Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 256 | | Number of Logic Elements/Cells | 2048 | | Total RAM Bits | 81920 | | Number of I/O | 12 | | Number of Gates | - | | Voltage - Supply | 1.14V ~ 1.26V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 20-UFBGA, WLCSP | | Supplier Device Package | 20-WLCSP (1.71x2.06) | | Purchase URL | https://www.e-xfl.com/product-detail/lattice-semiconductor/ice5lp2k-uwg20itr50 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # iCE40 Ultra Family Data Sheet Architecture June 2016 Data Sheet DS1048 ## **Architecture Overview** The iCE40 Ultra family architecture contains an array of Programmable Logic Blocks (PLB), two Oscillator Generators, two user configurable I²C controllers, two user configurable SPI controllers, and blocks of sysMEM[™] Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1shows the block diagram of the iCE5LP-4K device. Figure 2-1. iCE5LP-4K Device, Top View The Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either PLB or EBR blocks. The PIO cells are located at the top and bottom of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources. In the iCE40 Ultra family, there are three sysIO banks, one on top and two at the bottom. User can connect some V_{CCIOS} together, if all the I/Os are using the same voltage standard. Refer to the details in later sections of this document on Power Up Sequence. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO with user logic using PLBs. Every device in the family has two user SPI ports, one of these (right side) SPI port also supports programming and configuration of the device. The iCE40 Ultra also includes two user I²C ports, two Oscillators, and high current RGB and IR LED sinks. © 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ## **PLB Blocks** The core of the iCE40 Ultra device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register. Figure 2-2. PLB Block Diagram #### **Logic Cells** Each Logic Cell includes three primary logic elements shown in Figure 2-2. - A four-input Look-Up Table (LUT) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUTs to create wider logic functions. - A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration. - Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtracters, comparators, binary counters and some wide, cascaded logic functions. Table 2-1. Logic Cell Signal Descriptions | Function | Туре | Signal Names | Description | |----------|------------------|------------------------|--| | Input | Data signal | 10, 11, 12, 13 | Inputs to LUT | | Input | Control signal | Enable | Clock enable shared by all LCs in the PLB | | Input | Control signal | Set/Reset ¹ | Asynchronous or synchronous local set/reset shared by all LCs in the PLB. | | Input | Control signal | Clock | Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB | | Input | Inter-PLB signal | FCIN | Fast carry in | | Output | Data signals | 0 | LUT or registered output | | Output | Inter-PFU signal | FCOUT | Fast carry out | ^{1.} If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration. ## sysCLOCK Phase Locked Loops (PLLs) The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 Ultra devices have one sys-CLOCK PLL. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin, the internal Oscillator Generators from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output. The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 64 (in increments of 2X). The PLLOUT outputs can all be used to drive the iCE40 Ultra global clock network directly or general purpose routing resources can be used. The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3. The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the tLOCK parameter has been satisfied. There is an additional feature in the iCE40 Ultra PLL. There are 2 FPGA controlled inputs, SCLK and SDI, that allows the user logic to serially shift in data thru SDI, clocked by SCLK clock. The data shifted in would change the configuration settings of the PLL. This feature allows the PLL to be time multiplexed for different functions, with different clock rates. After the data is shifted in, user would simply pulse the RESET input of the PLL block, and the PLL will re-lock with the new settings. For more details, please refer to TN1251, iCE40 sysCLOCK PLL Design and Usage Guide. Figure 2-3. PLL Diagram Table 2-3 provides signal descriptions of the PLL block. ## Table 2-3. PLL Signal Descriptions | Signal Name | Direction | Description | |-------------------|-----------|---| | REFERENCECLK | Input | Input reference clock | | BYPASS | Input | The BYPASS control selects which clock signal connects to the PLL-OUT output. 