Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Discontinued at Digi-Key | | Number of LABs/CLBs | 440 | | Number of Logic Elements/Cells | 3520 | | Total RAM Bits | 81920 | | Number of I/O | 39 | | Number of Gates | - | | Voltage - Supply | 1.14V ~ 1.26V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 48-VFQFN Exposed Pad | | Supplier Device Package | 48-QFN (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/lattice-semiconductor/ice5lp4k-sg48itr50 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # iCE40 Ultra Family Data Sheet Introduction June 2016 Data Sheet DS1048 ## **General Description** iCE40 Ultra family is an ultra-low power FPGA and sensor manager designed for ultra-low power mobile applications, such as smartphones, tablets and hand-held devices. The iCE40 Ultra family includes integrated SPI and I²C blocks to interface with virtually all mobile sensors and application processors. The iCE40 Ultra family also features two on-chip oscillators, 10 kHz and 48 MHz. The LFOSC (10 kHz) is ideal for low power function in always-on applications, while HFOSC (48 MHz) can be used for awaken activities. The iCE40 Ultra family also features DSP functional block to off-load Application Processor to pre-process information sent from the mobile sensors. The embedded RGB PWM IP, with the three 24 mA constant current RGB outputs on the iCE40 Ultra provides all the necessary logic to directly drive the service LED, without the need of external MOSFET or buffer. The 500 mA constant current IR driver output provides a direct interface to external LED for application such as IrDA functions. Users simply implement the modulation logic that meets his needs, and connect the IR driver directly to the LED, without the need of external MOSFET or buffer. This high current IR driver can also be used as Barcode Emulation, sending barcode information to external Barcode Reader. The iCE40 Ultra family of devices are targeting for mobile applications to perform functions such as IrDA, Service LED, Barcode Emulation, GPIO Expander, SDIO Level Shift, and other custom functions. The iCE40 Ultra family features three device densities, from 1100 to 3520 Look Up Tables (LUTs) of logic with programmable I/Os that can be used as either SPI/I²C interface ports or general purpose I/O's. It also has up to 80 kbits of Block RAMs to work with user logic. ## **Features** ## **■** Flexible Logic Architecture - Three devices with 1100 to 3520 LUTs - Offered in WLCS, ucfBGA and QFN packages #### ■ Ultra-low Power Devices - Advanced 40 nm ultra-low power process - As low as 71 μA standby current typical #### **■** Embedded Memory - Up to 80 kbits sysMEM™ Embedded Block RAM - Two Hardened I²C Interfaces - Two Hardened SPI Interfaces #### ■ Two On-Chip Oscillators - Low Frequency Oscillator 10 kHz - High Frequency Oscillator 48 MHz #### ■ 24 mA Current Drive RGB LED Outputs - Three drive outputs in each device - User selectable sink current up to 24 mA #### ■ 500 mA Current Drive IR LED Output - One IR drive output in each device - User selectable sink current up to 500 mA #### On-chip DSP - Signed and unsigned 8-bit or 16-bit functions - Functions include Multiplier, Accumulator, and Multiply-Accumulate (MAC) #### **■** Flexible On-Chip Clocking - Eight low skew global signal resource, six can be directly driven from external pins - One PLL with dynamic interface per device #### ■ Flexible Device Configuration - SRAM is configured through: - Standard SPI Interface - Internal Nonvolatile Configuration Memory (NVCM) #### ■ Ultra-Small Form Factor • As small as 2.078 mm x 2.078 mm ## Applications - Smartphones - Tablets and Consumer Handheld Devices - Handheld Commercial and Industrial Devices - Multi Sensor Management Applications - Sensor Pre-processing and Sensor Fusion - Always-On Sensor Applications - USB 3.1 Type C Cable Detect / Power Delivery Applications © 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ## iCE40 Ultra Family Data Sheet Architecture June 2016 Data Sheet DS1048 ## **Architecture Overview** The iCE40 Ultra family architecture contains an array of Programmable Logic Blocks (PLB), two Oscillator Generators, two user configurable I²C controllers, two user configurable SPI controllers, and blocks of sysMEM[™] Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1shows the block diagram of the iCE5LP-4K device. Figure 2-1. iCE5LP-4K Device, Top View The Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either PLB or EBR blocks. The PIO cells are located at the top and bottom of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources. In the iCE40 Ultra family, there are three sysIO banks, one on top and two at the bottom. User can connect some V_{CCIOS} together, if all the I/Os are using the same voltage standard. Refer to the details in later sections of this document on Power Up Sequence. