

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, DDR3L, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	HDMI, Keypad, LCD, LVDS, MIPI/DSI, Parallel
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (3), USB 2.0 OTG + PHY (1)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, A-HAB, CAAM, CSU, SJC, SNVS
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6dp4avt1abr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modules List

	1	1	
Block Mnemonic	Block Name	Subsystem	Brief Description
LDB	LVDS Display Bridge	Connectivity Peripherals	 LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals: One clock pair Four data pairs Each signal pair contains LVDS special differential pad (PadP, PadM).
MLB150	MediaLB	Connectivity / Multimedia Peripherals	The MLB interface module provides a link to a MOST [®] data network, using the standardized MediaLB protocol (up to 150 Mbps). The module is backward compatible to MLB-50.
MMDC	Multi-Mode DDR Controller	Connectivity Peripherals	 DDR Controller has the following features: Supports 16/32/64-bit DDR3 / DDR3L or LPDDR2 Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2 configurations (including 2x32 interleaved mode) Supports LPDDR2 up to 400 MHz and DDR3 up to 532 MHz Supports up to 4 GByte DDR memory space
OCOTP_CTRL	OTP Controller	Security	The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility.
OCRAM	On-Chip Memory Controller	Data Path	The On-Chip Memory controller (OCRAM) module is designed as an interface between system's AXI bus and internal (on-chip) SRAM memory module. In i.MX 6DualPlus/6QuadPlus processors, the OCRAM is used for controlling the 512 KB multimedia RAM through a 64-bit AXI bus.
OSC 32 kHz	OSC 32 kHz	Clocking	Generates 32.768 kHz clock from an external crystal.
PCle	PCI Express 2.0	Connectivity Peripherals	The PCIe IP provides PCI Express Gen 2.0 functionality.

Table 2. i.MX 6DualPlus/6QuadPlus Modules List (continued)

- At power up, an internal ring oscillator is used. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically.
- Higher accuracy than ring oscillator.
- If no external crystal is present, then the ring oscillator is used.

The decision to choose a clock source should be based on real-time clock use and precision timeout.

4.1.5 Maximum Measured Supply Currents

Power consumption is highly dependent on the application. Estimating the maximum supply currents required for power supply design is difficult because the use case that requires maximum supply current is not a realistic use case.

To help illustrate the effect of the application on power consumption, data was collected while running industry standard benchmarks that are designed to be compute and graphic intensive. The results provided are intended to be used as guidelines for power supply design.

Description of test conditions:

- The Power Virus data shown in Table 8 represent a use case designed specifically to show the maximum current consumption possible for the ARM core complex. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited, if any, practical use case, and be limited to an extremely low duty cycle unless the intention was to specifically cause the worst case power consumption.
- EEMBC CoreMark: Benchmark designed specifically for the purpose of measuring the performance of a CPU core. More information available at www.eembc.org/coremark. Note that this benchmark is designed as a core performance benchmark, not a power benchmark. This use case is provided as an example of power consumption that would be typical in a computationally-intensive application rather than the Power Virus.
- 3DMark Mobile 2011: Suite of benchmarks designed for the purpose of measuring graphics and overall system performance. More information available at www.rightware.com/benchmarks. Note that this benchmark is designed as a graphics performance benchmark, not a power benchmark. This use case is provided as an example of power consumption that would be typical in a very graphics-intensive application.
- Devices used for the tests were from the high current end of the expected process variation.

The NXP power management IC, MMPF0100xxxx, which is targeted for the i.MX 6 series processor family, supports the power consumption shown in Table 8, however a robust thermal design is required for the increased system power dissipation.

See the *i.MX 6Dual/6Quad Power Consumption Measurement Application Note* (AN4509) for more details on typical power consumption under various use case definitions.

Mode	Test Conditions	Supply	Max Current	Unit
P1: Longer Recovery Time	—	PCIE_VP (1.1 V)	12	mA
Latency, Lower Power State		PCIE_VPTX (1.1 V)	2.4	
		PCIE_VPH (2.5 V)	12	
Power Down	_	PCIE_VP (1.1 V)	1.3	mA
		PCIE_VPTX (1.1 V)	0.18	
		PCIE_VPH (2.5 V)	0.36	

Table 12. PCIe PHY Current Drain (continued)

4.1.10 HDMI Maximum Power Consumption

Table 13 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data pattern and Power-down modes.