0 = PLL generated signal 1 = REFERENCECLK | | EXTFEEDBACK | Input | External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set to EXTERNAL. | | DYNAMICDELAY[7:0] | Input | Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE is set to DYNAMIC. | | LATCHINPUTVALUE | Input | When enabled, puts the PLL into low-power mode; PLL output is held static at the last input clock value. Set ENABLE ICEGATE_PORTA and PORTB to '1' to enable. | | PLLOUTGLOBAL | Output | Output from the Phase-Locked Loop (PLL). Drives a global clock network on the FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5. | | PLLOUTCORE | Output | Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port. | | LOCK | Output | When High, indicates that the PLL output is phase aligned or locked to the input reference clock. | | RESET | Input | Active low reset. | | SCLK | Input | Input, Serial Clock used for re-programming PLL settings. | | SDI | Input | Input, Serial Data used for re-programming PLL settings. | ## sysMEM Embedded Block RAM Memory Larger iCE40 Ultra device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each 4 kbit in size. This memory can be used for a wide variety of purposes including data buffering, and FIFO. ## sysMEM Memory Block The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources. Each block can be used in a variety of depths and widths as shown in Table 2-4. ## Table 2-4. sysMEM Block Configurations¹ | Block RAM
Configuration | Block RAM
Configuration
and Size | WADDR Port
Size (Bits) | WDATA Port
Size (Bits) | RADDR Port
Size (Bits) | RDATA Port
Size (Bits) | MASK Port
Size (Bits) | |--|--|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------| | SB_RAM256x16
SB_RAM256x16NR
SB_RAM256x16NW
SB_RAM256x16NRNW | 256x16 (4 k) | 8 [7:0] | 16 [15:0] | 8 [7:0] | 16 [15:0] | 16 [15:0] | | SB_RAM512x8
SB_RAM512x8NR
SB_RAM512x8NW
SB_RAM512x8NRNW | 512x8 (4 k) | 9 [8:0] | 8 [7:0] | 9 [8:0] | 8 [7:0] | No Mask Port | | SB_RAM1024x4
SB_RAM1024x4NR
SB_RAM1024x4NW
SB_RAM1024x4NRNW | 1024x4 (4 k) | 10 [9:0] | 4 [3:0] | 10 [9:0] | 4 [3:0] | No Mask Port | | SB_RAM2048x2
SB_RAM2048x2NR
SB_RAM2048x2NW
SB_RAM2048x2NRNW | 2048x2 (4 k) | 11 [10:0] | 2 [1:0] | 11 [10:0] | 2 [1:0] | No Mask Port | ^{1.} For iCE40 Ultra, the primitive name without "Nxx" uses rising-edge Read and Write clocks. "NR" uses rising-edge Write clock, falling-edge Read clock. "NRW" uses falling-edge Write clock and rising-edge Read clock. "NRNW" uses falling-edge clocks on both Read and Write. ## RAM Initialization and ROM Operation If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM. #### **Memory Cascading** Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks. #### **RAM4k Block** Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. Figure 2-4. sysMEM Memory Primitives Table 2-5. EBR Signal Descriptions | Signal Name | Direction | Description | |-------------|-----------|--| | WDATA[15:0] | Input | Write Data input. | | MASK[15:0] | Input | Masks write operations for individual data bit-lines. 0 = write bit 1 = do not write bit | | WADDR[7:0] | Input | Write Address input. Selects one of 256 possible RAM locations. | | WE | Input | Write Enable input. | | WCLKE | Input | Write Clock Enable input. | | WCLK | Input | Write Clock input. Default rising-edge, but with falling-edge option. | | RDATA[15:0] | Output | Read Data output. | | RADDR[7:0] | Input | Read Address input. Selects one of 256 possible RAM locations. | | RE | Input | Read Enable input. | | RCLKE | Input | Read Clock Enable input. | | RCLK | Input | Read Clock input. Default rising-edge, but with falling-edge option. | For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices. ## sysDSP The iCE40 Ultra family provides an efficient sysDSP architecture that is very suitable for low-cost Digital Signal Processing (DSP) functions for mobile applications. Typical functions used in these applications are Multiply, Accumulate, and Multiply-Accumulate. The block can also be used for simple Add and Subtract functions. #### iCE40 Ultra sysDSP Architecture Features The iCE40 Ultra sysDSP supports many functions that include the following: - Single 16-bit x 16-bit Multiplier, or two independent 8-bit x 8-bit Multipliers - Optional independent pipeline control on Input Register, Output Register, and Intermediate Reg faster clock performance - Single 32-bit Accumulator, or two independent 16-bit Accumulators - Single 32-bit, or two independent 