E. Attice Semiconductor Corporation - ICE5LP2K-SWG36ITR50 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Discontinued at Digi-Key
Number of LABs/CLBs	256
Number of Logic Elements/Cells	2048
Total RAM Bits	81920
Number of I/O	26
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	36-XFBGA, WLCSP
Supplier Device Package	36-WLCSP (2.1x2.1)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice5lp2k-swg36itr50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iCE40 Ultra Family Data Sheet Introduction

June 2016

Data Sheet DS1048

General Description

iCE40 Ultra family is an ultra-low power FPGA and sensor manager designed for ultra-low power mobile applications, such as smartphones, tablets and hand-held devices. The iCE40 Ultra family includes integrated SPI and I²C blocks to interface with virtually all mobile sensors and application processors. The iCE40 Ultra family also features two on-chip oscillators, 10 kHz and 48 MHz. The LFOSC (10 kHz) is ideal for low power function in always-on applications, while HFOSC (48 MHz) can be used for awaken activities.

The iCE40 Ultra family also features DSP functional block to off-load Application Processor to pre-process information sent from the mobile sensors. The embedded RGB PWM IP, with the three 24 mA constant current RGB outputs on the iCE40 Ultra provides all the necessary logic to directly drive the service LED, without the need of external MOSFET or buffer.

The 500 mA constant current IR driver output provides a direct interface to external LED for application such as IrDA functions. Users simply implement the modulation logic that meets his needs, and connect the IR driver directly to the LED, without the need of external MOSFET or buffer. This high current IR driver can also be used as Barcode Emulation, sending barcode information to external Barcode Reader.

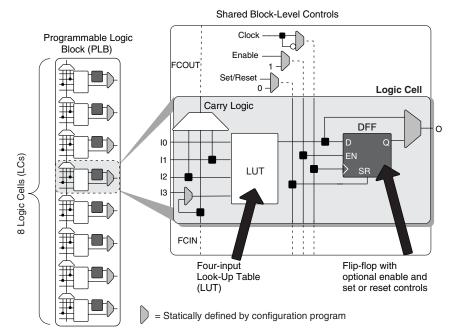
The iCE40 Ultra family of devices are targeting for mobile applications to perform functions such as IrDA, Service LED, Barcode Emulation, GPIO Expander, SDIO Level Shift, and other custom functions.

The iCE40 Ultra family features three device densities, from 1100 to 3520 Look Up Tables (LUTs) of logic with programmable I/Os that can be used as either SPI/I²C interface ports or general purpose I/O's. It also has up to 80 kbits of Block RAMs to work with user logic.

Features

- Flexible Logic Architecture
 - Three devices with 1100 to 3520 LUTs
 - Offered in WLCS, ucfBGA and QFN packages
- Ultra-low Power Devices
 - Advanced 40 nm ultra-low power process
 - As low as 71 µA standby current typical
- Embedded Memory
 - Up to 80 kbits sysMEM™ Embedded Block RAM
- Two Hardened I²C Interfaces
- Two Hardened SPI Interfaces
- Two On-Chip Oscillators
 - Low Frequency Oscillator 10 kHz
 - High Frequency Oscillator 48 MHz
- 24 mA Current Drive RGB LED Outputs
 - Three drive outputs in each device
 - User selectable sink current up to 24 mA
- 500 mA Current Drive IR LED Output
 - One IR drive output in each device
 - User selectable sink current up to 500 mA

- On-chip DSP
 - Signed and unsigned 8-bit or 16-bit functions
 - Functions include Multiplier, Accumulator, and Multiply-Accumulate (MAC)
- Flexible On-Chip Clocking
 - Eight low skew global signal resource, six can be directly driven from external pins
 - One PLL with dynamic interface per device
 - Flexible Device Configuration
 - SRAM is configured through:
 - Standard SPI Interface
 - Internal Nonvolatile Configuration Memory (NVCM)
- Ultra-Small Form Factor
 - As small as 2.078 mm x 2.078 mm
- Applications
 - Smartphones
 - Tablets and Consumer Handheld Devices
 - Handheld Commercial and Industrial Devices
 - Multi Sensor Management Applications
 - Sensor Pre-processing and Sensor Fusion
 - Always-On Sensor Applications
 - USB 3.1 Type C Cable Detect / Power Delivery Applications


^{© 2016} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PLB Blocks

The core of the iCE40 Ultra device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register.

Figure 2-2. PLB Block Diagram

Logic Cells

Each Logic Cell includes three primary logic elements shown in Figure 2-2.

- A four-input Look-Up Table (LUT) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUTs to create wider logic functions.
- A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration.
- Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtracters, comparators, binary counters and some wide, cascaded logic functions.

Function	Туре	Signal Names	Description
Input	Data signal	10, 11, 12, 13	Inputs to LUT
Input	Control signal	Enable	Clock enable shared by all LCs in the PLB
Input	Control signal	Set/Reset ¹	Asynchronous or synchronous local set/reset shared by all LCs in the PLB.
Input	Control signal	Clock	Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB
Input	Inter-PLB signal	FCIN	Fast carry in
Output	Data signals	0	LUT or registered output
Output	Inter-PFU signal	FCOUT	Fast carry out

Table 2-1. Logic Cell Signal Descriptions

1. If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration.

Routing

There are many resources provided in the iCE40 Ultra devices to route signals individually with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient connections in the diagonal, horizontal and vertical directions.