Mode	Test Conditions	Supply	Max Current	Unit
Active	Bit rate 251.75 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.1	mA
	Bit rate 279.27 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.2	mA
	Bit rate 742.5 Mbps	HDMI_VPH	17	mA
		HDMI_VP	7.5	mA
	Bit rate 1.485 Gbps	HDMI_VPH	17	mA
		HDMI_VP	12	mA
	Bit rate 2.275 Gbps	HDMI_VPH	16	mA
		HDMI_VP	17	mA
	Bit rate 2.97 Gbps	HDMI_VPH	19	mA
		HDMI_VP	22	mA
Power-down	—	HDMI_VPH	49	μΑ
		HDMI_VP	1100	μΑ

Table 13. HDMI PHY Current Drain

4.4.5 MLB PLL

The MediaLB PLL is necessary in the MediaLB 6-Pin implementation to phase align the internal and external clock edges, effectively tuning out the delay of the differential clock receiver and is also responsible for generating the higher speed internal clock, when the internal-to-external clock ratio is not 1:1.

Table 18. N	MLB PLL	Electrical	Parameters
-------------	---------	------------	------------

Parameter	Value
Lock time	<1.5 ms

4.4.6 ARM PLL

Parameter	Value
Clock output range	650 MHz~1.3 GHz
Reference clock	24 MHz
Lock time	<2250 reference cycles

4.5 **On-Chip Oscillators**

4.5.1 OSC24M

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT.

The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used.

4.5.2 OSC32K

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements a low power oscillator. It also implements a power mux such that it can be powered from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when VDD_HIGH_IN is lost.

In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz clock will automatically switch to the internal ring oscillator.

4.6.4.1 LPDDR2 Mode I/O DC Parameters

For details on supported DDR memory configurations, see Section 4.10.2, "MMDC Supported DDR3/DDR3L/LPDDR2 Configurations."

The parameters in Table 24 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

Parameters	Symbol	Test Conditions	st Conditions Min		Unit
High-level output voltage	Voh	loh = -0.1 mA	$0.9 \times \text{OVDD}$	—	V
Low-level output voltage	Vol	lol = 0.1 mA		$0.1 \times OVDD$	V
Input reference voltage	Vref	_	$0.49 \times \text{OVDD}$	$0.51 \times OVDD$	
DC input High Voltage	Vih(dc)	_	Vref+0.13V	OVDD	V
DC input Low Voltage	Vil(dc)	—	OVSS	Vref-0.13V	V
Differential Input Logic High	Vih(diff)	—	0.26	See Note ²	_
Differential Input Logic Low	Vil(diff)	—	See Note ²	-0.26	_
Input current (no pull-up/down)	lin	Vin = 0 or OVDD	-2.5	2.5	μA
Pull-up/pull-down impedance mismatch	MMpupd	—	-15	+15	%
240 Ω unit calibration resolution	Rres	—	—	10	Ω
Keeper circuit resistance	Rkeep	—	110	175	kΩ

Table 24. LPDDR2 I/O DC Electrical Parameters¹

¹ Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.

² The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot (see Table 30).

4.6.4.2 DDR3/DDR3L Mode I/O DC Parameters

For details on supported DDR memory configurations, see Section 4.10.2, "MMDC Supported DDR3/DDR3L/LPDDR2 Configurations."