16-bit Adder/Subtracter functions, registered or asynchronous - · Cascadable to create wider Accumulator blocks Figure 2-5 shows the block diagram of the sysDSP block. The block consists Multiplier section, with an bypassable Output register. The Input Register, Intermediate register between Multiplier and AC timing to achieve the highest performance. Figure 2-5. sysDSP Functional Block Diagram (16-bit x 16-bit Multiply-Accumulate) Figure 2-7. DSP 16-bit x 16-bit Multiplier ## sysIO Buffer Banks iCE40 Ultra devices have up to three I/O banks with independent V_{CCIO} rails. The configuration SPI interface signals are powered by SPI_ V_{CCIO1} . Please refer to the Pin Information Summary table. #### Programmable I/O (PIO) The programmable logic associated with an I/O is called a PIO. The individual PIOs are connected to their respective sysIO buffers and pads. The PIOs are placed on the top and bottom of the devices. Figure 2-8. I/O Bank and Programmable I/O Cell The PIO contains three blocks: an input register block, output register block iCEGate[™] and tri-state register block. To save power, the optional iCEGate[™] latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Note that the freeze signal is common to the bank. These blocks can operate in a variety of modes along with the necessary clock and selection logic. #### Input Register Block The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface signals before they are passed to the device core. #### **Output Register Block** The output register block can optionally register signals from the core of the device before they are passed to the syslO buffers. Figure 2-9 shows the input/output register block for the PIOs. Figure 2-9. iCE I/O Register Block Diagram Table 2-7. PIO Signal List | Pin Name | I/O Type | Description | |-------------------|----------|-------------------------------| | OUTPUT_CLK | Input | Output register clock | | CLOCK_ENABLE | Input | Clock enable | | INPUT_CLK | Input | Input register clock | | OUTPUT_ENABLE | Input | Output enable | | D_OUT_0/1 | Input | Data from the core | | D_IN_0/1 | Output | Data to the core | | LATCH_INPUT_VALUE | Input | Latches/holds the Input Value | ## sysIO Buffer Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems with LVCMOS interfaces. #### Typical I/O Behavior During Power-up The internal power-on-reset (POR) signal is deactivated when V_{CC} , SPI_V_{CCIO1} , and V_{PP_2V5} reach the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. You must ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins maintain the pre-configuration state until V_{CC} , SPI_V_{CCIO1} , and V_{PP_2V5} reach the defined levels. The I/Os take on the software user-configured settings only after POR signal is deactivated and the device performs a proper download/configuration. Unused I/Os are automatically blocked and the pull-up termination is disabled. #### **Supported Standards** The iCE40 Ultra sysIO buffer supports both single-ended input/output standards, and used as differential comparators. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none). Table 2-8 and Table 2-9 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 Ultra devices. #### **Differential Comparators** The iCE40 Ultra devices provide differential comparator on pairs of I/O pins. These comparators are useful in some mobile applications. Please refer to the Pin Information Summary section to locate the corresponding paired I/Os with differential comparators. Table 2-8. Supported Input Standards | Input Standard | V _{CCIO} (Typical) | | | | | |-------------------------|-----------------------------|-------|-------|--|--| | input Standard | 3.3 V | 2.5 V | 1.8 V | | | | Single-Ended Interfaces | | | | | | | LVCMOS33 | ✓ | | | | | | LVCMOS25 | | ✓ | | | | | LVCMOS18 | | | ✓ | | | Table 2-9. Supported Output Standards | Output Standard | V _{CCIO} (Typical) | |-------------------------|-----------------------------| | Single-Ended Interfaces | | | LVCMOS33 | 3.3 V | | LVCMOS25 | 2.5 V | | LVCMOS18 | 1.8 V | ## **On-Chip Oscillator** The iCE40 Ultra devices feature two different frequency Oscillator. One is tailored for low-power operation that runs at low frequency (LFOSC). Both Oscillators are controlled with internally generated current. The LFOSC runs at nominal frequency of 10 kHz. The high frequency oscillator (HFOSC) runs at a nominal frequency of 48 MHz, divisible to 24 MHz, 12 MHz, or 6 MHz by user option. The LFOSC can be used to perform all always-on functions, with the lowest power possible. The