The design tool takes the output of the synthesis tool and places and routes the design.

Clock/Control Distribution Network

Each iCE40 Ultra device has six global inputs, two pins on the top bank and four pins on the bottom bank

These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are identified as Gxx and each drives one of the eight global buffers. The global buffers are identified as GBUF[7:0]. These six inputs may be used as general purpose I/O if they are not used to drive the clock nets.

Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input. GBUF[7:6, 3:0] can connect directly to G[7:6, 3:0] pins respectively. GBUF4 and GBUF5 can connect to the two on-chip Oscillator Generators (GBUF4 connects to LFOSC, GBUF5 connects to HFOSC).

Global Buffer	LUT Inputs	Clock	Clock Enable	Reset
GBUF0		\checkmark	√	
GBUF1		\checkmark		\checkmark
GBUF2		\checkmark	√	
GBUF3	Yes, any 4 of 8	\checkmark		\checkmark
GBUF4	GBUF Inputs	\checkmark	√	
GBUF5		\checkmark		\checkmark
GBUF6		\checkmark	√	
GBUF7		\checkmark		\checkmark

Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks

The maximum frequency for the global buffers are shown in the iCE40 Ultra External Switching Characteristics tables later in this document.

Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 Ultra device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state.

Global Reset Control

The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 Ultra device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application.

Table 2-4. sysMEM Block Configurations¹

Block RAM Configuration	Block RAM Configuration and Size	WADDR Port Size (Bits)	WDATA Port Size (Bits)	RADDR Port Size (Bits)	RDATA Port Size (Bits)	MASK Port Size (Bits)
SB_RAM256x16 SB_RAM256x16NR SB_RAM256x16NW SB_RAM256x16NRNW	256x16 (4 k)	8 [7:0]	16 [15:0]	8 [7:0]	16 [15:0]	16 [15:0]
SB_RAM512x8 SB_RAM512x8NR SB_RAM512x8NW SB_RAM512x8NRNW	512x8 (4 k)	9 [8:0]	8 [7:0]	9 [8:0]	8 [7:0]	No Mask Port
SB_RAM1024x4 SB_RAM1024x4NR SB_RAM1024x4NW SB_RAM1024x4NRNW	1024x4 (4 k)	10 [9:0]	4 [3:0]	10 [9:0]	4 [3:0]	No Mask Port
SB_RAM2048x2 SB_RAM2048x2NR SB_RAM2048x2NW SB_RAM2048x2NRNW	2048x2 (4 k)	11 [10:0]	2 [1:0]	11 [10:0]	2 [1:0]	No Mask Port

1. For iCE40 Ultra, the primitive name without "Nxx" uses rising-edge Read and Write clocks. "NR" uses rising-edge Write clock, falling-edge Read clock. "NR" uses falling-edge Write clock and rising-edge Read clock. "NRNW" uses falling-edge clocks on both Read and Write.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks.

RAM4k Block

Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array.

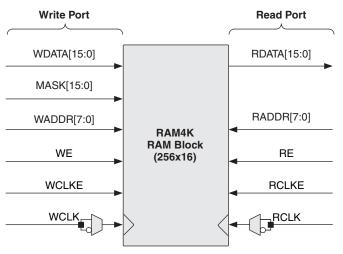


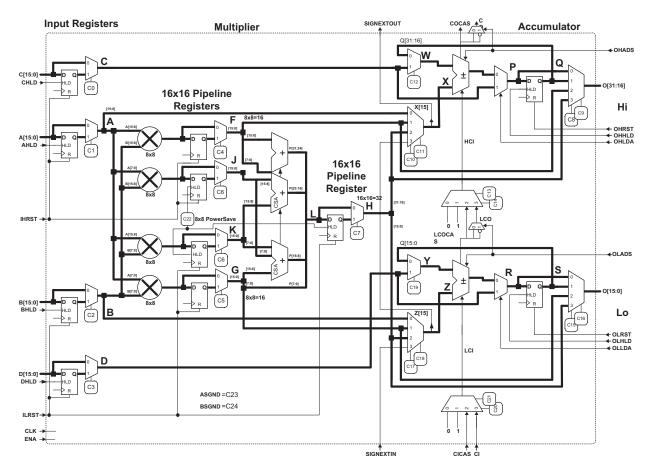
Table 2-5. EBR Signal Descriptions

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input.
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit 1 = do not write bit
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.
WE	Input	Write Enable input.
WCLKE	Input	Write Clock Enable input.
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.
RDATA[15:0]	Output	Read Data output.
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.
RE	Input	Read Enable input.
RCLKE	Input	Read Clock Enable input.
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.