The parameters in Table 25 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

Parameters	Symbol	Test Conditions	Min	Мах	Unit
High-level output voltage	Voh	loh = -0.1 mA Voh (DSE = 001)			V
	von	loh = -1 mA Voh (for all except DSE = 001)	0.0 × 0000		
Low-level output voltage		lol = 0.1 mA Vol (DSE = 001)			V
	VOI	lol = 1 mA Vol (for all except DSE = 001)		0.2 × 0100	
Input reference voltage	Vref ²	_	$0.49 \times \text{OVDD}$	$0.51 \times \text{OVDD}$	

Table 25. DDR3/DDR3L I/O DC Electrical Parameters

Figure 7. Differential MLB Driver Transition Time Waveform

A 4-stage pipeline is used in the MLB 6-pin implementation to facilitate design, maximize throughput, and allow for reasonable PCB trace lengths. Each cycle is one ipp_clk_in* (internal clock from MLB PLL) clock period. Cycles 2, 3, and 4 are MLB PHY related. Cycle 2 includes clock-to-output delay of Signal/Data sampling flip-flop and Transmitter, Cycle 3 includes clock-to-output delay of Signal/Data clocked receiver, Cycle 4 includes clock-to-output delay of Signal/Data sampling flip-flop.

MLB 6-pin pipeline diagram is shown in Figure 8.

Figure 8. MLB 6-Pin Pipeline Diagram

Table 33 shows the AC parameters for MLB I/O.

Table 33.	I/O AC	Parameters	of MLE	PHY
-----------	--------	------------	--------	------------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Differential pulse skew ¹	t _{SKD}	Rload = 50 Ω		—	0.1	
Transition Low to High Time ²	t _{TLH}	between padP		—	1	ns
Transition High to Low Time	t _{THL}	and padix		—	1	
MLB external clock Operating Frequency	fclk_ext	—		—	102.4	MHz
MLB PLL clock Operating Frequency	fclk_pll	—		—	307.2	MHz

¹ t_{SKD} = I t_{PHLD} - t_{PLHD} I, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

² Measurement levels are 20-80% from output voltage.

4.8.1 GPIO Output Buffer Impedance

Table 34 shows the GPIO output buffer impedance (OVDD 1.8 V).

Table 34. GPIO Output Buffer Average Impedance (OVDD 1.8 V)

Parameter	Symbol	Drive Strength (DSE)	Typ Value	Unit
		001	260	
	Rdrv	010	130	
		011	90	
Uniput Driver		100	60	Ω
Impedance		101	50	
		110	40	
		111	33	

Table 35 shows the GPIO output buffer impedance (OVDD 3.3 V).

Table 35. GPIO Output Buffer Average Impedance (OVDD 3.3 V)

Parameter	Symbol	Drive Strength (DSE)	Typ Value	Unit
Output Driver Impedance		001	150	
		010	75	
	Rdrv	011	50	
		100	37	Ω
		101	30	
		110	25	
		111	20	

Figure 14 to Figure 17 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings.

Figure 14. Synchronous Memory Read Access, WSC=1

Figure 15. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0

4.11.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)

Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 24 through Figure 27 depict the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 44 describes the timing parameters (NF1–NF17) that are shown in the figures.

Figure 24. Command Latch Cycle Timing Diagram

Figure 25. Address Latch Cycle Timing Diagram

Figure 38. ESAI Receiver Timing

Figure 65 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and DISP_CLK_UP parameters are register-controlled. Table 66 lists the synchronous display interface timing characteristics.

Figure 65. Synchronous Display Interface Timing Diagram—Access Level

ID	Parameter	Symbol	Min	Typ ¹	Мах	Unit
IP16	Display interface clock low time	Tckl	Tdicd-Tdicu-1.24	Tdicd ² -Tdicu ³	Tdicd-Tdicu+1.24	ns
IP17	Display interface clock high time	Tckh	Tdicp-Tdicd+Tdicu-1.24	Tdicp-Tdicd+Tdicu	Tdicp-Tdicd+Tdicu+1.2	ns
IP18	Data setup time	Tdsu	Tdicd-1.24	Tdicu	_	ns
IP19	Data holdup time	Tdhd	Tdicp-Tdicd-1.24	Tdicp-Tdicu	—	ns
IP20o	Control signals offset times (defined for each pin)	Tocsu	Tocsu-1.24	Tocsu	Tocsu+1.24	ns
IP20	Control signals setup time to display interface clock (defined for each pin)	Tcsu	Tdicd-1.24-Tocsu%Tdicp	Tdicu	_	ns

¹The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific.