HFOSC can be enabled when the always-on functions detect a condition that would need to wake up the system to perform higher frequency functions. ## User I²C IP The iCE40 Ultra devices have two I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The pins for the I²C interface are not pre-assigned. User can use any General Purpose I/O pins. In each of the two cores, there are options to delay the either the input or the output, or both, by 50 ns nominal, using dedicated on-chip delay elements. This provides an easier interface with any external I²C components. When the IP core is configured as master, it will be able to control other devices on the I²C bus through the preassigned pin interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I²C Master. The I²C cores support the following functionality: - Master and Slave operation - · 7-bit and 10-bit addressing - Multi-master arbitration support - · Clock stretching - · Up to 400 kHz data transfer speed - · General Call support - Optionally delaying input or output data, or both For further information on the User I²C, please refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide. #### **User SPI IP** The iCE40 Ultra devices have two SPI IP cores. The pins for the SPI interface are not pre-assigned. User can use any General Purpose I/O pins. Both SPI IP cores can be configured as a SPI master or as a slave. When the SPI IP core is configured as a master, it controls the other SPI enabled devices connected to the SPI Bus. When SPI IP core is configured as a slave, the device will be able to interface to an external SPI master. The SPI IP core supports the following functions: - · Configurable Master and Slave modes - Full-Duplex data transfer - Mode fault error flag with CPU interrupt capability - · Double-buffered data register - · Serial clock with programmable polarity and phase - · LSB First or MSB First Data Transfer For further information on the User SPI, please refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide. ## **High Current LED Drive I/O Pins** The iCE40 Ultra family devices offer multiple high current LED drive outputs in each device in the family to allow the iCE40 Ultra product to drive LED signals directly on mobile applications. There are three outputs on each device that can sink up to 24 mA current. These outputs are open-drain outputs, and provides sinking current to an LED connecting to the positive supply. These three outputs are designed to drive the RBG LEDs, such as the service LED found in a lot of mobile devices. An embedded RGB PWM IP is also offered in the family. This RGB drive current is user programmable from 4 mA to 24 mA, in increments of 4 mA. This output functions as General Purpose I/O with open-drain when the high current LED drive is not needed. There is one output on each device that can sink up to 500 mA current. This output is open-drain, and provides sinking current to drive an external IR LED connecting to the positive supply. This IR drive current is user programmable from 50 mA to 500 mA in increments of 50 mA. This output functions as General Purpose I/O with open-drain when the high current LED drive is not needed. ## **Embedded PWM IP** To provide an easier usage of the RGB high current drivers to drive RGB LED, a Pulse-Width Modulator IP can be embedded into the user design. This PWM IP provides the flexibility for user to dynamically change the settings on the ON-time duration, OFF-time duration, and ability to turn the LED lights on and off gradually with user set breath-on and breath-off time. For additional information on the embedded PWM IP, please refer to TN1288, iCE40 LED Driver Usage Guide. ## **Non-Volatile Configuration Memory** All iCE40 Ultra devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device. For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration. ## iCE40 Ultra Programming and Configuration This section describes the programming and configuration of the iCE40 Ultra family. ## **Device Programming** The NVCM memory can be programmed through the SPI port. The SPI port is located in Bank 1, using SPI_{CCIO1} power supply. ## **Device Configuration** There are various ways to configure the Configuration RAM (CRAM), using SPI port, including: - From a SPI Flash (Master SPI mode) - System microprocessor to drive a Serial Slave SPI port (SSPI mode) For more details on configuring the iCE40 Ultra, please see TN1248, iCE40 Programming and Configuration. ## **Power Saving Options** The iCE40 Ultra devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. Table 