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO with user logic using PLBs. Every device in the family has two user SPI ports, one of these (right side) SPI port also supports programming and configuration of the device. The iCE40 Ultra also includes two user I²C ports, two Oscillators, and high current RGB and IR LED sinks. © 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. #### **PLB Blocks** The core of the iCE40 Ultra device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register. Figure 2-2. PLB Block Diagram #### **Logic Cells** Each Logic Cell includes three primary logic elements shown in Figure 2-2. - A four-input Look-Up Table (LUT) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUTs to create wider logic functions. - A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration. - Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtracters, comparators, binary counters and some wide, cascaded logic functions. Table 2-1. Logic Cell Signal Descriptions | Function | Туре | Signal Names | Description | |----------|------------------|------------------------|--| | Input | Data signal | 10, 11, 12, 13 | Inputs to LUT | | Input | Control signal | Enable | Clock enable shared by all LCs in the PLB | | Input | Control signal | Set/Reset ¹ | Asynchronous or synchronous local set/reset shared by all LCs in the PLB. | | Input | Control signal | Clock | Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB | | Input | Inter-PLB signal | FCIN | Fast carry in | | Output | Data signals | 0 | LUT or registered output | | Output | Inter-PFU signal | FCOUT | Fast carry out | ^{1.} If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration. ## sysCLOCK Phase Locked Loops (PLLs) The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 Ultra devices have one sys-CLOCK PLL. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin, the internal Oscillator Generators from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output. The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 64 (in increments of 2X). The PLLOUT outputs can all be used to drive the iCE40 Ultra global clock network directly or general purpose routing resources can be used. The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3. The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the tLOCK parameter has been satisfied. There is an additional feature in the iCE40 Ultra PLL. There are 2 FPGA controlled inputs, SCLK and SDI, that allows the user logic to serially shift in data thru SDI, clocked by SCLK clock. The data shifted in would change the configuration settings of the PLL. This feature allows the PLL to be time multiplexed for different functions, with different clock rates. After the data is shifted in, user would simply pulse the RESET input of the PLL block, and the PLL will re-lock with the new settings. For more details, please refer to TN1251, iCE40 sysCLOCK PLL Design and Usage Guide. Figure 2-3. PLL Diagram Table 2-3 provides signal descriptions of the PLL block. ## Table 2-3. PLL Signal Descriptions | Signal Name | Direction | Description | |-------------------|-----------|---| | REFERENCECLK | Input | Input reference clock | | BYPASS | Input | The BYPASS control selects which clock signal connects to the PLL-OUT output. 0 = PLL generated signal 1 = REFERENCECLK | | EXTFEEDBACK | Input | External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set to EXTERNAL. | | DYNAMICDELAY[7:0] | Input | Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE is set to DYNAMIC. | | LATCHINPUTVALUE | Input | When enabled, puts the PLL into low-power mode; PLL output is held static at the last input clock value. Set ENABLE ICEGATE_PORTA and PORTB to '1' to enable. | | PLLOUTGLOBAL | Output | Output from the Phase-Locked Loop (PLL). Drives a global clock network on the FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5. | | PLLOUTCORE | Output | Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port. | | LOCK | Output | When High, indicates that the PLL output is phase aligned or locked to the input reference clock. | | RESET | Input | Active low reset. | | SCLK | Input | Input, Serial Clock used for re-programming PLL settings. | | SDI | Input | Input, Serial Data used for re-programming PLL settings. | ## sysMEM Embedded Block RAM Memory Larger iCE40 Ultra device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each 4 kbit in size. This memory can be used for a wide variety of purposes including data buffering, and FIFO. ## sysMEM Memory Block The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources. Each block can be used in a variety of depths and widths as shown in Table 2-4. ## Table 2-4. sysMEM Block Configurations¹ | Block RAM
Configuration | Block RAM
Configuration
and Size | WADDR Port
Size (Bits) | WDATA Port
Size (Bits) | RADDR Port
Size (Bits) | RDATA Port
Size (Bits) | MASK Port
Size (Bits) | |--|--|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------| | SB_RAM256x16
SB_RAM256x16NR
SB_RAM256x16NW
SB_RAM256x16NRNW | 256x16 (4 k) | 8 [7:0] | 16 [15:0] | 8 [7:0] | 16 [15:0] | 16 [15:0] | | SB_RAM512x8
SB_RAM512x8NR
SB_RAM512x8NW