For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices.

sysDSP

The iCE40 Ultra family provides an efficient sysDSP architecture that is very suitable for low-cost Digital Signal Processing (DSP) functions for mobile applications. Typical functions used in these applications are Multiply, Accumulate, and Multiply-Accumulate. The block can also be used for simple Add and Subtract functions.


iCE40 Ultra sysDSP Architecture Features

The iCE40 Ultra sysDSP supports many functions that include the following:

- Single 16-bit x 16-bit Multiplier, or two independent 8-bit x 8-bit Multipliers
- Optional independent pipeline control on Input Register, Output Register, and Intermediate Reg faster clock
 performance
- Single 32-bit Accumulator, or two independent 16-bit Accumulators
- Single 32-bit, or two independent 16-bit Adder/Subtracter functions, registered or asynchronous
- Cascadable to create wider Accumulator blocks

Figure 2-5 shows the block diagram of the sysDSP block. The block consists Multiplier section, with an bypassable Output register. The Input Register, Intermediate register between Multiplier and AC timing to achieve the highest performance.

Figure 2-5. sysDSP Functional Block Diagram (16-bit x 16-bit Multiply-Accumulate)

Table 2-6. sysDSP Input/Output List

Signal	Primitive Port Name	Width	Input / Output	Function	Default
CLK	CLK	1	Input	Clock Input. Applies to all clocked elements in the sysDSP block	
ENA	CE	1	Input	Clock Enable Input. Applies to all clocked elements in the sysDSP block. 0 = Not Enabled 1 = Enabled	0: Enabled
A[15:0]	A[15:0]	16	Input	Input to the A Register. Feeds the Multiplier or is a direct input to the Adder Accumulator	16'b0
B[15:0]	B[15:0]	16	Input	Input to the B Register. Feeds the Multiplier or is a direct input to the Adder Accumulator	16'b0
C[15:0]	C[15:0]	16	Input	Input to the C Register. It is a direct input to the Adder Accumulator	16'b0
D[15:0]	D[15:0]	16	Input	Input to the D Register. It is a direct input to the Adder Accumulator	16'b0
AHLD	AHOLD	1	Input	A Register Hold. 0 = Update 1 = Hold	0: Update
BHLD	BHOLD	1	Input	B Register Hold. 0 = Update 1 = Hold	0: Update
CHLD	CHOLD	1	Input	C Register Hold. 0 = Update 1 = Hold	0: Update
DHLD	DHOLD	1	Input	D Register Hold. 0 = Update 1 = Hold	0: Update
IHRST	IRSTTOP	1	Input	Reset input to A and C input registers, and the pipeline registers in the upper half of the Multiplier Section. 0 = No Reset 1 = Reset	0: No Reset
ILRST	IRSTBOT	1	Input	Reset input to B and D input registers, and the pipeline registers in the lower half of the Multiplier Section. It also resets the Multiplier result pipeline register. 0 = No Reset 1 = Reset	0: No Reset
O[31:0]	O[31:0]	32	Output	Output of the sysDSP block. This output can be: — O[31:0] – 32-bit result of 16x16 Multiplier or MAC — O[31:16] – 16-bit result of 8x8 upper half Multi- plier or MAC — O[15:0] – 16-bit result of 8x8 lower half Multi- plier or MAC	
OHHLD	OHOLDTOP	1	Input	High-order (upper half) Accumulator Register Hold. 0 = Update 1 = Hold	0: Update
OHRST	ORSTTOP	1	Input	Reset input to high-order (upper half) bits of the Accumulator Register. 0 = No Reset 1 = Reset	0: No Reset

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , SPI_ V_{CCIO1} , and V_{PP_2V5} reach the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. You must ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins maintain the pre-configuration state until V_{CC} , SPI_ V_{CCIO1} , and V_{PP_2V5} reach the defined levels. The I/Os take on the software user-configured settings only after POR signal is deactivated and the device performs a proper download/configuration. Unused I/Os are automatically blocked and the pull-up termination is disabled.

Supported Standards

The iCE40 Ultra sysIO buffer supports both single-ended input/output standards, and used as differential comparators. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none).

Table 2-8 and Table 2-9 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 Ultra devices.

Differential Comparators

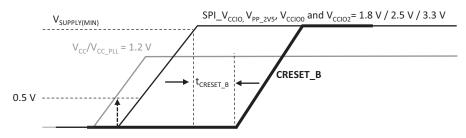
The iCE40 Ultra devices provide differential comparator on pairs of I/O pins. These comparators are useful in some mobile applications. Please refer to the Pin Information Summary section to locate the corresponding paired I/Os with differential comparators.

Input Standard	V _{CCIO} (Typical)					
input Standard	3.3 V	2.5 V	1.8 V			
Single-Ended Interfaces						
LVCMOS33	✓					
LVCMOS25		✓				
LVCMOS18			✓			

Table 2-8. Supported Input Standards

Table 2-9. Supported Output Standards

Output Standard	V _{CCIO} (Typical)
Single-Ended Interfaces	
LVCMOS33	3.3 V
LVCMOS25	2.5 V
LVCMOS18	1.8 V


On-Chip Oscillator

The iCE40 Ultra devices feature two different frequency Oscillator. One is tailored for low-power operation that runs at low frequency (LFOSC). Both Oscillators are controlled with internally generated current.

