	500	ps
Pin-LUT-Pin Prop	pagation Delay		•		•
t _{PD}	Best case propagation delay through one LUT logic	All devices	_	9.0	ns
General I/O Pin F	Parameters (Using Global Buffer Clock without P	LL) ¹	•		•
t _{SKEW_IO}	Data bus skew across a bank of IOs	All devices		410	ps
t _{CO}	Clock to Output – PIO Output Register	All devices	_	9.0	ns
t _{SU}	Clock to Data Setup – PIO Input Register	All devices	-0.5		ns
t _H	Clock to Data Hold – PIO Input Register	All devices	5.55	—	ns
General I/O Pin F	Parameters (Using Global Buffer Clock with PLL)				•
t _{COPLL}	Clock to Output – PIO Output Register	All Devices		2.9	ns
t _{SUPLL}	Clock to Data Setup – PIO Input Register	All Devices	5.9	—	ns
t _{HPLL}	Clock to Data Hold – PIO Input Register	All Devices	-0.6	—	ns

1. All the data is from the worst case condition.

SPI Master or NVCM Configuration Time^{1, 2}

Symbol	Parameter	Conditions	Max.	Units
		All devices – Low Frequency (Default)	95	ms
t _{CONFIG}	-	All devices – Medium frequency	35	ms
		All devices – High frequency	18	ms

1. Assumes sysMEM Block is initialized to an all zero pattern if they are used.

2. The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

sysCONFIG Port Timing Specifications

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
All Configurat	tion Modes					
t _{CRESET_B}	Minimum CRESET_B LOW pulse width required to restart configuration, from falling edge to rising edge		200	_	_	ns
t _{DONE_IO}	Number of configuration clock cycles after CDONE goes HIGH before the PIO pins are activated		49	—	_	Clock Cycles
Slave SPI						
^t cr_sck	Minimum time from a rising edge on CRESET_B until the first SPI WRITE operation, first SPI_XCK clock. During this time, the iCE40 Ultra device is clearing its internal configuration mem- ory		1200	_	_	μs
f _{MAX} C		Write	1		25	MHz
	CCLK clock frequency	Read ¹	—	15	—	MHz
t _{CCLKH}	CCLK clock pulsewidth HIGH		20	—	—	ns
t _{CCLKL}	CCLK clock pulsewidth LOW		20	—	—	ns
t _{STSU}	CCLK setup time		12	—	—	ns
t _{STH}	CCLK hold time		12	—	—	ns
t _{stco}	CCLK falling edge to valid output		13	—	—	ns
Master SPI ³	·					
		Low Frequency (Default)	7.0	12.0	17.0	MHz
f _{MCLK}	MCLK clock frequency	Medium Frequency ²	21.0	33.0	45.0	MHz
		High Frequency ²	33.0	53.0	71.0	MHz
t _{MCLK}	CRESET_B HIGH to first MCLK edge		1200	—	—	μs
t _{SU}	CCLK setup time ⁴		9.9	—	—	ns
t _{HD}	CCLK hold time		1	—	—	ns

1. Supported with 1.2 V Vcc and at 25 $^{\circ}\text{C}.$

2. Extended range fMAX Write operations support up to 53 MHz with 1.2 V Vcc and at 25 °C.

3. t_{SU} and t_{HD} timing must be met for all MCLK frequency choices.

