Zilog - Z51F0811RHX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	12MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 9x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z51f0811rhx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z51F0811 Product Specification

Figure 11-56 Clock Synchronization during Arbitration Procedure	150
Figure 11-57 Arbitration Procedure of Two Masters	150
Figure 11-58 Formats and States in the Master Transmitter Mode	153
Figure 11-59 Formats and States in the Master Receiver Mode	155
Figure 11-60 Formats and States in the Slave Transmitter Mode	157
Figure 11-61 Formats and States in the Slave Receiver Mode	159
Figure 11-62 ADC Block Diagram	164
Figure 11-63 A/D Analog Input Pin Connecting Capacitor	164
Figure 11-64 A/D Power(AVDD) Pin Connecting Capacitor	165
Figure 11-65 ADC Operation for Align bit	165
Figure 11-66 Converter Operation Flow	166
Figure 11-67 Analog Comparator Block Diagram	170
Figure 12-1 IDLE Mode Release Timing by External Interrupt	174
Figure 12-2 IDLE Mode Release Timing by /RESET	174
Figure 12-3 STOP Mode Release Timing by External Interrupt	175
Figure 12-4 STOP Mode Release Timing by /RESET	175
Figure 12-5 STOP1, 2 Mode Release Flow	176
Figure 13-1 RESET Block Diagram	178
Figure 13-2 Reset noise canceller time diagram	179
Figure 13-3 Fast VDD rising time	179
Figure 13-4 Internal RESET Release Timing On Power-Up	180
Figure 13-5 Configuration timing when Power-on	180
Figure 13-6 Boot Process Waveform	181
Figure 13-7 Timing Diagram after RESET	182
Figure 13-8 Oscillator generating waveform example	182
Figure 13-9 Block Diagram of BOD	
Figure 13-10 Internal Reset at the power fail situation	
Figure 13-11 Configuration timing when BOD RESET	184
Figure 14-1 Block Diagram of On-chip Debug System	187
Figure 14-2 10-bit transmission packet	
Figure 14-3 Data transfer on the twin bus	188
Figure 14-4 Bit transfer on the serial bus	189
Figure 14-5 Start and stop condition	189
Figure 14-6 Acknowledge on the serial bus	189
Figure 14-7 Clock synchronization during wait procedure	190
Figure 14-8 Connection of transmission	190
Figure 15-1 Flash Memory Map	196
Figure 15-2 Address configuration of Flash memory	196
Figure 15-3 Data EEPROM memory map	197
Figure 15-4 Address configuration of data EEPROM	197
Figure 15-5 The sequence of page program and erase of Flash memory	198
Figure 15-6 The sequence of bulk erase of Flash memory	199
Figure 15-7 Pin diagram for parallel programming	206
Figure 15-8 Parallel Byte Read Timing of Program Memory	208
Figure 15-9 Parallel Byte Write Timing of Program Memory	208

8.2 Data Memory

Figure 8-2 shows the internal Data memory space available.

Figure 8-2 Data memory map

The internal memory space is divided into three blocks, which are generally referred to as the lower 128, upper 128, and SFR space.

Internal Data memory addresses are always one byte wide, which implies an address space of only 256 bytes. However, the addressing modes for internal RAM can in fact accommodate 384 bytes, using a simple trick. Direct addresses higher than 7FH access one memory space and indirect addresses higher than 7FH access a different memory space. Thus Figure 8-2 shows the upper 128 and SFR space occupying the same block of addresses, 80H through FFH, although they are physically separate entities.

The lower 128 bytes of RAM are present in all 8051 devices as mapped in Figure 8-3. The lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word select which register bank is in use. This allows more efficient used of code space, since register instructions are shorter than instructions that use direct addressing.

The next 16 bytes above the register banks form a block of bit-addressable memory space. The 8051 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00H through 7FH.

All of the bytes in the lower 128 can be accessed by either direct or indirect addressing. The upper 128 bytes RAM can only be accessed by indirect addressing. These spaces are used for user RAM and stack pointer.

10.4 Interrupt Vector Table

The interrupt controller supports 32 interrupt sources as shown in the Table 10-2 below. When interrupt becomes service, long call instruction (LCALL) is executed in the vector address. Interrupt request 32 has a decided priority order.