The LFOSC runs at nominal frequency of 10 kHz. The high frequency oscillator (HFOSC) runs at a nominal frequency of 48 MHz, divisible to 24 MHz, 12 MHz, or 6 MHz by user option. The LFOSC can be used to perform all always-on functions, with the lowest power possible. The HFOSC can be enabled when the always-on functions detect a condition that would need to wake up the system to perform higher frequency functions.

Figure 3-2. Power Up Sequence with All Supplies Connected Together

Power-On-Reset Voltage Levels¹

Symbol	Parameter	Min.	Max.	Units	
		V _{CC}	0.62	0.92	V
V _{PORUP}	Power-On-Reset ramp-up trip point (circuit monitoring V_{CC} , SPI_V _{CCIO1} , V_{PP_2V5})	SPI_V _{CCIO1}	0.87	1.50	V
		V _{PP_2V5}	0.90	1.53	V
		V _{CC}		0.79	V
V _{PORDN}	Power-On-Reset ramp-down trip point (circuit monitor- ing V _{CC} , SPI_V _{CCIO1} , V _{PP 2V5})	SPI_V _{CCIO1}		1.50	V
		V _{PP_2V5}		1.53	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

ESD Performance

Please contact Lattice Semiconductor for additional information.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL,} I_{\rm IH}^{1, 3, 4}$	Input or I/O Leakage	$0V < V_{IN} < V_{CCIO} + 0.2 V$	_	_	+/-10	μΑ
C ₁	I/O Capacitance, excluding LED Drivers ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 V$		6	_	pF
C ₂	Global Input Buffer Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 V$		6	_	pF
C ₃	RGB Pin Capacitance ²	V_{CC} = Typ., V_{IO} = 0 to 3.5 V		15	—	pF
C ₄	IRLED Pin Capacitance ²	V_{CC} = Typ., V_{IO} = 0 to 3.5 V		53	—	pF
V _{HYST}	Input Hysteresis	V _{CCIO} = 1.8 V, 2.5 V, 3.3 V	_	200	—	mV
	Internet DIO Dulling	$V_{CCIO} = 1.8 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-3	_	-31	μΑ
I _{PU}	Internal PIO Pull-up Current	$V_{CCIO} = 2.5 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-8	_	-72	μΑ
		$V_{CCIO} = 3.3 \text{ V}, 0 = < V_{IN} < =0.65 \text{ V}_{CCIO}$	-11	_	-128	μΑ

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled.

2. T_J 25 °C, f = 1.0 MHz.

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. Input pins are clamped to V_{CCIO} and GND by a diode. When input is higher than V_{CCIO} or lower than GND, the Input Leakage current will be higher than the I_{IL} and I_{IH}.

Supply Current ^{1, 2, 3, 4, 5}

Symbol	Parameter	Typ. V _{CC} = 1.2 V ⁴	Units
ICCSTDBY	Core Power Supply Static Current	71	μA
IPP2V5STDBY	V _{PP_2V5} Power Supply Static Current	0.55	μΑ
ISPI_VCCIO1STDBY	SPI_V _{CCIO1} Power Supply Static Current	0.5	μΑ
I _{CCIOSTDBY}	V _{CCIO} Power Supply Static Current	0.5	μΑ
I _{CCPEAK}	Core Power Supply Startup Peak Current	8.0	mA
I _{PP_2V5PEAK}	V _{PP_2V5} Power Supply Startup Peak Current	7.0	mA
ISPI_VCCIO1PEAK	SPI_V _{CCIO1} Power Supply Startup Peak Current	9.0	mA
ICCIOPEAK	V _{CCIO} Power Supply Startup Peak Current	7.5	mA

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

2. Frequency = 0 MHz.

3. TJ = 25 °C, power supplies at nominal voltage, on devices processed in nominal process conditions.

4. Does not include pull-up.

5. Startup Peak Currents are measured with decoupling capacitance of 0.1 uF, 10 nF, and 1 nF to the power supply. Higher decoupling capacitance causes higher current.

User I²C Specifications

Parameter		spe	c (STD M	ode)	spec	(FAST N	lode)	
Symbol	Parameter Description	Min	Тур	Max	Min	Тур	Max	Units
f _{SCL}	Maximum SCL clock frequency	—		100			400	kHz
t _{HI}	SCL clock HIGH Time	4			0.6		_	μs
t _{LO}	SCL clock LOW Time	4.7	_	_	1.3	—	_	μs
t _{SU,DAT}	Setup time (DATA)	250			100			ns
t _{HD,DAT}	Hold time (DATA)	0		—	0	—	_	ns
t _{SU,STA}	Setup time (START condition)	4.7			0.6	_	_	μs
t _{HD,STA}	Hold time (START condition)	4	_	_	0.6	—	_	μs
t _{SU,STO}	Setup time (STOP condition)	4	_	—	0.6	—	—	μs
t _{BUF}	Bus free time between STOP and START	4.7		_	1.3		_	μs
t _{CO,DAT}	SCL LOW to DATAOUT valid			3.4			0.9	μs