2-10 describes the function of these features. Table 2-10. iCE40 Ultra Power Saving Features Description | Device Subsystem | Feature Description | |------------------|---| | IPLI | When LATCHINPUTVALUE is enabled, puts the PLL into low-power mode; PLL output held static at last input clock value. | | iCEGate | To save power, the optional iCEGate latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control. | Figure 3-2. Power Up Sequence with All Supplies Connected Together ## Power-On-Reset Voltage Levels¹ | Symbol | Parameter | | Min. | Max. | Units | |--------------------|--|------------------------|------|------|-------| | V _{PORUP} | Power-On-Reset ramp-up trip point (circuit monitoring V _{CC} , SPI_V _{CCIO1} , V _{PP 2V5}) | V _{CC} | 0.62 | 0.92 | V | | | | SPI_V _{CCIO1} | 0.87 | 1.50 | V | | | | V _{PP_2V5} | 0.90 | 1.53 | V | | V _{PORDN} | Power-On-Reset ramp-down trip point (circuit monitoring V _{CC} , SPI_V _{CCIO1} , V _{PP_2V5}) | V _{CC} | _ | 0.79 | V | | | | SPI_V _{CCIO1} | _ | 1.50 | V | | | | V _{PP_2V5} | _ | 1.53 | V | ^{1.} These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions. ## **ESD Performance** Please contact Lattice Semiconductor for additional information. ## **DC Electrical Characteristics** ## **Over Recommended Operating Conditions** | Symbol | Parameter | Condition | Min. | Тур. | Max. | Units | |---|---|---|------|------|-------|-------| | I _{IL,} I _{IH} ^{1, 3, 4} | Input or I/O Leakage | $0V < V_{IN} < V_{CCIO} + 0.2 V$ | _ | _ | +/-10 | μΑ | | C ₁ | I/O Capacitance, excluding LED Drivers ² | $V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}$
$V_{CC} = \text{Typ.}, V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$ | _ | 6 | _ | pF | | C ₂ | Global Input Buffer
Capacitance ² | $V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}$
$V_{CC} = \text{Typ.}, V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$ | _ | 6 | _ | pF | | C ₃ | RGB Pin Capacitance ² | $V_{CC} = Typ., V_{IO} = 0 \text{ to } 3.5 \text{ V}$ | _ | 15 | _ | pF | | C ₄ | IRLED Pin Capacitance ² | $V_{CC} = Typ., V_{IO} = 0 \text{ to } 3.5 \text{ V}$ | _ | 53 | _ | pF | | V _{HYST} | Input Hysteresis | V _{CCIO} = 1.8 V, 2.5 V, 3.3 V | _ | 200 | _ | mV | | | Internal DIO Dull on | $V_{CCIO} = 1.8 \text{ V}, 0 = < V_{IN} < = 0.65 V_{CCIO}$ | -3 | _ | -31 | μΑ | | I_{PU} | Internal PIO Pull-up
Current | $V_{CCIO} = 2.5 \text{ V}, 0 = < V_{IN} < = 0.65 V_{CCIO}$ | -8 | _ | -72 | μΑ | | | | $V_{CCIO} = 3.3 \text{ V}, 0 = < V_{IN} < = 0.65 V_{CCIO}$ | -11 | _ | -128 | μΑ | ^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled. T_J 25 °C, f = 1.0 MHz. ^{3.} Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document. ^{4.} Input pins are clamped to V_{CCIO} and GND by a diode. When input is higher than V_{CCIO} or lower than GND, the Input Leakage current will be higher than the I_{IL} and I_{IH}. ## Internal Oscillators (HFOSC, LFOSC)¹ | Parameter | | Parameter Description | Spec/Recommended | | | Units | |----------------------|-----------------|--|------------------|-----|-----|--------| | Symbol | Conditions | | Min | Тур | Max | | | f _{CLKHF} | Commercial Temp | HFOSC clock frequency (t _J = 0 °C-85 °C) | -10% | 48 | 10% | MHz | | | Industrial Temp | HFOSC clock frequency (t _J = -40 °C-100 °C) | -20% | 48 | 20% | MHz | | f _{CLKLF} | | LFOSC CLKK clock frequency | -10% | 10 | 10% | kHz | | DCH. | Commercial Temp | HFOSC clock frequency (t _J = 0 °C-85 °C) | 45 | 50 | 55 | % | | DCH _{CLKHF} | Industrial Temp | HFOSC clock frequency (t _J = -45 °C-100 °C) | 40 | 50 | 60 | % | | DCH _{CLKLF} | | LFOSC Duty Cycle (Clock High Period) | 45 | 50 | 55 | % | | Tsync_on | | Oscillator output synchronizer delay | _ | _ | 5 | Cycles | | Tsync_off | | Oscillator output disable delay | _ | _ | 5 | Cycles | ^{1.} Glitchless enabling and disabling OSC clock outputs. ## sysIO Recommended Operating Conditions | | V _{CCIO} (V) | | | | |------------|-----------------------|------|------|--| | Standard | Min. | Тур. | Max. | | | LVCMOS 3.3 | 3.14 | 3.3 | 3.46 | | | LVCMOS 2.5 | 2.37 | 2.5 | 2.62 | | | LVCMOS 1.8 | 1.71 | 1.8 | 1.89 | | ## sysIO Single-Ended DC Electrical Characteristics | Input/ | V _{IL} | | V _{IH} | | | | | | | | | |--------------------|-----------------|-----------------------|--|--------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|-------------------------|-----|------| | Output
Standard | Min. (V) | Max. (V) | Min. (V) | Max. (V) | V _{OL} Max.
(V) | V _{OH} Min.
(V) | I _{OL} Max.
(mA) | I _{OH} Max.