4. For considerations of SPI Master Configuration Mode, please refer to TN1248, iCE40 Programming and Configuration.

iCE40 Ultra Family Data Sheet Pinout Information

June 2016

Data Sheet DS1048

Signal Descriptions

Sign	nal Name	Function	I/O	Description
Power Supplie	s	ı — — — — — — — — — — — — — — — — — — —		
V _{CC}		Power		Core Power Supply
	V _{CCIO1} , V _{CCIO_2}	Power		Power for I/Os in Bank 0, 1 and 2.
V _{PP_2V5}	_	Power	_	Power for NVCM programming and operations.
V _{CCPLL}		Power	_	Power for PLL
GND		GROUND	_	Ground
GND_LED		GROUND	—	Ground for LED drivers. Should connect to GND on board.
Configuration				
CRESETB		Configuration	I	Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to V _{CCIO_1} .
CDONE		Configuration	I/O	Configuration Done. Includes a weak pull-up resistor to SPI_V _{CCIO1} .
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.
Config SPI				
Primary	Secondary			
CRESETB	—	Configuration	I	Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to SPI_V _{CCIO1} .
PIOB_xx	CDONE	Configuration	I/O	Configuration Done. Includes a weak pull-up resistor to SPI_V _{CCIO1} .
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.
Config SPI				
Primary	Secondary			
PIOB_34a	SPI_SCK	Configuration	I/O	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the clock to external SPI memory. In Slave SPI mode, this pin inputs the clock from external processor.
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function
PIOB_32a	SPI_SDO	Configuration	Output	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the command data to external SPI memory. In Slave SPI mode, this pin connects to the MISO pin of the external processor.
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signa	I Name	Function	I/O	Description
PIOB_33b	SPI_SI	Configuration	Input	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin receives data from exter- nal SPI memory. In Slave SPI mode, this pin connects to the MOSI pin of the external processor.
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.
PIOB_35b	SPI_SS_B	Configuration	I/O	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs to the external SPI memory. In Slave SPI mode, this pin inputs from the external processor.
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.
Global Signals		•		•
Primary	Secondary			
PIOT_46b	G0	General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function
		Global	Input	Global input used for high fanout, or clock/reset net. The G0 pin drives the GBUF0 global buffer
PIOT_45a	G1	General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function
		Global	Input	Global input used for high fanout, or clock/reset net. The G1 pin drives the GBUF1 global buffer
PIOT_25b	G3	General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function
		Global	Input	Global input used for high fanout, or clock/reset net. The G3 pin drives the GBUF3 global buffer
PIOT_12a	G4	General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function
		Global	Input	Global input used for high fanout, or clock/reset net. The G4 pin drives the GBUF4 global buffer
PIOT_11b	G5	General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function
		Global	Input	Global input used for high fanout, or clock/reset net. The G5 pin drives the GBUF5 global buffer
PIOB_3b	G6	General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function
		Global	Input	Global input used for high fanout, or clock/reset net. The G6 pin drives the GBUF6 global buffer
LED Signals	•	•	•	
RGB0		General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be pro- grammed as open drain I/O in user function
		LED	Open-Drain Output	In user mode, with user's choice, this pin can be pro- grammed as open drain 24mA output to drive exter- nal LED
RGB1		General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be pro- grammed as open drain I/O in user function
		LED	Open-Drain Output	In user mode, with user's choice, this pin can be pro- grammed as open drain 24mA output to drive exter- nal LED

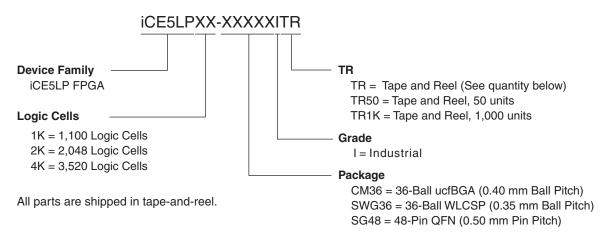
Pinout Information iCE40 Ultra Family Data Sheet

Signal Name	Function	I/O	Description
RGB2	General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be pro- grammed as open drain I/O in user function
	LED	Open-Drain Output	In user mode, with user's choice, this pin can be pro- grammed as open drain 24mA output to drive exter- nal LED
IRLED	General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be pro- grammed as open drain I/O in user function
	LED	Open-Drain Output	In user mode, with user's choice, this pin can be pro- grammed as open drain 500mA output to drive exter- nal LED
PIOT_xx	General I/O	I/O	In user mode, with user's choice, this pin can be pro- grammed as I/O in user function in the top (xx = I/O location)
PIOB_xx	General I/O	I/O	In user mode, with user's choice, this pin can be programmed as I/O in user function in the bottom ($xx = I/O$ location)