² Display interface clock down time

$$Tdicd = \frac{1}{2} \left(T_{diclk} \times ceil \left[\frac{2 \times DISP_{CLK} DOWN}{DI_{CLK} PERIOD} \right] \right)$$

³ Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity.

$$\Gamma \text{dicu} = \frac{1}{2} \left(T_{\text{diclk}} \times \text{ceil} \left[\frac{2 \times \text{DISP} \text{-} \text{CLK} \text{-} \text{UP}}{\text{DI} \text{-} \text{CLK} \text{-} \text{PERIOD}} \right] \right)$$

4.12.11 LVDS Display Bridge (LDB) Module Parameters

The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits."

Parameter	Symbol	Test Condition	Min	Max	Units
Differential Voltage Output Voltage	V _{OD}	100 Ω Differential load	250	450	mV
Output Voltage High	Voh	100 Ω differential load (0 V Diff—Output High Voltage static)	1.25	1.6	V
Output Voltage Low	Vol	100 Ω differential load (0 V Diff—Output Low Voltage static)	0.9	1.25	V
Offset Static Voltage	V _{OS}	Two 49.9 Ω resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors.	1.15	1.375	V
VOS Differential	V _{OSDIFF}	Difference in $V_{\mbox{\scriptsize OS}}$ between a One and a Zero state	-50	50	mV
Output short-circuited to GND	ISA ISB	With the output common shorted to GND	-24	24	mA
VT Full Load Test	VTLoad	100 Ω Differential load with a 3.74 k Ω load between GND and I/O supply voltage	247	454	mV

Table 67. LVDS Display Bridge (LDB) Electrical Specification

4.12.12 MIPI D-PHY Timing Parameters

This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0, D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes) and MIPI DSI Version 1.01, and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for MIPI display port x2 lanes).

4.12.12.1 Electrical and Timing Information

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit		
Input DC Specifications—Apply to DSI_CLK_P/_N and DSI_DATA_P/_N Inputs								
VI	Input signal voltage range	Transient voltage range is limited from -300 mV to 1600 mV	-50	—	1350	mV		
V _{LEAK}	Input leakage current	VGNDSH(min) = VI = VGNDSH(max) + VOH(absmax) Lane module in LP Receive Mode	-10		10	mA		
V _{GNDSH}	Ground Shift	_	-50	_	50	mV		
V _{OH(absmax)}	Maximum transient output voltage level	_	—	—	1.45	V		
t _{voh(absmax)}	Maximum transient time above VOH(absmax)	_	—	—	20	ns		

 Table 68. Electrical and Timing Information

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit				
tene	DDR CLK duty cycle	$t_{CDC} = t_{CPH} / P_{DDBCLK}$		50		%				
t _{CPH}	DDR CLK high time	_		1	_	UI				
t _{CPL}	DDR CLK low time			1	_	UI				
_	DDR CLK / DATA Jitter			75		ps pk-pk				
t _{SKEW[PN]}	Intra-Pair (Pulse) skew	_		0.075	_	UI				
t _{SKEW[TX]}	Data to Clock Skew		0.350	_	0.650	UI				
t _r	Differential output signal rise time	20% to 80%, RL = 50 Ω	150	_	0.3UI	ps				
t _f	Differential output signal fall time	20% to 80%, RL = 50 Ω	150	_	0.3UI	ps				
$\Delta V_{CMTX(HF)}$	Common level variation above 450 MHz	80 Ω<= RL< = 125 Ω		—	15	mV _{rms}				
$\Delta V_{CMTX(LF)}$	Common level variation between 50 MHz and 450 MHz	80 Ω<= RL< = 125 Ω	_	—	25	mV _p				
	LP Line Drivers AC Specifications									
t _{rlp,} t _{flp}	Single ended output rise/fall time	15% to 85%, C _L <70 pF		_	25	ns				
t _{reo}		30% to 85%, C _L <70 pF		—	35	ns				
$\delta V/\delta t_{SR}$	Signal slew rate	15% to 85%, C _L <70 pF		—	120	mV/ns				
CL	Load capacitance	_	0	_	70	pF				
	HS Line Rece	iver AC Specifications								
t _{SETUP[RX]}	Data to Clock Receiver Setup time	—	0.15	—	—	UI				
t _{HOLD[RX]}	Clock to Data Receiver Hold time	_	0.15	_	—	UI				
$\Delta V_{CMRX(HF)}$	Common mode interference beyond 450 MHz	_	_	—	200	mVpp				
$\Delta V_{CMRX(LF)}$	Common mode interference between 50 MHz and 450 MHz	_	-50	—	50	mVpp				
C _{CM}	Common mode termination		_	_	60	pF				
	LP Line Rece	iver AC Specifications		L						
e _{SPIKE}	Input pulse rejection			_	300	Vps				
T _{MIN}	Minimum pulse response		50	_		ns				
V _{INT}	Pk-to-Pk interference voltage			—	400	mV				
f _{INT}	Interference frequency		450	_	—	MHz				
Model Parameters used for Driver Load switching performance evaluation										
C _{PAD}	Equivalent Single ended I/O PAD capacitance.	_	_	_	1	pF				
C _{PIN}	Equivalent Single ended Package + PCB capacitance.	_	—	—	2	pF				