User SPI Specifications^{1, 2}

Parameter Symbol	Parameter Description	Min	Тур	Max	Units
f _{MAX}	Maximum SCK clock frequency	-	—	45	MHz

1. All setup and hold time parameters on external SPI interface are design-specific and, therefore, generated by the Lattice Design Software tools. These parameters include the following:

- t_{SUmaster} master Setup time (master mode)

- t_{HOLDmaster} master Hold time (master mode)

- t_{SUslave} slave Setup time (slave mode)

- t_{HOLDslave} slave Hold time (slave mode)

- t_{SCK2OUT} SCK to out (slave mode)

2. The SCLK duty cycle needs to be specified in the Lattice Design Software as a timing constraint in order to ensure proper timing check on SCLK HIGH and LOW (t_{HI}, t_{LO}) time.

Internal Oscillators (HFOSC, LFOSC)¹

Pa	arameter	Parameter Description	Spec/Recommended		ended	Units
Symbol	Conditions		Min	Тур	Max	
£	Commercial Temp	HFOSC clock frequency ($t_J = 0 \text{ °C}-85 \text{ °C}$)	-10%	48	10%	MHz
f _{CLKHF}	Industrial Temp	HFOSC clock frequency ($t_J = -40 \text{ °C}-100 \text{ °C}$)	-20%	48	20%	MHz
f _{CLKLF}		LFOSC CLKK clock frequency	-10%	10	10%	kHz
	Commercial Temp	HFOSC clock frequency (t _J = 0 °C–85 °C)	45	50	55	%
DCH _{CLKHF}	Industrial Temp	HFOSC clock frequency ($t_J = -45 \text{ °C}-100 \text{ °C}$)	40	50	60	%
DCH _{CLKLF}		LFOSC Duty Cycle (Clock High Period)	45	50	55	%
Tsync_on		Oscillator output synchronizer delay	_		5	Cycles
Tsync_off		Oscillator output disable delay	_		5	Cycles

1. Glitchless enabling and disabling OSC clock outputs.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)			
Standard	Min.	Тур.	Max.	
LVCMOS 3.3	3.14	3.3	3.46	
LVCMOS 2.5	2.37	2.5	2.62	
LVCMOS 1.8	1.71	1.8	1.89	

sysIO Single-Ended DC Electrical Characteristics

Input/	V	IL	١	/ _{IH}			1 14					
Output Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)				
LVCMOS 3.3	-0.3	0.8	2.0	2.0 V _{colo} + 0.2V	2.0 V _{CCIO} + 0.2V -	0.4	V _{CCIO} – 0.4	8	-8			
EVOIVIOU 0.0	0.0					0.2	V _{CCIO} – 0.2	0.1	-0.1			
LVCMOS 2.5	-0.3	0.7	0.7	0.7	0.7	17	1.7	17	0.4	$V_{CCIO} - 0.4$	6	-6
LV CIVICO 2.5	-0.5	0.7	1.7	$V_{CCIO} + 0.2V$	0.2	$V_{CCIO} - 0.2$	0.1	-0.1				
LVCMOS 1.8	-0.3	0.2 0.251/ 0.651/			0.4	$V_{CCIO} - 0.4$	4	-4				
	-0.5	0.35V _{CCIO}	0.65V _{CCIO}	V _{CCIO} + 0.2V	0.2	V _{CCIO} – 0.2	0.1	-0.1				

Differential Comparator Electrical Characteristics

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Units
V _{REF}	Reference Voltage to compare, on $V_{\mbox{\scriptsize INM}}$	$V_{CCIO} = 2.5 V$	0.25	V _{CCIO} –0.25 V	V
V _{DIFFIN_H}	Differential input HIGH (V _{INP} - V _{INM})	V _{CCIO} = 2.5 V	250	_	mV
V _{DIFFIN_L}	Differential input LOW (V _{INP} - V _{INM})	$V_{CCIO} = 2.5 V$	—	-250	mV
I _{IN}	Input Current, V_{INP} and V_{INM}	V _{CCIO} = 2.5 V	-10	10	μΑ

Typical Building Block Function Performance^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	16.5	ns
4:1 MUX	18.0	ns
16:1 MUX	19.5	ns

Register-to-Register Performance

Function	Timing	Units
Basic Functions		•
16:1 MUX	110	MHz
16-bit adder	100	MHz
16-bit counter	100	MHz
64-bit counter	40	MHz
Embedded Memory Functions		•
256x16 Pseudo-Dual Port RAM	150	MHz

1. The above timing numbers are generated using the Lattice Design Software tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Under worst case operating conditions.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

Maximum sysIO Buffer Performance¹

I/O Standard	Max. Speed	Units
	Inputs	
LVCMOS33	250	MHz
LVCMOS25	250	MHz
LVCMOS18	250	MHz
	Outputs	
LVCMOS33	250	MHz
LVCMOS25	250	MHz
LVCMOS18	155	MHz

1. Measured with a toggling pattern

sysCLOCK PLL Timing

Over Recommended	Operating	Conditions
-------------------------	-----------	------------