(mA) | | | | | LVCMOS 3.3 | -0.3 | 0.8 | 2.0 | V _{CCIO} + 0.2V | 0.4 | V _{CCIO} - 0.4 | 8 | -8 | | | | | LV OIVIOU 0.0 | 0.5 | 0.0 | 2.0 V _{CCIO} + 0.21 | VCCIO + 0.2 V | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | | | | LVCMOS 2.5 | -0.3 | 0.7 | 1.7 Vocio + 0.2V | | 0.4 | V _{CCIO} - 0.4 | 6 | -6 | | | | | LV CIVICO 2.5 | -0.3 | 0.7 | 0.7 | 1.7 V | 1.7 | 1.7 | V _{CCIO} + 0.2V | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | LVCMOS 1.8 | -0.3 | 0.35V _{CCIO} | 0.65V _{CCIO} V _{CCIO} + 0.2V | 0.4 | V _{CCIO} - 0.4 | 4 | -4 | | | | | | LV CIVIOS 1.6 | _0.5 | 0.55 V CCIO | | VCCIO + 0.2V | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | | | ## **Differential Comparator Electrical Characteristics** | Parameter
Symbol | Parameter Description | Test
Conditions | Min. | Max. | Units | |-----------------------|--|---------------------------|------|---------------------------|-------| | V_{REF} | Reference Voltage to compare, on V _{INM} | V _{CCIO} = 2.5 V | 0.25 | V _{CCIO} -0.25 V | V | | V _{DIFFIN_H} | Differential input HIGH (V _{INP} - V _{INM}) | V _{CCIO} = 2.5 V | 250 | _ | mV | | $V_{DIFFIN_{L}}$ | Differential input LOW (V _{INP} - V _{INM}) | V _{CCIO} = 2.5 V | _ | -250 | mV | | I _{IN} | Input Current, V _{INP} and V _{INM} | V _{CCIO} = 2.5 V | -10 | 10 | μΑ | ## iCE40 Ultra Family Timing Adders ## Over Recommended Commercial Operating Conditions^{1, 2, 3} | Buffer Type | Buffer Type Description | | Units | |------------------|-----------------------------------|-------|-------| | Input Adjusters | · | | | | LVCMOS33 | LVCMOS, V _{CCIO} = 3.3 V | 0.18 | ns | | LVCMOS25 | LVCMOS, V _{CCIO} = 2.5 V | 0 | ns | | LVCMOS18 | LVCMOS, V _{CCIO} = 1.8 V | 0.19 | ns | | Output Adjusters | · | | | | LVCMOS33 | LVCMOS, V _{CCIO} = 3.3 V | -0.12 | ns | | LVCMOS25 | LVCMOS, V _{CCIO} = 2.5 V | 0 | ns | | LVCMOS18 | LVCMOS, V _{CCIO} = 1.8 V | 1.32 | ns | ^{1.} Timing adders are relative to LVCMOS25 and characterized but not tested on every device. ## iCE40 Ultra External Switching Characteristics ## **Over Recommended Commercial Operating Conditions** | Parameter | Description | Device | Min | Max | Units | |------------------------|---|------------------------------|----------|-----|-------| | Clocks | | | | I | 1 | | Global Clocks | | | | | | | f _{MAX_GBUF} | Frequency for Global Buffer Clock network | All devices | _ | 185 | MHz | | t _{W_GBUF} | Clock Pulse Width for Global Buffer | All devices | 2 | _ | ns | | t _{SKEW_GBUF} | Global Buffer Clock Skew Within a Device | All devices | _ | 500 | ps | | Pin-LUT-Pin Prop | agation Delay | | | | | | t _{PD} | Best case propagation delay through one LUT logic | All devices | _ | 9.0 | ns | | General I/O Pin P | arameters (Using Global Buffer Clock without F | PLL)1 | " | • | | | t _{SKEW_IO} | Data bus skew across a bank of IOs | All devices | _ | 410 | ps | | t _{CO} | Clock to Output – PIO Output Register | All devices | _ | 9.0 | ns | | t _{SU} | Clock to Data Setup - PIO Input Register | All devices | -0.5 | _ | ns | | t _H | Clock to Data Hold – PIO Input Register | All devices | 5.55 | _ | ns | | General I/O Pin P | arameters (Using Global Buffer Clock with PLL) |) | | | | | t _{COPLL} | Clock to Output - PIO Output Register All Devices - | | 2.9 | ns | | | t _{SUPLL} | Clock to Data Setup - PIO Input Register | t Register All Devices 5.9 — | | | ns | | t _{HPLL} | Clock to Data Hold – PIO Input Register | All Devices | -0.6 | _ | ns | ^{1.} All the data is from the worst case condition. ^{2.} LVCMOS timing measured with the load specified in Switching Test Condition table. ^{3.} Commercial timing numbers are shown. ## sysCLOCK PLL Timing ## **Over Recommended Operating Conditions** | Parameter | Descriptions | Conditions | Min. | Max. | Units | |-----------------------------------|---|-----------------------------|------|-------|---------------| | f _{IN} | Input Clock Frequency (REFERENCECLK, EXTFEEDBACK) | | 10 | 133 | MHz | | f _{OUT} | Output Clock Frequency (PLLOUT) | | 16 | 275 | MHz | | f_{VCO} | PLL VCO Frequency | | 533 | 1066 | MHz | | f _{PFD} | Phase Detector Input Frequency | | 10 | 133 | MHz | | AC Characterist | tics | | • | | | | t _{DT} | Output Clock Duty Cycle | | 40 | 60 | % | | t _{PH} | Output Phase Accuracy | | _ | +/-12 | deg | | | Output Clock Paried