Table 69. Electrical and Timing Information (continued)

4.12.13.9 DATA and FLAG Signal Timing

4.12.14 MediaLB (MLB) Characteristics

4.12.14.1 MediaLB (MLB) DC Characteristics

Table 71 lists the MediaLB 3-pin interface electrical characteristics.

Table 71. MediaLB 3-Pin Interface	Electrical DC Specifications
-----------------------------------	-------------------------------------

Parameter	Symbol	Symbol Test Conditions		Max	Unit
Maximum input voltage	—	_	—	3.6	V
Low level input threshold	V _{IL}	—		0.7	V
High level input threshold	V _{IH}	See Note ¹	1.8		V
Low level output threshold	V _{OL}	I _{OL} = 6 mA	—	0.4	V
High level output threshold	V _{OH}	I _{OH} = -6 mA	2.0		V
Input leakage current	ΙL	0 < V _{in} < VDD	—	±10	μA

¹ Higher V_{IH} thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer.

Table 72 lists the MediaLB 6-pin interface electrical characteristics.

Table 72. MediaLB 6-Pin Interface Electrical DC Specifications

Parameter	Symbol	Test Conditions	Min	Мах	Unit			
Driver Characteristics								
Differential output voltage (steady-state): I $V_{O_{+}}$ - $V_{O_{-}}$ I	V _{OD}	See Note ¹	300	500	mV			
Difference in differential output voltage between (high/low) steady-states: I V _{OD, high} - V _{OD, low} I	ΔV _{OD}	_	-50	50	mV			

4.12.14.2 MediaLB (MLB) Controller AC Timing Electrical Specifications

This section describes the timing electrical information of the MediaLB module. Figure 81 show the timing of MediaLB 3-pin interface, and Table 73 and Table 74 lists the MediaLB 3-pin interface timing characteristics.

Figure 81. MediaLB 3-Pin Timing

Ground = 0.0 V; Load Capacitance = 60 pF; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Мах	Unit	Comment
MLB_CLK operating frequency ¹	f _{mck}	11.264	25.6	MHz	256xFs at 44.0 kHz 512xFs at 50.0 kHz
MLB_CLK rise time	t _{mckr}	—	3	ns	V _{IL} TO V _{IH}
MLB_CLK fall time	t _{mckf}	—	3	ns	V _{IH} TO V _{IL}
MLB_CLK low time ²	t _{mckl}	30 14	_	ns	256xFs 512xFs
MLB_CLK high time	t _{mckh}	30 14	_	ns	256xFs 512xFs
MLB_SIG/MLB_DATA receiver input valid to MLB_CLK falling	t _{dsmcf}	1	_	ns	_
MLB_SIG/MLB_DATA receiver input hold from MLB_CLK low	t _{dhmcf}	t _{mdzh}	_	ns	_
MLB_SIG/MLB_DATA output high impedance from MLB_CLK low	t _{mcfdz}	0	t _{mckl}	ns	(see ³)

Table 73. MLB 256/512 Fs Timing Parameters

ID	Parameter	Min	Мах	Unit			
Synchronous External Clock Operation							
SS44	AUDx_RXD setup before AUDx_TXC falling	10.0	_	ns			
SS45	AUDx_RXD hold after AUDx_TXC falling	2.0	_	ns			
SS46	AUDx_RXD rise/fall time	—	6.0	ns			

Table 84. SSI Transmitter Timing with External Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- AUDx_TXC and AUDx_RXC refer to the Transmit and Receive sections of the SSI.
- The terms WL and BL refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation).