SB_RAM512x8NRNW | 512x8 (4 k) | 9 [8:0] | 8 [7:0] | 9 [8:0] | 8 [7:0] | No Mask Port | | SB_RAM1024x4
SB_RAM1024x4NR
SB_RAM1024x4NW
SB_RAM1024x4NRNW | 1024x4 (4 k) | 10 [9:0] | 4 [3:0] | 10 [9:0] | 4 [3:0] | No Mask Port | | SB_RAM2048x2
SB_RAM2048x2NR
SB_RAM2048x2NW
SB_RAM2048x2NRNW | 2048x2 (4 k) | 11 [10:0] | 2 [1:0] | 11 [10:0] | 2 [1:0] | No Mask Port | ^{1.} For iCE40 Ultra, the primitive name without "Nxx" uses rising-edge Read and Write clocks. "NR" uses rising-edge Write clock, falling-edge Read clock. "NRW" uses falling-edge Write clock and rising-edge Read clock. "NRNW" uses falling-edge clocks on both Read and Write. #### RAM Initialization and ROM Operation If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM. #### **Memory Cascading** Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks. #### **RAM4k Block** Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. Figure 2-4. sysMEM Memory Primitives Table 2-5. EBR Signal Descriptions | Signal Name | Direction | Description | |-------------|-----------|--| | WDATA[15:0] | Input | Write Data input. | | MASK[15:0] | Input | Masks write operations for individual data bit-lines. 0 = write bit 1 = do not write bit | | WADDR[7:0] | Input | Write Address input. Selects one of 256 possible RAM locations. | | WE | Input | Write Enable input. | | WCLKE | Input | Write Clock Enable input. | | WCLK | Input | Write Clock input. Default rising-edge, but with falling-edge option. | | RDATA[15:0] | Output | Read Data output. | | RADDR[7:0] | Input | Read Address input. Selects one of 256 possible RAM locations. | | RE | Input | Read Enable input. | | RCLKE | Input | Read Clock Enable input. | | RCLK | Input | Read Clock input. Default rising-edge, but with falling-edge option. | For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices. ## sysDSP The iCE40 Ultra family provides an efficient sysDSP architecture that is very suitable for low-cost Digital Signal Processing (DSP) functions for mobile applications. Typical functions used in these applications are Multiply, Accumulate, and Multiply-Accumulate. The block can also be used for simple Add and Subtract functions. #### iCE40 Ultra sysDSP Architecture Features The iCE40 Ultra sysDSP supports many functions that include the following: - Single 16-bit x 16-bit Multiplier, or two independent 8-bit x 8-bit Multipliers - Optional independent pipeline control on Input Register, Output Register, and Intermediate Reg faster clock performance - Single 32-bit Accumulator, or two independent 16-bit Accumulators - Single 32-bit, or two independent 16-bit Adder/Subtracter functions, registered or asynchronous - · Cascadable to create wider Accumulator blocks Figure 2-5 shows the block diagram of the sysDSP block. The block consists Multiplier section, with an bypassable Output register. The Input Register, Intermediate register between Multiplier and AC timing to achieve the highest performance. Figure 2-5. sysDSP Functional Block Diagram (16-bit x 16-bit Multiply-Accumulate) ## Table 2-6. sysDSP Input/Output List | Signal | Primitive Port
Name | Width | Input /
Output | Function | Default | |---------|------------------------|-------|-------------------|--|-------------| | CLK | CLK | 1 | Input | Clock Input. Applies to all clocked elements in the sysDSP block | | | ENA | CE | 1 | Input | Clock Enable Input. Applies to all clocked elements in the sysDSP block. 0 = Not Enabled 1 = Enabled | 0: Enabled | | A[15:0] | A[15:0] | 16 | Input | Input to the A Register. Feeds the Multiplier or is a direct input to the Adder Accumulator | 16'b0 | | B[15:0] | B[15:0] | 16 | Input | Input to the B Register. Feeds the Multiplier or is a direct input to the Adder Accumulator | 16'b0 | | C[15:0] | C[15:0] | 16 | Input | Input to the C Register. It is a direct input to the Adder Accumulator | 16'b0 | | D[15:0] | D[15:0] | 16 | Input | Input to the D Register. It is a direct input to the Adder Accumulator | 16'b0 | | AHLD | AHOLD | 1 | Input | A Register Hold. 0 = Update 1 = Hold | 0: Update | | BHLD | BHOLD | 1 | Input | B Register Hold. 0 = Update 1 = Hold | 0: Update | | CHLD | CHOLD | 1 | Input | C Register Hold.
0 = Update
1 = Hold | 0: Update | | DHLD | DHOLD | 1 | Input | D Register Hold.
0 = Update
1 = Hold | 0: Update | | IHRST | IRSTTOP | 1 | Input | Reset input to A and C input registers, and the pipeline registers in the upper half of the Multiplier Section. 0 = No Reset 1 = Reset | 0: No Reset | | ILRST | IRSTBOT | 1 | Input | Reset input to B and D input registers, and the pipeline registers in the lower half of the Multiplier Section. It also resets the Multiplier result pipeline register. 0 = No Reset 1 = Reset | 0: No Reset | | O[31:0] | O[31:0] | 32 | Output | Output of the sysDSP block. This output can be: — O[31:0] — 32-bit result of 16x16 Multiplier or MAC — O[31:16] — 16-bit result of 8x8 upper half Multiplier or MAC — O[15:0] — 16-bit result of 8x8 lower half Multiplier or MAC | | | OHHLD | OHOLDTOP | 1 | Input | High-order (upper half) Accumulator Register Hold.