Pin Information Summary

Pin Type			iCE5LP1K			iCE5LP2K		iCE5LP4K		
		CM36	SWG36	SG48 ¹	CM36	SWG36	SG48 ¹	CM36	SWG36	SG48 ¹
General Purpose I/O	Bank 0	12	5	17	12	5	17	12	5	17
Per Bank	Bank 1	4	15	14	4	15	14	4	15	14
	Bank 2	10	6	8	10	6	8	10	6	8
Total General Purpose I/Os		26	26	39	26	26	39	26	26	39
V _{CC}		1	1	2	1	1	2	1	1	2
V _{CCIO}	Bank 0	1	1	1	1	1	1	1	1	1
	Bank 1	1	1	1	1	1	1	1	1	1
	Bank 2	1	1	1	1	1	1	1	1	1
V _{CCPLL}		1	1	1	1	1	1	1	1	1
V _{PP_2V5}		1	1	1	1	1	1	1	1	1
Dedicated Config Pins	6	1	1	2	1	1	2	1	1	2
GND		2	2	0	2	2	0	2	2	0
GND_LED		1	1	0	1	1	0	1	1	0
Total Balls		36	36	48	36	36	48	36	36	48

1. 48-pin QFN package (SG48) requires the package paddle to be connected to GND.



iCE40 Ultra Family Data Sheet Ordering Information

June 2016

Data Sheet DS1048

iCE5LP Part Number Description

Tape and Reel Quantity

Package	TR Quantity
CM36	4,000
SWG36	5,000
SG48	2,000

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Ordering Part Numbers

Industrial

Part Number	LUTs	Supply Voltage	Package	Pins	Temp.
iCE5LP1K-CM36ITR	1100	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP1K-CM36ITR50	1100	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP1K-CM36ITR1K	1100	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP1K-SWG36ITR	1100	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP1K-SWG36ITR50	1100	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP1K-SWG36ITR1K	1100	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP1K-SG48ITR	1100	1.2 V	Halogen-Free QFN	48	IND
iCE5LP1K-SG48ITR50	1100	1.2 V	Halogen-Free QFN	48	IND
iCE5LP2K-CM36ITR	2048	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP2K-CM36ITR50	2048	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP2K-CM36ITR1K	2048	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP2K-SWG36ITR	2048	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP2K-SWG36ITR50	2048	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP2K-SWG36ITR1K	2048	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP2K-SG48ITR	2048	1.2 V	Halogen-Free QFN	48	IND
iCE5LP2K-SG48ITR50	2048	1.2 V	Halogen-Free QFN	48	IND
iCE5LP4K-CM36ITR	3520	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP4K-CM36ITR50	3520	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP4K-CM36ITR1K	3520	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP4K-SWG36ITR	3520	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP4K-SWG36ITR50	3520	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP4K-SWG36ITR1K	3520	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP4K-SG48ITR	3520	1.2 V	Halogen-Free QFN	48	IND
iCE5LP4K-SG48ITR50	3520	1.2 V	Halogen-Free QFN	48	IND