4.12.20.4 SSI Receiver Timing with External Clock

Figure 93 depicts the SSI receiver external clock timing and Table 85 lists the timing parameters for the receiver timing with the external clock.

Figure 93. SSI Receiver External Clock Timing Diagram

4.12.21.2 UART RS-232 Serial Mode Timing

The following sections describe the electrical information of the UART module in the RS-232 mode.

4.12.21.2.1 UART Transmitter

Figure 94 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 87 lists the UART RS-232 serial mode transmit timing characteristics.

Figure 94. UART RS-232 Serial Mode Transmit Timing Diagram

Table 87. RS-232 Serial Mode Transmit Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA1	Transmit Bit Time	t _{Tbit}	$1/F_{baud_rate}^1 - T_{ref_clk}^2$	1/F _{baud_rate} + T _{ref_clk}	_

¹ F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.12.21.2.2 UART Receiver

Figure 95 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 88 lists serial mode receive timing characteristics.

Figure 95. UART RS-232 Serial Mode Receive Timing Diagram

 Table 88. RS-232 Serial Mode Receive Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA2	Receive Bit Time ¹	t _{Rbit}	1/F _{baud_rate} ² – 1/(16 × F _{baud_rate})	1/F _{baud_rate} + 1/(16 × F _{baud_rate})	—

The UART receiver can tolerate $1/(16 \times F_{baud_rate})$ tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{baud_rate})$.

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

6.2.2 21 x 21 mm Ground, Power, Sense, and Reference Contact Assignments

Table 95 shows the device connection list for ground, power, sense, and reference contact signals.

Supply Rail Name	Ball(s) Position(s)	Remark
CSI_REXT	D4	—
DRAM_VREF	AC2	—
DSI_REXT	G4	—
FA_ANA	A5	—
GND	 A13, A25, A4, A8, AA10, AA13, AA16, AA19, AA22, AD4, D3, F8, J15, L10, M15, P15, T15, U8, W17, AA7, AD7, D6, G10, J18, L12, M18, P18, T17, V19, W18, AB24, AE1, D8, G19, J2, L15, M8, P8, T19, V8, W19, AB3, AE25, E5, G3, J8, L18, N10, R12, T8, W10, W3, AD10, B4, E6, H12, K10, L2, N15, R15, U11, W11, W7, AD13, C1, E7, H15, K12, L5, N18, R17, U12, W12, W8, AD16, C10, F5, H18, K15, L8, N8, R8, U15, W13, W9, AD19, C4, F6, H8, K18, M10, P10, T11, U17, W15, Y24, AD22, C6, F7, J12, K8, M12, P12, T12, U19, W16, Y5 	
GPANAIO	C8	Analog output for NXP use only. This output must remain unconnected
HDMI_DDCCEC	К2	Analog ground reference for the Hot Plug detect signal
HDMI_REF	J1	—
HDMI_VP	L7	—
HDMI_VPH	M7	—
NVCC_CSI	N7	Supply of the camera sensor interface
NVCC_DRAM	R18, T18, U18, V10, V11, V12, V13, V14, V15, V16, V17, V18, V9	Supply of the DDR interface
NVCC_EIM0	K19	Supply of the EIM interface
NVCC_EIM1	L19	Supply of the EIM interface
NVCC_EIM2	M19	Supply of the EIM interface
NVCC_ENET	R19	Supply of the ENET interface
NVCC_GPIO	P7	Supply of the GPIO interface
NVCC_JTAG	J7	Supply of the JTAG tap controller interface
NVCC_LCD	P19	Supply of the LCD interface
NVCC_LVDS2P5	V7	Supply of the LVDS display interface and DDR pre-drivers. Even if the LVDS interface is not used, this supply must remain powered.