0 = Update
1 = Hold | 0: Update | | OHRST | ORSTTOP | 1 | Input | Reset input to high-order (upper half) bits of the Accumulator Register. 0 = No Reset 1 = Reset | 0: No Reset | ## User I²C IP The iCE40 Ultra devices have two I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The pins for the I²C interface are not pre-assigned. User can use any General Purpose I/O pins. In each of the two cores, there are options to delay the either the input or the output, or both, by 50 ns nominal, using dedicated on-chip delay elements. This provides an easier interface with any external I²C components. When the IP core is configured as master, it will be able to control other devices on the I²C bus through the preassigned pin interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I²C Master. The I²C cores support the following functionality: - Master and Slave operation - · 7-bit and 10-bit addressing - Multi-master arbitration support - · Clock stretching - · Up to 400 kHz data transfer speed - · General Call support - Optionally delaying input or output data, or both For further information on the User I²C, please refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide. #### **User SPI IP** The iCE40 Ultra devices have two SPI IP cores. The pins for the SPI interface are not pre-assigned. User can use any General Purpose I/O pins. Both SPI IP cores can be configured as a SPI master or as a slave. When the SPI IP core is configured as a master, it controls the other SPI enabled devices connected to the SPI Bus. When SPI IP core is configured as a slave, the device will be able to interface to an external SPI master. The SPI IP core supports the following functions: - · Configurable Master and Slave modes - Full-Duplex data transfer - Mode fault error flag with CPU interrupt capability - · Double-buffered data register - · Serial clock with programmable polarity and phase - · LSB First or MSB First Data Transfer For further information on the User SPI, please refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide. ## **High Current LED Drive I/O Pins** The iCE40 Ultra family devices offer multiple high current LED drive outputs in each device in the family to allow the iCE40 Ultra product to drive LED signals directly on mobile applications. There are three outputs on each device that can sink up to 24 mA current. These outputs are open-drain outputs, and provides sinking current to an LED connecting to the positive supply. These three outputs are designed to drive the RBG LEDs, such as the service LED found in a lot of mobile devices. An embedded RGB PWM IP is also offered in the family. This RGB drive current is user programmable from 4 mA to 24 mA, in increments of 4 mA. This output functions as General Purpose I/O with open-drain when the high current LED drive is not needed. There is one output on each device that can sink up to 500 mA current. This output is open-drain, and provides sinking current to drive an external IR LED connecting to the positive supply. This IR drive current is user programmable from 50 mA to 500 mA in increments of 50 mA. This output functions as General Purpose I/O with open-drain when the high current LED drive is not needed. #### **Embedded PWM IP** To provide an easier usage of the RGB high current drivers to drive RGB LED, a Pulse-Width Modulator IP can be embedded into the user design. This PWM IP provides the flexibility for user to dynamically change the settings on the ON-time duration, OFF-time duration, and ability to turn the LED lights on and off gradually with user set breath-on and breath-off time. For additional information on the embedded PWM IP, please refer to TN1288, iCE40 LED Driver Usage Guide. ## **Non-Volatile Configuration Memory** All iCE40 Ultra devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device. For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration. ## iCE40 Ultra Programming and Configuration This section describes the programming and configuration of the iCE40 Ultra family. ## **Device Programming** The NVCM memory can be programmed through the SPI port. The SPI port is located in Bank 1, using SPI_{CCIO1} power supply. ## **Device Configuration** There are various ways to configure the Configuration RAM (CRAM), using SPI port, including: - From a SPI Flash (Master SPI mode) - System microprocessor to drive a Serial Slave SPI port (SSPI mode) For more details on configuring the iCE40 Ultra, please see TN1248, iCE40 Programming and Configuration. ## **Power Saving Options** The iCE40 Ultra devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. Table 2-10 describes the function of these features. Table 2-10. iCE40 Ultra Power Saving Features Description | Device Subsystem | Feature Description | |------------------|---| | IPLI | When LATCHINPUTVALUE is enabled, puts the PLL into low-power mode; PLL output held static at last input clock value. | | iCEGate | To save power, the optional iCEGate latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control. | # iCE40 Ultra Family Data Sheet DC and Switching Characteristics June 2016 Data Sheet DS1048 ## **Absolute Maximum Ratings**^{1, 2, 3} | Supply Voltage V _{CC} | V | |---|---| | Output Supply Voltage V _{CCIO} | V | | NVCM Supply Voltage V _{PP_2V5} | ٧ | | PLL Supply Voltage V _{CCPLL} 0.5 V to 1.42 \ | V | | I/O Tri-state Voltage Applied0.5 V to 3.60 \ | V | | Dedicated Input Voltage Applied | V | | Storage Temperature (Ambient)—65 °C to 150 °C | С | | Junction Temperature (T _J) | С | ^{1.} Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. ## Recommended Operating Conditions¹ | Symbol | Parame | Min. | Max. | Units | | |--------------------------------------|--|--|--------|-------|----| | V _{CC} ¹ | Core Supply | Core Supply Voltage | | | V | | | | Slave SPI Configuration | 1.71 4 | 3.46 | V | | N/ | VPP_2V5 NVCM Programming and