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (REFERENCECLK, EXTFEEDBACK)		10	133	MHz
fout	Output Clock Frequency (PLLOUT)		16	275	MHz
f _{VCO}	PLL VCO Frequency		533	1066	MHz
f _{PFD}	Phase Detector Input Frequency		10	133	MHz
AC Characterist	tics		•		
t _{DT}	Output Clock Duty Cycle		40	60	%
t _{PH}	Output Phase Accuracy		—	+/-12	deg
	Output Clock Period Jitter	f _{OUT} >= 100 MHz	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ps p-p	
		f _{OUT} < 100 MHz	—	0.05	UIPP
↓ 1.5.6	Output Clock Cycle-to-cycle Jitter Output Clock Phase Jitter	f _{OUT} >= 100 MHz	—	750	ps p-p
t _{OPJIT} ^{1, 5, 6}		f _{OUT} < 100 MHz	—	0.10	UIPP
		f _{PFD} >= 25 MHz	—	275	ps p-p
		f _{PFD} < 25 MHz	—	0.05	UIPP
t _W	Output Clock Pulse Width	At 90% or 10%	1.33	—	ns
t _{LOCK} ^{2, 3}	PLL Lock-in Time		—	50	μs
t _{UNLOCK}	PLL Unlock Time		—	50	ns
. 4	Input Cleak Dariad littar	$f_{PFD} \ge 20 \text{ MHz}$	—	1000	ps p-p
t _{IPJIT} ⁴	Input Clock Period Jitter	f _{PFD} < 20 MHz	—	0.02	UIPP
t _{STABLE} ³	LATCHINPUTVALUE LOW to PLL Stable		—	500	ns
t _{STABLE_PW} 3	LATCHINPUTVALUE Pulse Width		100	—	ns
t _{RST}	RESET Pulse Width		10	—	ns
t _{RSTREC}	RESET Recovery Time		10	—	μs
t _{DYNAMIC_WD}	DYNAMICDELAY Pulse Width		100	_	VCO Cycles

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

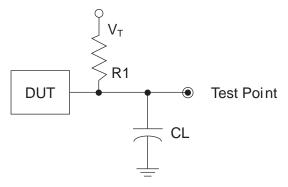
4. Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table.

5. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

sysDSP Timing

Over Recommended Operating Conditions

Parameter	Description	Min.	Max.	Units
f _{MAX8x8SMULT}	Max frequency signed MULT8x8 bypassing pipeline register	50	_	MHz
f _{MAX16x16SMULT}	Max frequency signed MULT16x16 bypass- ing pipeline register	50	_	MHz


RGB LED and IR LED Drive

Symbol	Parameter	Min.	Max.	Units
	RGB0, RGB1, RGB2 Sink Current Accuracy to selected current @ $V_{LEDOUT} >= 0.5 V$	-12	+12	%
	RGB0, RGB1, RGB2 Sink Current Matching among the 3 outputs @ $V_{LEDOUT} >= 0.5 V$	-5	+5	%
IIR_ACCURACY	IR LED Sink Current Accuracy to selected current @ $V_{IROUT} >= 0.8 V$	-14	+14	%

Switching Test Conditions

Figure 3-3 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-1.

Figure 3-3. Output Test Load, LVCMOS Standards

Table 3-1. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Reference	V _T
LVCMOS settings (L -> H, H -> L)	×	0 pF	LVCMOS 3.3 = 1.5 V	—
			LVCMOS 2.5 = $V_{CCIO}/2$	—
			LVCMOS 1.8 = $V_{CCIO}/2$	—
LVCMOS 3.3 (Z -> H)			1.5 V	V _{OL}
LVCMOS 3.3 (Z -> L)	188	0 pF	1.5 V	V _{OH}
Other LVCMOS (Z -> H) Other LVCMOS (Z -> L)			V _{CCIO} /2	V _{OL}
			V _{CCIO} /2	V _{OH}
LVCMOS (H -> Z)			V _{OH} – 0.15 V	V _{OL}
LVCMOS (L -> Z)	1		V _{OL} – 0.15 V	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