Table 95. 21 x 21 mm Supplies Contact Assignment

Package Information and Contact Assignments

				Out of Reset Condition ¹			
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²
DISP0_DAT14	U25	NVCC_LCD	GPIO	ALT5	GPIO5_IO08	Input	PU (100K)
DISP0_DAT15	T22	NVCC_LCD	GPIO	ALT5	GPIO5_IO09	Input	PU (100K)
DISP0_DAT16	T21	NVCC_LCD	GPIO	ALT5	GPIO5_IO10	Input	PU (100K)
DISP0_DAT17	U24	NVCC_LCD	GPIO	ALT5	GPIO5_IO11	Input	PU (100K)
DISP0_DAT18	V25	NVCC_LCD	GPIO	ALT5	GPI05_I012	Input	PU (100K)
DISP0_DAT19	U23	NVCC_LCD	GPIO	ALT5	GPIO5_IO13	Input	PU (100K)
DISP0_DAT2	P23	NVCC_LCD	GPIO	ALT5	GPIO4_IO23	Input	PU (100K)
DISP0_DAT20	U22	NVCC_LCD	GPIO	ALT5	GPI05_I014	Input	PU (100K)
DISP0_DAT21	T20	NVCC_LCD	GPIO	ALT5	GPIO5_IO15	Input	PU (100K)
DISP0_DAT22	V24	NVCC_LCD	GPIO	ALT5	GPIO5_IO16	Input	PU (100K)
DISP0_DAT23	W24	NVCC_LCD	GPIO	ALT5	GPI05_I017	Input	PU (100K)
DISP0_DAT3	P21	NVCC_LCD	GPIO	ALT5	GPIO4_IO24	Input	PU (100K)
DISP0_DAT4	P20	NVCC_LCD	GPIO	ALT5	GPIO4_IO25	Input	PU (100K)
DISP0_DAT5	R25	NVCC_LCD	GPIO	ALT5	GPIO4_IO26	Input	PU (100K)
DISP0_DAT6	R23	NVCC_LCD	GPIO	ALT5	GPIO4_I027	Input	PU (100K)
DISP0_DAT7	R24	NVCC_LCD	GPIO	ALT5	GPIO4_IO28	Input	PU (100K)
DISP0_DAT8	R22	NVCC_LCD	GPIO	ALT5	GPIO4_IO29	Input	PU (100K)
DISP0_DAT9	T25	NVCC_LCD	GPIO	ALT5	GPIO4_IO30	Input	PU (100K)
DRAM_A0	AC14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR00	Output	0
DRAM_A1	AB14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR01	Output	0
DRAM_A10	AA15	NVCC_DRAM	DDR	ALT0	DRAM_ADDR10	Output	0
DRAM_A11	AC12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR11	Output	0
DRAM_A12	AD12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR12	Output	0
DRAM_A13	AC17	NVCC_DRAM	DDR	ALT0	DRAM_ADDR13	Output	0
DRAM_A14	AA12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR14	Output	0
DRAM_A15	Y12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR15	Output	0
DRAM_A2	AA14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR02	Output	0
DRAM_A3	Y14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR03	Output	0
DRAM_A4	W14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR04	Output	0
DRAM_A5	AE13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR05	Output	0
DRAM_A6	AC13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR06	Output	0
DRAM_A7	Y13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR07	Output	0
DRAM_A8	AB13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR08	Output	0
DRAM_A9	AE12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR09	Output	0
DRAM_CAS	AE16	NVCC_DRAM	DDR	ALT0	DRAM_CAS_B	Output	0
DRAM_CS0	Y16	NVCC_DRAM	DDR	ALT0	DRAM_CS0_B	Output	0