Operating Supply Voltage | Master SPI Configuration | 2.30 | 3.46 | V | | V _{PP_2V5} | | Configuration from NVCM | 2.30 | 3.46 | V | | | | NVCM Programming | 2.30 | 3.00 | V | | V _{CCIO} ^{1, 2, 3} | I/O Driver Supply Voltage | V _{CCIO_0} , SPI_V _{CCIO1} , V _{CCIO_2} | 1.71 | 3.46 | V | | V _{CCPLL} | PLL Supply Voltage | | 1.14 | 1.26 | V | | t _{JCOM} | Junction Temperature Co | mmercial Operation | 0 | 85 | °C | | t _{JIND} | Junction Temperature Industrial Operation | | | 100 | °C | | t _{PROG} | Junction Temperature N | VCM Programming | 10.00 | 30.00 | °C | Like power supplies must be tied together if they are at the same supply voltage and they meet the power up sequence requirement. Please refer to Power-Up Supply Sequencing section. V_{CC} and V_{CCPLL} are recommended to tie to same supply with an RC-based noise filter between them. Please refer to TN1252, iCE40 Hardware Checklist. ## Power Supply Ramp Rates^{1, 2} | Symbol | Parameter | Min. | Max. | Units | |-------------------|---|------|------|-------| | t _{RAMP} | Power supply ramp rates for all power supplies. | 0.6 | 10 | V/ms | ^{1.} Assumes monotonic ramp rates. ^{2.} Compliance with the Lattice Thermal Management document is required. ^{3.} All voltages referenced to GND. ^{2.} See recommended voltages by I/O standard in subsequent table. ^{3.} V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards. V_{PP_2V5} can, optionally, be connected to a 1.8 V (+/-5%) power supply in Slave SPI Configuration mode subject to the condition that none of the HFOSC/LFOSC and RGB LED / IR LED driver features are used. Otherwise, V_{PP_2V5} must be connected to a power supply with a minimum 2.30 V level. ^{2.} Power up sequence must be followed. Please refer to Power-Up Supply Sequencing section. Figure 3-2. Power Up Sequence with All Supplies Connected Together ## Power-On-Reset Voltage Levels¹ | Symbol | Parameter | | | Max. | Units | |--------------------|--|------------------------|------|------|-------| | V _{PORUP} | Dower On Deast rome up trip point (sireuit monitoring | V _{CC} | 0.62 | 0.92 | V | | | | SPI_V _{CCIO1} | 0.87 | 1.50 | V | | | 1 CO, C. 1 COIO1, 1 PP_2V5/ | V _{PP_2V5} | 0.90 | 1.53 | V | | V _{PORDN} | Power-On-Reset ramp-down trip point (circuit monitoring V _{CC} , SPI_V _{CClO1} , V _{PP 2V5}) | V _{CC} | _ | 0.79 | V | | | | SPI_V _{CCIO1} | _ | 1.50 | V | | | | V _{PP_2V5} | _ | 1.53 | V | ^{1.} These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions. ## **ESD Performance** Please contact Lattice Semiconductor for additional information. ## **DC Electrical Characteristics** #### **Over Recommended Operating Conditions** | Symbol | Parameter | Condition | Min. | Тур. | Max. | Units | |---|---|---|------|------|-------|-------| | I _{IL,} I _{IH} ^{1, 3, 4} | Input or I/O Leakage | $0V < V_{IN} < V_{CCIO} + 0.2 V$ | _ | _ | +/-10 | μΑ | | C ₁ | I/O Capacitance, excluding LED Drivers ² | $V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}$
$V_{CC} = \text{Typ.}, V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$ | _ | 6 | _ | pF | | C ₂ | Global Input Buffer
Capacitance ² | $V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}$
$V_{CC} = \text{Typ.}, V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$ | _ | 6 | _ | pF | | C ₃ | RGB Pin Capacitance ² | $V_{CC} = Typ., V_{IO} = 0 \text{ to } 3.5 \text{ V}$ | _ | 15 | _ | pF | | C ₄ | IRLED Pin Capacitance ² | $V_{CC} = Typ., V_{IO} = 0 \text{ to } 3.5 \text{ V}$ | _ | 53 | _ | pF | | V _{HYST} | Input Hysteresis | V _{CCIO} = 1.8 V, 2.5 V, 3.3 V | _ | 200 | _ | mV | | | Internal DIO Dull on | $V_{CCIO} = 1.8 \text{ V}, 0 = < V_{IN} < = 0.65 V_{CCIO}$ | -3 | _ | -31 | μΑ | | I_{PU} | Internal PIO Pull-up
Current | $V_{CCIO} = 2.5 \text{ V}, 0 = < V_{IN} < = 0.65 V_{CCIO}$ | -8 | _ | -72 | μΑ | | | | $V_{CCIO} = 3.3 \text{ V}, 0 = < V_{IN} < = 0.65 V_{CCIO}$ | -11 | _ | -128 | μΑ | ^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled. T_J 25 °C, f = 1.0 MHz. ^{3.} Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document. ^{4.} Input pins are clamped to V_{CCIO} and GND by a diode. When input is higher than V_{CCIO} or lower than GND, the Input Leakage current will be higher than the I_{IL} and I_{IH}. ## Internal Oscillators (HFOSC, LFOSC)¹ | Parameter | | Parameter Description | Spec/Recommended | | Units | | |------------------------------------|-----------------|--|------------------|-----|--------|--------| | Symbol | Conditions | | Min | Тур | Max | | | f . | Commercial Temp | HFOSC clock frequency (t _J = 0 °C-85 °C) | -10% | 48 | 10% | MHz | | t _{CLKHF} Industrial Temp | | HFOSC clock frequency (t _J = -40 °C-100 °C) | -20% | 48 | 20% | MHz | | f _{CLKLF} | | LFOSC CLKK clock frequency | -10% | 10 | 10% | kHz | | DCH. | Commercial Temp | HFOSC clock frequency (t _J = 0 °C-85 °C) | 45 | 50 | 55 | % | | DCH _{CLKHF} | Industrial Temp | HFOSC clock frequency (t _J = -45 °C-100 °C) | 40 | 50 | 60 | % | | DCH _{CLKLF} | | LFOSC Duty Cycle (Clock High Period) | 45 | 50 | 55 | % | | Tsync_on | | Oscillator output synchronizer delay — 5 | | 5 | Cycles | | | Tsync_off | | Oscillator output disable delay | _ | | 5 | Cycles | ^{1.} Glitchless enabling and disabling OSC clock outputs. ## sysIO Recommended Operating Conditions | V _{CCIO} (V) | | | | |-----------------------|------|------|------| | Standard | Min. | Тур. | Max. | | LVCMOS 3.3 | 3.14 | 3.3 | 3.46 | | LVCMOS 2.5 | 2.37 | 2.5 | 2.62 | | LVCMOS 1.8 | 1.71 | 1.8 | 1.89 | ## sysIO Single-Ended DC Electrical Characteristics | Input/ | V _{IL} | | V _{IH} | | | | | | | | | | | |--------------------|-----------------|-----------------------|-----------------------|--------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|---------------|-----|-------------------------|-----|------| | Output
Standard | Min. (V) | Max. (V) | Min. (V) | Max. (V) | V _{OL} Max.