iCE40 Ultra Family Data Sheet Pinout Information

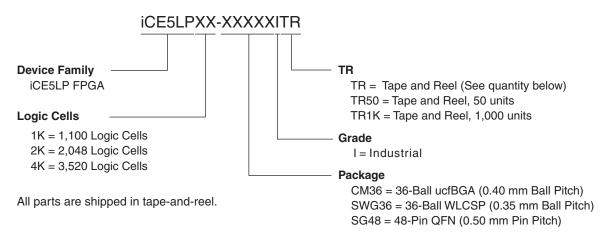
June 2016

Data Sheet DS1048

Signal Descriptions

Signal Name		Function	I/O	Description	
Power Supplie	s	. I		•	
V _{CC}		Power	_	Core Power Supply	
V _{CCIO_0} , SPI_V _{CCIO1} , V _{CCIO_2}		Power		Power for I/Os in Bank 0, 1 and 2.	
V _{PP_2V5}		Power		Power for NVCM programming and operations.	
V _{CCPLL}		Power		Power for PLL	
GND		GROUND		Ground	
GND_LED		GROUND	_	Ground for LED drivers. Should connect to GND o board.	
Configuration				· ·	
CRESETB		Configuration	I	Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to V _{CCIO_1} .	
CDONE		Configuration	I/O	Configuration Done. Includes a weak pull-up resistor to SPI_V _{CCIO1} .	
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.	
Config SPI					
Primary	Secondary				
CRESETB	_	Configuration	I	Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to SPI_V _{CCIO1} .	
PIOB_xx	CDONE	Configuration	I/O	Configuration Done. Includes a weak pull-up resistor to SPI_V _{CCIO1} .	
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.	
Config SPI					
Primary	Secondary				
PIOB_34a	SPI_SCK	Configuration	I/O	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the clock to external SPI memory. In Slave SPI mode, this pin inputs the clock from external processor.	
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function	
PIOB_32a	SPI_SDO	Configuration	Output	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the command data to external SPI memory. In Slave SPI mode, this pin connects to the MISO pin of the external processor.	
		General I/O	I/O	In user mode, after configuration, this pin can be pro- grammed as general I/O in user function.	

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



iCE40 Ultra Family Data Sheet Ordering Information

June 2016

Data Sheet DS1048

iCE5LP Part Number Description

Tape and Reel Quantity

Package	TR Quantity
CM36	4,000
SWG36	5,000
SG48	2,000

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Ordering Part Numbers

Industrial

Part Number	LUTs	Supply Voltage	Package	Pins	Temp.
iCE5LP1K-CM36ITR	1100	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP1K-CM36ITR50	1100	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP1K-CM36ITR1K	1100	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP1K-SWG36ITR	1100	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP1K-SWG36ITR50	1100	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP1K-SWG36ITR1K	1100	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP1K-SG48ITR	1100	1.2 V	Halogen-Free QFN	48	IND
iCE5LP1K-SG48ITR50	1100	1.2 V	Halogen-Free QFN	48	IND
iCE5LP2K-CM36ITR	2048	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP2K-CM36ITR50	2048	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP2K-CM36ITR1K	2048	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP2K-SWG36ITR	2048	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP2K-SWG36ITR50	2048	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP2K-SWG36ITR1K	2048	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP2K-SG48ITR	2048	1.2 V	Halogen-Free QFN	48	IND
iCE5LP2K-SG48ITR50	2048	1.2 V	Halogen-Free QFN	48	IND
iCE5LP4K-CM36ITR	3520	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP4K-CM36ITR50	3520	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP4K-CM36ITR1K	3520	1.2 V	Halogen-Free ucfBGA	36	IND
iCE5LP4K-SWG36ITR	3520	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP4K-SWG36ITR50	3520	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP4K-SWG36ITR1K	3520	1.2 V	Halogen-Free WLCSP	36	IND
iCE5LP4K-SG48ITR	3520	1.2 V	Halogen-Free QFN	48	IND
iCE5LP4K-SG48ITR50	3520	1.2 V	Halogen-Free QFN	48	IND

Date	Version	Section	Change Summary
			Updated Supply Current section. — Corrected I _{PP2V5STDBY} parameter. — Added Typ. VCC = 1.2 V values for I _{CCPEAK} , I _{PP 2V5PEAK} ,
			I _{SPL_VCCI01PEAK} , and I _{CCI0PEAK} . — Added footnote 5. — Corrected S _{PL_VCCI01} character format.
			Updated User SPI Specifications section. Removed parameters and added footnotes.
			Updated Internal Oscillators (HFOSC, LFOSC) section. Added Com- mercial and Industrial Temp values for DCH _{CLKHF}
			Updated sysIO Single-Ended DC Electrical Characteristics section. Removed footnote.
			Updated Register-to-Register Performance section. Modified footnotes.
			Updated iCE40 Ultra External Switching Characteristics section. Modi- fied footnote.
			Updated sysCLOCK PLL Timing section. Reversed t _{OPJIT} conditions.
			Updated sysCONFIG Port Timing Specifications section. — Modified t _{CR_SCK} Min. value. — Added footnote 4 to t _{SU} parameter. — Modified t _{SU} Min. value. — Modified t _{HD} parameter.
			Updated section heading to RGB LED and IR LED Drive. Modified ILED_ACCURACY and IIR_ACCURACY parameters, Min. and Max. values.
		Pinout Information	Updated Signal Descriptions section. Changed V _{CCIO_1} to SPI_V _{CCIO1} in the CDONE, CRESETB and PIOB_xx descriptions.
			Updated Pin Information Summary section. — Corrected symbol character format. — Corrected VCPP_2V5 to V _{PP_2V5} .
	1.9	Introduction	Updated Features section. Updated BGA package to ucfBGA.
	-	DC and Switching Characteristics	Updated Differential Comparator Electrical Characteristics section. Corrected typo in V_{REF} Max. value.
		Pinout Information	Updated Signal Descriptions section. — Changed PIOB_12a to PIOB_xx — Changed SPI_CSN to SPI_SS_B and revised description when in Slave SPI mode. — Corrected minor typo errors.
			Updated Pin Information Summary section. Added footnote to SG48.
		Ordering Information	Updated iCE5LP Part Number Description section. Updated BGA package to ucfBGA.
			Updated Ordering Part Numbers section. Updated BGA package to ucf- BGA.
June 2015	1.8	DC and Switching Characteristics	Updated Internal Oscillators (HFOSC, LFOSC) section. Removed decimals.
		Ordering Information	Updated iCE5LP Part Number Description section. — Added TR items. — Corrected formatting errors.
			Updated Ordering Part Numbers section. Updated CM36 and SG48 packages.