Date	Version	Section	Change Summary
			Updated Supply Current section. — Corrected I _{PP2V5STDBY} parameter. — Added Typ. VCC = 1.2 V values for I _{CCPEAK} , I _{PP 2V5PEAK} ,
			I _{SPL_VCCI01PEAK} , and I _{CCI0PEAK} . — Added footnote 5. — Corrected S _{PL_VCCI01} character format.
			Updated User SPI Specifications section. Removed parameters and added footnotes.
			Updated Internal Oscillators (HFOSC, LFOSC) section. Added Com- mercial and Industrial Temp values for DCH _{CLKHF}
			Updated sysIO Single-Ended DC Electrical Characteristics section. Removed footnote.
			Updated Register-to-Register Performance section. Modified footnotes.
			Updated iCE40 Ultra External Switching Characteristics section. Modi- fied footnote.
			Updated sysCLOCK PLL Timing section. Reversed t _{OPJIT} conditions.
			Updated sysCONFIG Port Timing Specifications section. — Modified t _{CR_SCK} Min. value. — Added footnote 4 to t _{SU} parameter. — Modified t _{SU} Min. value. — Modified t _{HD} parameter.
			Updated section heading to RGB LED and IR LED Drive. Modified ILED_ACCURACY and IIR_ACCURACY parameters, Min. and Max. values.
		Pinout Information	Updated Signal Descriptions section. Changed V _{CCIO_1} to SPI_V _{CCIO1} in the CDONE, CRESETB and PIOB_xx descriptions.
			Updated Pin Information Summary section. — Corrected symbol character format. — Corrected VCPP_2V5 to V _{PP_2V5} .
	1.9	Introduction	Updated Features section. Updated BGA package to ucfBGA.
		DC and Switching Characteristics	Updated Differential Comparator Electrical Characteristics section. Corrected typo in V_{REF} Max. value.
		Pinout Information	Updated Signal Descriptions section. — Changed PIOB_12a to PIOB_xx — Changed SPI_CSN to SPI_SS_B and revised description when in Slave SPI mode. — Corrected minor typo errors.
			Updated Pin Information Summary section. Added footnote to SG48.
		Ordering Information	Updated iCE5LP Part Number Description section. Updated BGA package to ucfBGA.
			Updated Ordering Part Numbers section. Updated BGA package to ucf- BGA.
June 2015	1.8	DC and Switching Characteristics	Updated Internal Oscillators (HFOSC, LFOSC) section. Removed deci- mals.
		Ordering Information	Updated iCE5LP Part Number Description section. — Added TR items. — Corrected formatting errors.
			Updated Ordering Part Numbers section. Updated CM36 and SG48 packages.

Date	Version	Section	Change Summary
August 2014 1.4	1.4	All	Removed Preliminary document status.
		Introduction	Updated General Description section. Added information on high current driver.
			 Updated Features section. Changed standby current typical to as low as 71 μA. Changed feature to Embedded Memory. Updated Table 1-1, iCE40 Ultra Family Selection Guide. Added NVCM and Embedded PWM IP rows. Added (MULT16 with 32-bit Accumulator) to DSP Block. Added Total I/O (Dedicated I/O) Count data.
			General update to Introduction section.
		Architecture	Updated Architecture Overview section. — Revised and added information on sysIO banks. — Updated reference for embedded PWM IP.
		Updated iCE40 Ultra Programming and Configuration section. — Changed SPI1 to SPI. — Changed VCCIO_1 to SPI_V _{CCIO1} .	
		DC and Switching Characteristics	Updated Absolute Maximum Ratings section. Changed PLL Supply Voltage VCCPLL value.
			Updated Recommended Operating Conditions section. Added footnote to VCCPLL.
			Updated Power-up Sequence section. General update.
			Updated Power-On-Reset Voltage Levels section. Changed the V _{PORUP} V _{CC} Max.value.
			Updated DC Electrical Characteristics section. Added C_3 and C_4 information.
		Updated Supply Current section. — Completed Typ. VCC =1.2 V4 data. — Changed symbols to I _{SPI_VCCIO1STDBY} and I _{SPI_VCCIO1PEAK} . — Added information to footnote 3.	
			Updated Internal Oscillators (HFOSC, LFOSC) section. General update.
			Updated iCE40 Ultra External Switching Characteristics section. Added Max. value for t_{COPLL} . Added Min. values for t_{SUPLL} and t_{HPLL} .
		Updated sysCLOCK PLL Timing section. Added Max. value for t _{OPJIT} .	
			Updated sysCONFIG Port Timing Specifications section. — Added T _{SU} and T _{HD} information. — Added footnote 3 to Master SPI.
			Updated High Current LED and IR LED Drive section. Updated Min. value.
July 2014	1.3	All	Changed document status from Advance to Preliminary.
		Introduction	Updated Features section. Adjusted Ultra-low Power Devices standby current.
		DC and Switching Characteristics	Updated AC/DC specifications numbers.