(V) | V _{OH} Min.
(V) | I _{OL} Max.
(mA) | I _{OH} Max.
(mA) | | | | | | | LVCMOS 3.3 | -0.3 | 0.8 | 2.0 | V _{CCIO} + 0.2V | 0.4 | V _{CCIO} - 0.4 | 8 | -8 | | | | | | | LV OIVIOU 0.0 | 0.5 | 0.0 | 2.0 | 2.0 | 2.0 | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | | | | | LVCMOS 2.5 | -0.3 | 0.7 | 1.7 | V _{CCIO} + 0.2V | 0.4 | V _{CCIO} - 0.4 | 6 | -6 | | | | | | | LV CIVICO 2.5 | -0.5 | 0.7 | 0.7 | 0.7 | 1.7 | 1.7 | 1.7 | 1.7 | VCCIO + 0.2 V | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | LVCMOS 1.8 | -0.3 | 0.35V _{CCIO} | 0.65\/ | V 102V | 0.4 | V _{CCIO} - 0.4 | 4 | -4 | | | | | | | LV CIVIOS 1.6 | _0.5 | 0.55 A CCIO | 0.65V _{CCIO} | V _{CCIO} + 0.2V | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | | | | | ## **Differential Comparator Electrical Characteristics** | Parameter
Symbol | Parameter Description | Test
Conditions | Min. | Max. | Units | |-----------------------|--|---------------------------|------|---------------------------|-------| | V_{REF} | Reference Voltage to compare, on V _{INM} | V _{CCIO} = 2.5 V | 0.25 | V _{CCIO} -0.25 V | V | | V _{DIFFIN_H} | Differential input HIGH (V _{INP} - V _{INM}) | V _{CCIO} = 2.5 V | 250 | _ | mV | | $V_{DIFFIN_{L}}$ | Differential input LOW (V _{INP} - V _{INM}) | V _{CCIO} = 2.5 V | _ | -250 | mV | | I _{IN} | Input Current, V _{INP} and V _{INM} | V _{CCIO} = 2.5 V | -10 | 10 | μΑ | # Typical Building Block Function Performance^{1, 2} ## **Pin-to-Pin Performance (LVCMOS25)** | Function | Timing | Units | |-----------------|--------|-------| | Basic Functions | • | | | 16-bit decoder | 16.5 | ns | | 4:1 MUX | 18.0 | ns | | 16:1 MUX | 19.5 | ns | ## **Register-to-Register Performance** | Function | Timing | Units | | |-----------------------------|--------|-------|--| | Basic Functions | • | • | | | 16:1 MUX | 110 | MHz | | | 16-bit adder | 100 | MHz | | | 16-bit counter | 100 | MHz | | | 64-bit counter | 40 | MHz | | | Embedded Memory Functions | • | • | | | 256x16 Pseudo-Dual Port RAM | 150 | MHz | | The above timing numbers are generated using the Lattice Design Software tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. ## **Derating Logic Timing** Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage. ## Maximum sysIO Buffer Performance¹ | I/O Standard | Max. Speed | Units | | | | |--------------|------------|-------|--|--|--| | Inputs | | | | | | | LVCMOS33 | 250 | MHz | | | | | LVCMOS25 | 250 | MHz | | | | | LVCMOS18 | 250 | MHz | | | | | | Outputs | | | | | | LVCMOS33 | 250 | MHz | | | | | LVCMOS25 | 250 | MHz | | | | | LVCMOS18 | 155 | MHz | | | | ^{1.} Measured with a toggling pattern ^{2.} Under worst case operating conditions. ## sysCLOCK PLL Timing ## **Over Recommended Operating Conditions** | Parameter | Descriptions | Conditions | Min. | Max. | Units | |-----------------------------------|---|-----------------------------|------|-------|---------------| | f _{IN} | Input Clock Frequency (REFERENCECLK, EXTFEEDBACK) | | 10 | 133 | MHz | | f _{OUT} | Output Clock Frequency (PLLOUT) | | 16 | 275 | MHz | | f_{VCO} | PLL VCO Frequency | | 533 | 1066 | MHz | | f _{PFD} | Phase Detector Input Frequency | | 10 | 133 | MHz | | AC Characterist | tics | | • | | | | t _{DT} | Output Clock Duty Cycle | | 40 | 60 | % | | t _{PH} | Output Phase Accuracy | | _ | +/-12 | deg | | | Output Clock Poriod litter | f _{OUT} >= 100 MHz | _ | 450 | ps p-p | | | Output Clock Period Jitter | f _{OUT} < 100 MHz | _ | 0.05 | UIPP | | 1.5.6 | Output Clock Cycle to eyele litter | f _{OUT} >= 100 MHz | _ | 750 | ps p-p | | t _{OPJIT} 1, 5, 6 | Output Clock Cycle-to-cycle Jitter | f _{OUT} < 100 MHz | _ | 0.10 | UIPP | | | Output Clock Phase Jitter | f _{PFD} >= 25 MHz | _ | 275 | ps p-p | | | | f _{PFD} < 25 MHz | _ | 0.05 | UIPP | | t _W | Output Clock Pulse Width | At 90% or 10% | 1.33 | _ | ns | | t _{LOCK} ^{2, 3} | PLL Lock-in Time | | _ | 50 | μs | | t _{UNLOCK} | PLL Unlock Time | | _ | 50 | ns | | + 4 | Input Clock Period Jitter | f _{PFD} ≥ 20 MHz | _ | 1000 | ps p-p | | t _{IPJIT} ⁴ | Input Clock Feriod Sitter | f _{PFD} < 20 MHz | _ | 0.02 | UIPP | | t _{STABLE} ³ | LATCHINPUTVALUE LOW to PLL Stable | | _ | 500 | ns | | t _{STABLE_PW} 3 | LATCHINPUTVALUE Pulse Width | | 100 | _ | ns | | t _{RST} | RESET Pulse Width | | 10 | _ | ns | | t _{RSTREC} | RESET Recovery Time | | 10 | _ | μs | | t _{DYNAMIC_WD} | DYNAMICDELAY Pulse Width | | 100 | _ | VCO