litter | f _{OUT} >= 100 MHz | _ | 450 | ps p-p | | | Output Clock Period Jitter | f _{OUT} < 100 MHz | _ | 0.05 | UIPP | | 1.5.6 | Output Clock Cycle to cycle litter | f _{OUT} >= 100 MHz | _ | 750 | ps p-p | | t _{OPJIT} 1, 5, 6 | Output Clock Cycle-to-cycle Jitter | f _{OUT} < 100 MHz | _ | 0.10 | UIPP | | | Output Clock Phase Jitter | f _{PFD} >= 25 MHz | _ | 275 | ps p-p | | | Output Clock Friase Sitter | f _{PFD} < 25 MHz | _ | 0.05 | UIPP | | t _W | Output Clock Pulse Width | At 90% or 10% | 1.33 | _ | ns | | t _{LOCK} ^{2, 3} | PLL Lock-in Time | | _ | 50 | μs | | t _{UNLOCK} | PLL Unlock Time | | _ | 50 | ns | | + 4 | Input Clock Period Jitter | f _{PFD} ≥ 20 MHz | _ | 1000 | ps p-p | | t _{IPJIT} ⁴ | Input Clock Feriod Sitter | f _{PFD} < 20 MHz | _ | 0.02 | UIPP | | t _{STABLE} ³ | LATCHINPUTVALUE LOW to PLL Stable | | _ | 500 | ns | | t _{STABLE_PW} ³ | LATCHINPUTVALUE Pulse Width | | 100 | _ | ns | | t _{RST} | RESET Pulse Width | | 10 | _ | ns | | t _{RSTREC} | RESET Recovery Time | | 10 | _ | μs | | t _{DYNAMIC_WD} | DYNAMICDELAY Pulse Width | | 100 | _ | VCO
Cycles | ^{1.} Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B. ## sysDSP Timing ## **Over Recommended Operating Conditions** | Parameter | Description | Min. | Max. | Units | |----------------------------|--|------|------|-------| | f _{MAX8x8SMULT} | Max frequency signed MULT8x8 bypassing pipeline register | 50 | _ | MHz | | f _{MAX16x16SMULT} | Max frequency signed MULT16x16 bypassing pipeline register | 50 | _ | MHz | ^{2.} Output clock is valid after $t_{\mbox{\scriptsize LOCK}}$ for PLL reset and dynamic delay adjustment. ^{3.} At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed. ^{4.} Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table. ^{5.} The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise. # SPI Master or NVCM Configuration Time^{1, 2} | Symbol | Parameter | Conditions | Max. | Units | |---------------------|---|---------------------------------------|------|-------| | | | All devices – Low Frequency (Default) | 95 | ms | | t _{CONFIG} | t _{CONFIG} POR/CRESET_B to Device I/O Active | All devices – Medium frequency | 35 | ms | | | | All devices – High frequency | 18 | ms | ^{1.} Assumes sysMEM Block is initialized to an all zero pattern if they are used. ## sysCONFIG Port Timing Specifications | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |-------------------------|--|-------------------------------|------|------|-----------------|-------| | All Configurat | tion Modes | | | l | | I | | t _{CRESET_B} | Minimum CRESET_B LOW pulse width required to restart configuration, from falling edge to rising edge | | 200 | _ | _ | ns | | t _{DONE_IO} | Number of configuration clock cycles after CDONE goes HIGH before the PIO pins are activated | 49 | _ | _ | Clock
Cycles | | | Slave SPI | , | | | l | | I | | ^t cr_sck | Minimum time from a rising edge on CRESET_B until the first SPI WRITE operation, first SPI_XCK clock. During this time, the iCE40 Ultra device is clearing its internal configuration memory | | 1200 | _ | _ | μѕ | | ſ | CCL K alask fragueray | Write | 1 | _ | 25 | MHz | | f _{MAX} | CCLK clock frequency | Read ¹ | _ | 15 | _ | MHz | | t _{CCLKH} | CCLK clock pulsewidth HIGH | | 20 | _ | _ | ns | | t _{CCLKL} | CCLK clock pulsewidth LOW | | 20 | _ | _ | ns | | t _{STSU} | CCLK setup time | | 12 | _ | _ | ns | | t _{STH} | CCLK hold time | | 12 | _ | _ | ns | | t _{STCO} | CCLK falling edge to valid output | | 13 | _ | _ | ns | | Master SPI ³ | | | | | • | | | _ | | Low Frequency
(Default) | 7.0 | 12.0 | 17.0 | MHz | | f _{MCLK} | MCLK clock frequency | Medium Frequency ² | 21.0 | 33.0 | 45.0 | MHz | | | | High Frequency ² | 33.0 | 53.0 | 71.0 | MHz | | t _{MCLK} | CRESET_B HIGH to first MCLK edge | | 1200 | _ | _ | μs | | t _{SU} | CCLK setup time ⁴ | | 9.9 | _ | _ | ns | | t _{HD} | CCLK hold time | | 1 | _ | _ | ns | ^{1.} Supported with 1.2 V Vcc and at 25 °C. ^{2.} The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point. ^{2.} Extended range fMAX Write operations support up to 53 MHz with 1.2 V Vcc and at 25 °C. ^{3.} t_{SU} and t_{HD} timing must be met for all MCLK frequency choices. ^{4.