Date	Version	Section	Change Summary
April 2015	1.7	Architecture	 Updated sysDSP section. Revised the following figures: Figure 2-5, sysDSP Functional Block Diagram (16-bit x 16-bit Multiply-Accumulate) Figure 2-6, sysDSP 8-bit x 8-bit Multiplier Figure 2-7, DSP 16-bit x 16-bit Multiplier
		Ordering Information	Updated iCE5LP Part Number Description section. Added TR items.
			Updated Ordering Part Numbers section. Added CM36, SW36 and SG48 part numbers.
March 2015 1.6		Introduction	Updated Features section. — Added BGA and QFN packages in Flexible Logic Architecture. — Added USB 3.1 Type C Cable Detect / Power Delivery Applications in Applications. — Updated Table 1-1, iCE40 Ultra Family Selection Guide. Added 36- ball ucfBGA and 48-ball QFN packages. Changed subheading to Total User I/O Count. Changed RBW IP to PWM IP. Deleted footnotes.
		DC and Switching Characteristics	Updated Power-up Sequence section. Indicated all devices in second paragraph.
			Updated sysIO Single-Ended DC Electrical Characteristics section. Changed LVCMOS 3.3 and LVCMOS 2. 5 $\rm V_{OH}$ Min. (V) from 0.5 to 0.4.
			Replaced the Differential Comparator Electrical Characteristics table.
		Pinout Information	Updated Pin Information Summary section. — Added CM36 and SG48 values. — Changed CRESET_B to Dedicated Config Pins.
		Ordering Information	Updated iCE5LP Part Number Description section. — Added CM36 and SG48 package. — Added TR items.
			Updated Ordering Part Numbers section. Added CM36, SW36 and SG48 part numbers.
October 2014	October 2014 1.5 Int	Introduction	Updated Features section. — Removed 26 I/O pins for 36-pin WLCSP under Flexible Logic Archi- tecture. — Changed form factor to 2.078 mm x 2.078 mm. — Updated Table 1-1, iCE40 Ultra Family Selection Guide. Removed 20-Ball WLCSP.
			Updated Introduction section. Changed form factor to 2.078 mm x 2.078 mm.
		Architecture	Updated sysCLOCK Phase Locked Loops (PLLs) section. Removed note in heading regarding sysCLOCK PLL support.
		DC and Switching Characteristics	Updated Recommended Operating Conditions section. Removed foot- note on sysCLOCK PLL support.
			Updated Power-up Sequence section. Removed information on 20-pin WLCSP.
		Pinout Information	Updated Signal Descriptions section. Removed references 20-pin WLCSP.
			Updated Pin Information Summary section. Removed references to UWG20 values.
		Ordering Information	Updated iCE5LP Part Number Description section. Removed 20-ball WLCSP.
			Updated Ordering Part Numbers section. Removed UWG20 part numbers.
		Further Information	Added technical note references.

Date	Version	Section	Change Summary
June 2014	1.2	All	Product name changed to iCE40 Ultra.
		Introduction	Updated Table 1-1, iCE40 Ultra Family Selection Guide. Removed 30- ball WLCSP.
	DC and Chara		Updated values in the following sections: — Supply Current — Internal Oscillators (HFOSC, LFOSC) — Power Supply Ramp Rates — Power-On-Reset Voltage Levels — SPI Master or NVCM Configuration Time
			Indicated TBD for values to be determined.
		Pinout Information	Updated Signal Descriptions section. Removed 30-pin WLCSP.
			Updated Pin Information Summary section. Removed SWG30 values.
		Ordering Information	Updated iCE5LP Part Number Description section. Removed 30-ball WLCSP.
			Updated Ordering Part Numbers section. Removed SWG30 and UWG30 part numbers.
May 2014	01.1	Introduction	Updated General Description, Features, and Introduction sections. Removed hardened RGB PWM IP information.
		Architecture	Updated Architecture Overview section. Removed the RGB IP block in Figure 2-1, iCE5LP-4K Device, Top View, Figure 2-8, I/O Bank and Programmable I/O, and in the text content.
			Updated High Current Drive I/O Pins section. Removed hardened RGB PWM IP information.
			Updated Power On Reset section. Removed content on Vccio_2 power down option.
			Replaced RGB PWM Block section with Embedded PWM IP section.
		DC and Switching Characteristics	Removed RGB PWM Block Timing section.
April 2014	01.0	All	Initial release.