Cycles | ^{1.} Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B. ## sysDSP Timing ## **Over Recommended Operating Conditions** | Parameter | Description | Min. | Max. | Units | |-----------------------------|--|------|------|-------| | f _{MAX8x8SMULT} | Max frequency signed MULT8x8 bypassing pipeline register | 50 | _ | MHz | | f _{MAX16x16} SMULT | Max frequency signed MULT16x16 bypassing pipeline register | 50 | _ | MHz | ^{2.} Output clock is valid after $t_{\mbox{\scriptsize LOCK}}$ for PLL reset and dynamic delay adjustment. ^{3.} At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed. ^{4.} Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table. ^{5.} The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise. # SPI Master or NVCM Configuration Time^{1, 2} | Symbol | Parameter Conditions | | Max. | Units | |---------------------|---------------------------------------|--------------------------------|------|-------| | | All devices – Low Frequency (Default) | 95 | ms | | | t _{CONFIG} | | All devices – Medium frequency | 35 | ms | | | | All devices – High frequency | 18 | ms | ^{1.} Assumes sysMEM Block is initialized to an all zero pattern if they are used. ## sysCONFIG Port Timing Specifications | Symbol | Parameter | Min. | Тур. | Max. | Units | | |-------------------------|--|-------------------------------|------|------|-----------------|-----| | All Configurat | tion Modes | | | l | | | | t _{CRESET_B} | Minimum CRESET_B LOW pulse width required to restart configuration, from falling edge to rising edge | | 200 | _ | _ | ns | | t _{DONE_IO} | Number of configuration clock cycles after CDONE goes HIGH before the PIO pins are activated | 49 | _ | _ | Clock
Cycles | | | Slave SPI | , | | | l | | | | ^t cr_sck | Minimum time from a rising edge on CRESET_B until the first SPI WRITE operation, first SPI_XCK clock. During this time, the iCE40 Ultra device is clearing its internal configuration memory | | 1200 | _ | _ | μѕ | | ſ | CCLIX alask fraguena | Write | 1 | _ | 25 | MHz | | f _{MAX} | CCLK clock frequency | Read ¹ | _ | 15 | _ | MHz | | t _{CCLKH} | CCLK clock pulsewidth HIGH | | 20 | _ | _ | ns | | t _{CCLKL} | CCLK clock pulsewidth LOW | | 20 | _ | _ | ns | | t _{STSU} | CCLK setup time | | 12 | _ | _ | ns | | t _{STH} | CCLK hold time | | 12 | _ | _ | ns | | t _{STCO} | CCLK falling edge to valid output | | 13 | _ | _ | ns | | Master SPI ³ | | | | | • | • | | | | Low Frequency
(Default) | 7.0 | 12.0 | 17.0 | MHz | | f _{MCLK} | MCLK clock frequency | Medium Frequency ² | 21.0 | 33.0 | 45.0 | MHz | | | | High Frequency ² | 33.0 | 53.0 | 71.0 | MHz | | t _{MCLK} | CRESET_B HIGH to first MCLK edge | | 1200 | _ | _ | μs | | t _{SU} | CCLK setup time ⁴ | | 9.9 | _ | _ | ns | | t _{HD} | CCLK hold time | | 1 | _ | _ | ns | ^{1.} Supported with 1.2 V Vcc and at 25 °C. ^{2.} The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point. ^{2.} Extended range fMAX Write operations support up to 53 MHz with 1.2 V Vcc and at 25 °C. ^{3.} t_{SU} and t_{HD} timing must be met for all MCLK frequency choices. ^{4.} For considerations of SPI Master Configuration Mode, please refer to TN1248, iCE40 Programming and Configuration. | Signa | al Name | Function | I/O | Description | |----------------|-----------|---------------|----------------------|--| | PIOB_33b | SPI_SI | Configuration | Input | This pin is shared with device configuration. During configuration: In Master SPI mode, this pin receives data from external SPI memory. In Slave SPI mode, this pin connects to the MOSI pin of the external processor. | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function. | | PIOB_35b | SPI_SS_B | Configuration | I/O | This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs to the external SPI memory. In Slave SPI mode, this pin inputs from the external processor. | | | | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function. | | Global Signals | | | | | | Primary | Secondary | | | | | PIOT_46b | G0 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G0 pin drives the GBUF0 global buffer | | PIOT_45a | G1 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G1 pin drives the GBUF1 global buffer | | PIOT_25b | G3 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G3 pin drives the GBUF3 global buffer | | PIOT_12a | G4 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G4 pin drives the GBUF4 global buffer | | PIOT_11b | G5 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G5 pin drives the GBUF5 global buffer | | PIOB_3b | G6 | General I/O | I/O | In user mode, after configuration, this pin can be programmed as general I/O in user function | | | | Global | Input | Global input used for high fanout, or clock/reset net.