} For considerations of SPI Master Configuration Mode, please refer to TN1248, iCE40 Programming and Configuration. # iCE40 Ultra Family Data Sheet Pinout Information June 2016 Data Sheet DS1048 # **Signal Descriptions** | Sign | Signal Name | | I/O | Description | |---------------------|----------------|--|--------|---| | Power Supplie | s | | | | | V _{CC} | | Power | _ | Core Power Supply | | | CCIO1, VCCIO_2 | Power | _ | Power for I/Os in Bank 0, 1 and 2. | | V _{PP_2V5} | _ | Power | _ | Power for NVCM programming and operations. | | V _{CCPLL} | | Power | _ | Power for PLL | | GND | | GROUND | _ | Ground | | GND_LED | | GROUND | _ | Ground for LED drivers. Should connect to GND on board. | | Configuration | | <u>. </u> | | | | CRESETB | | Configuration | I | Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to V _{CCIO_1} . | | CDONE | | Configuration | I/O | Configuration Done. Includes a weak pull-up resistor to ${\rm SPI_V_{CCIO1}}.$ | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function. | | Config SPI | | <u>. </u> | | | | Primary | Secondary | | | | | CRESETB | _ | Configuration | I | Configuration Reset, active LOW. No internal pull-up resistor. Either actively driven externally or connect an 10 kOhm pull-up to SPI_V _{CCIO1} . | | PIOB_xx | CDONE | Configuration | I/O | Configuration Done. Includes a weak pull-up resistor to SPI_V _{CCIO1} . | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function. | | Config SPI | | · | | | | Primary | Secondary | | | | | PIOB_34a | SPI_SCK | Configuration | I/O | This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the clock to external SPI memory. In Slave SPI mode, this pin inputs the clock from external processor. | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | PIOB_32a | SPI_SDO | Configuration | Output | This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the command data to external SPI memory. In Slave SPI mode, this pin connects to the MISO pin of the external processor. | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function. | # iCE40 Ultra Family Data Sheet Revision History June 2016 Data Sheet DS1048 | Date | Version | Section | Change Summary | |-----------|---------|-------------------------------------|--| | June 2016 | 2.0 | Introduction | Updated General Description section. Changed "high current driver" to "high current IR driver". | | | | | Updated Features section. In Table 1-1, iCE40 Ultra Family Selection Guide, corrected HF Oscillator (48 kHz) to (48 MHz). | | | | Architecture | Updated Architecture Overview section. — Changed content to "The Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either PLB or EBR blocks." — Changed "high current LED sink" to "high current RGB and IR LED sinks". | | | | | Updated sysCLOCK Phase Locked Loops (PLLs) section. Corrected V _{CCPLL} character format in Figure 2-3, PLL Diagram. | | | | | Updated sysMEM Embedded Block RAM Memory section. Updated footnote in Table 2-4, sysMEM Block Configurations. | | | | | Updated sysIO Buffer Banks section. — Changed statement to "The configuration SPI interface signals are powered by SPI_V _{CCIO1} ." — Corrected V _{CCIO} character format in Figure 2-8, I/O Bank and Programmable I/O Cell. | | | | | Updated Typical I/O Behavior During Power-up section. Modified text content. | | | | | Updated Supported Standards section. Changed statement to "The iCE40 Ultra sysIO buffer supports both single-ended input/output standards, and used as differential comparators." | | | | | Updated On-Chip Oscillator section. Changed statement to "The high frequency oscillator (HFOSC) runs at a nominal frequency of 48 MHz, divisible to 24 MHz, 12 MHz, or 6 MHz by user option." | | | | | Updated section heading to High Current LED Drive I/O Pins. Changed "high current drive" to "high current LED drive". | | | | | Removed Power On Reset section. | | | | DC and Switching
Characteristics | Updated Absolute Maximum Ratings section. — Corrected symbol character format. | | | | | Updated Recommended Operating Conditions section. — Corrected symbol character format. — Revised footnote 1. — Added footnote 4. | | | | | Updated Power Supply Ramp Rates section. Changed t _{RAMP} Max. value. | | | | | Added Power-On Reset section. | | | | | Updated section heading to Power-Up Supply Sequencing. Revised text content. | | | | | Added External Reset section. | | | | | Updated DC Electrical Characteristics section. Revised footnote 4. |