Table 96. 21 x 21 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

	Ball	Power Group	Ball Type	Out of Reset Condition ¹			
Ball Name				Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²
NANDF_WP_B	E15	NVCC_NANDF	GPIO	ALT5	GPIO6_IO09	Input	PU (100K)
ONOFF	D12	VDD_SNVS_IN	GPIO	—	SRC_ONOFF	Input	PU (100K)
PCIE_RXM	B1	PCIE_VPH	—	—	PCIE_RX_N	—	—
PCIE_RXP	B2	PCIE_VPH	—	—	PCIE_RX_P	—	—
PCIE_TXM	A3	PCIE_VPH	—	—	PCIE_TX_N	—	—
PCIE_TXP	B3	PCIE_VPH	—	—	PCIE_TX_P	—	—
PMIC_ON_REQ	D11	VDD_SNVS_IN	GPIO	ALT0	SNVS_PMIC_ON_REQ	Output	Open Drain with PU (100K)
PMIC_STBY_REQ	F11	VDD_SNVS_IN	GPIO	ALT0	CCM_PMIC_STBY_REQ	Output	0
POR_B	C11	VDD_SNVS_IN	GPIO	ALT0	SRC_POR_B	Input	PU (100K)
RGMII_RD0	C24	NVCC_RGMII	DDR	ALT5	GPIO6_IO25	Input	PU (100K)
RGMII_RD1	B23	NVCC_RGMII	DDR	ALT5	GPIO6_IO27	Input	PU (100K)
RGMII_RD2	B24	NVCC_RGMII	DDR	ALT5	GPIO6_IO28	Input	PU (100K)
RGMII_RD3	D23	NVCC_RGMII	DDR	ALT5	GPIO6_IO29	Input	PU (100K)
RGMII_RX_CTL	D22	NVCC_RGMII	DDR	ALT5	GPIO6_IO24	Input	PD (100K)
RGMII_RXC	B25	NVCC_RGMII	DDR	ALT5	GPIO6_IO30	Input	PD (100K)
RGMII_TD0	C22	NVCC_RGMII	DDR	ALT5	GPIO6_IO20	Input	PU (100K)
RGMII_TD1	F20	NVCC_RGMII	DDR	ALT5	GPIO6_IO21	Input	PU (100K)
RGMII_TD2	E21	NVCC_RGMII	DDR	ALT5	GPIO6_IO22	Input	PU (100K)
RGMII_TD3	A24	NVCC_RGMII	DDR	ALT5	GPIO6_IO23	Input	PU (100K)
RGMII_TX_CTL	C23	NVCC_RGMII	DDR	ALT5	GPIO6_IO26	Input	PD (100K)
RGMII_TXC	D21	NVCC_RGMII	DDR	ALT5	GPIO6_IO19	Input	PD (100K)
RTC_XTALI	D9	VDD_SNVS_CAP		_	RTC_XTALI		
RTC_XTALO	C9	VDD_SNVS_CAP		_	RTC_XTALO		_
SATA_RXM	A14	SATA_VPH			SATA_PHY_RX_N	—	
SATA_RXP	B14	SATA_VPH		_	SATA_PHY_RX_P		
SATA_TXM	B12	SATA_VPH		_	SATA_PHY_TX_N		
SATA_TXP	A12	SATA_VPH		_	SATA_PHY_TX_P		_
SD1_CLK	D20	NVCC_SD1	GPIO	ALT5	GPIO1_IO20	Input	PU (100K)
SD1_CMD	B21	NVCC_SD1	GPIO	ALT5	GPIO1_IO18	Input	PU (100K)
SD1_DAT0	A21	NVCC_SD1	GPIO	ALT5	GPIO1_IO16	Input	PU (100K)
SD1_DAT1	C20	NVCC_SD1	GPIO	ALT5	GPIO1_IO17	Input	PU (100K)
SD1_DAT2	E19	NVCC_SD1	GPIO	ALT5	GPIO1_IO19	Input	PU (100K)
SD1_DAT3	F18	NVCC_SD1	GPIO	ALT5	GPIO1_IO21	Input	PU (100K)
SD2_CLK	C21	NVCC_SD2	GPIO	ALT5	GPIO1_IO10	Input	PU (100K)
SD2_CMD	F19	NVCC_SD2	GPIO	ALT5	GPIO1_IO11	Input	PU (100K)

Table 96. 21 x 21 mm Functional Contact Assignments (continued)