The G6 pin drives the GBUF6 global buffer | | LED Signals | • | • | • | | | RGB0 | | General I/O | Open-Drain I/O | In user mode, with user's choice, this pin can be programmed as open drain I/O in user function | | | | LED | Open-Drain
Output | In user mode, with user's choice, this pin can be programmed as open drain 24mA output to drive external LED | | RGB1 | | General I/O | Open-Drain I/O | In user mode, with user's choice, this pin can be programmed as open drain I/O in user function | | | | LED | Open-Drain
Output | In user mode, with user's choice, this pin can be programmed as open drain 24mA output to drive external LED | # iCE40 Ultra Family Data Sheet Ordering Information June 2016 Data Sheet DS1048 ## **iCE5LP Part Number Description** ## **Tape and Reel Quantity** | Package | TR Quantity | |---------|-------------| | CM36 | 4,000 | | SWG36 | 5,000 | | SG48 | 2,000 | | Date | Version | Section | Change Summary | |-----------|---------|-------------------------------------|--| | | | | Updated Supply Current section. — Corrected I _{PP2V5STDBY} parameter. — Added Typ. VCC = 1.2 V values for I _{CCPEAK} , I _{PP_2V5PEAK} , | | | | | I _{SPI_VCCIO1PEAK} , and I _{CCIOPEAK} . — Added footnote 5. — Corrected S _{PI_VCCIO1} character format. | | | | | Updated User SPI Specifications section. Removed parameters and added footnotes. | | | | | Updated Internal Oscillators (HFOSC, LFOSC) section. Added Commercial and Industrial Temp values for DCH _{CLKHF} | | | | | Updated sysIO Single-Ended DC Electrical Characteristics section. Removed footnote. | | | | | Updated Register-to-Register Performance section. Modified footnotes. | | | | | Updated iCE40 Ultra External Switching Characteristics section. Modified footnote. | | | | | Updated sysCLOCK PLL Timing section. Reversed t _{OPJIT} conditions. | | | | | Updated sysCONFIG Port Timing Specifications section. — Modified t _{CR_SCK} Min. value. — Added footnote 4 to t _{SU} parameter. — Modified t _{SU} Min. value. — Modified t _{HD} parameter. | | | | | Updated section heading to RGB LED and IR LED Drive. Modified ILED_ACCURACY and IIR_ACCURACY parameters, Min. and Max. values. | | | | Pinout Information | Updated Signal Descriptions section. Changed V _{CCIO_1} to SPI_V _{CCIO1} in the CDONE, CRESETB and PIOB_xx descriptions. | | | | | Updated Pin Information Summary section. — Corrected symbol character format. — Corrected VCPP_2V5 to V _{PP_2V5} . | | | 1.9 | Introduction | Updated Features section. Updated BGA package to ucfBGA. | | | | DC and Switching
Characteristics | Updated Differential Comparator Electrical Characteristics section. Corrected typo in V_{REF} Max. value. | | | | Pinout Information | Updated Signal Descriptions section. — Changed PIOB_12a to PIOB_xx — Changed SPI_CSN to SPI_SS_B and revised description when in Slave SPI mode. — Corrected minor typo errors. | | | | | Updated Pin Information Summary section. Added footnote to SG48. | | | | Ordering Information | Updated iCE5LP Part Number Description section. Updated BGA package to ucfBGA. | | | | | Updated Ordering Part Numbers section. Updated BGA package to ucf-BGA. | | June 2015 | 1.8 | DC and Switching
Characteristics | Updated Internal Oscillators (HFOSC, LFOSC) section. Removed decimals. | | | | Ordering Information | Updated iCE5LP Part Number Description section. — Added TR items. — Corrected formatting errors. | | | | | Updated Ordering Part Numbers section. Updated CM36 and SG48 packages. |