Table 10-2	Interrupt Ve	ector Addre	ss Table

Interrupt Source	Symbol	Interrupt Enable Bit	Priority	Mask	Vector Address
Hardware Reset	RESETB	0	0	Non-Maskable	0000H
External Interrupt 0	INT0	IE0.0	1	Maskable	0003H
External Interrupt 1	INT1	IE0.1	2	Maskable	000BH
External Interrupt 2	INT2	IE0.2	3	Maskable	0013H
External Interrupt 3	INT3	IE0.3	4	Maskable	001BH
Pin Change Interrupt (P0)	INT4	IE0.4	5	Maskable	0023H
Reserved	INT5	-	6	-	002BH
USART0 Rx	INT6	IE1.0	7	Maskable	0033H
USART0Tx	INT7	IE1.1	8	Maskable	003BH
SPI0	INT8	IE1.2	9	Maskable	0043H
l ² C	INT9	IE1.3	10	Maskable	004BH
USART1 Rx	INT10	IE1.4	11	Maskable	0053H
USART1 Tx	INT11	IE1.5	12	Maskable	005BH
ТО	INT12	IE2.0	13	Maskable	0063H
T1	INT13	IE2.1	14	Maskable	006BH
T2	INT14	IE2.2	15	Maskable	0073H
Т3	INT15	IE2.3	16	Maskable	007BH
Τ4	INT16	IE2.4	17	Maskable	0083H
EEPROM	INT17	IE2.5	18	Maskable	008BH
ADC	INT18	IE3.0	19	Maskable	0093H
Comparator	INT19	IE3.1	20	Maskable	009BH
WT	INT20	IE3.2	21	Maskable	00A3H
WDT	INT21	IE3.3	22	Maskable	00ABH
BIT	INT22	IE3.4	23	Maskable	00B3H
Reserved	INT23	-	24	-	00BBH
Reserved	INT24	-	25	-	00C3H
Reserved	INT25	-	26	-	00CBH
Reserved	INT26	-	27	-	00D3H
Reserved	INT27	-	28	-	00DBH
External Interrupt 4	INT28	IE4.4	29	Maskable	00E3H
External Interrupt 5	INT29	IE4.5	30	Maskable	00EBH
External Interrupt 6	INT30	IE5.0	31	Maskable	00F3H
External Interrupt 7	INT31	IE5.1	32	Maskable	00FBH

For maskable interrupt execution, first EA bit must set '1' and specific interrupt source must set '1' by writing a '1' to associated bit in the IEx. If interrupt request is received, specific interrupt request flag set '1'. And it remains '1' until CPU accepts interrupt. After that, interrupt request flag will be cleared automatically.

10.5 Interrupt Sequence

An interrupt request is held until the interrupt is accepted or the interrupt latch is cleared to '0' by a reset or an instruction. Interrupt acceptance always generates at last cycle of the instruction. So instead of fetching the current instruction, CPU executes internally LCALL instruction and saves the PC stack. For the interrupt service routine, the interrupt controller gives the address of LJMP instruction to CPU. After finishing the current instruction, at the next instruction to go interrupt service routine needs 5~8 machine cycle and the interrupt service task is terminated upon execution of an interrupt return instruction [RETI]. After generating interrupt, to go to interrupt service routine, the following process is progressed

INT27E	Reserv	ed
	0	Disable
	1	Enable
INT26E	Reserv	ed
	0	Disable
	1	Enable
INT25E	Reserv	ed
	0	Disable
	-	Bicabie
	1	Enable
INT24E	1 Reserv	Enable
INT24E	1 Reserv 0	Enable ed Disable
INT24E	1 Reserv 0 1	Enable ed Disable Enable

IE5 (Interrupt Enable Register 5) : ADH

7	6	5		4	3	2	1	0
-	-	INT35E	IN	ЛТ34E	INT33E	INT32E	INT31E	INT30E
R	R	RW		RW	RW	RW	RW	RW
								Initial value : 00H
		INT35E	Reser	ved				
			0	Disab	le			
			1	Enab	е			
		INT34E	Reser	ved				
			0	Disab	le			
			1	Enab	е			
		INT33E	Reser	ved				
			0	Disab	le			
			1	Enab	е			
		INT32E	Reser	ved				
			0	Disab	le			
			1	Enab	е			
		INT31E	Enabl	e or disa	ble External I	nterrupt 7		
			0	Disab	le			
			1	Enab	е			
		INT30E	Enabl	e or disa	ble External I	nterrupt 6		
			0	Disab	le			
			1	enabl	e			

11.3.4 Watch Dog Timer Register description

The Watch dog timer (WDT) Register consists of Watch Dog Timer Register (WDTR), Watch Dog Timer Counter Register (WDTCR) and Watch Dog Timer Mode Register (WDTMR).

11.3.5 Register description for Watch Dog Timer

WDTR (Watch Dog Timer Register: Write Case) : 8EH

7	6	5	4	3	2	1	0
WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	WDTR0
W	W	W	W	W	W	W	W
							nitial value : FFI

WDTR[7:0] Set a period

WDT Interrupt Interval=(BIT Interrupt Interval) x(WDTR Value+1)

Note) To guarantee proper operation, the data should be greater than 01H.

WDTCR (Watch Dog Timer Counter Register: Read Case) : 8EH

7	6	5	4	3	2	1	0
WDTCR7	WDTCR6	WDTCR5	WDTCR4	WDTCR3	WDTCR2	WDTCR1	WDTCR0
R	R	R	R	R	R	R	R

Initial value : 00H

WDTCR[7:0] WDT Counter

WDTMR (Watch Dog Timer Mode Register) : 8DH

7	6	5	4	3	2	1	0		
WDTEN	WDTRSON	WDTCL	-	-	-	-	WDTIFR		
RW	RW	RW	-	-	-	-	RW		
							Initial value : 00H		
	v	VDTEN	Control WDT of	operation					
				е					
			1 enable	e					
	W	DTRSON	Control WDT F	Reset operation	n				
			0 Free Running 8-bit timer						
			1 Watch Dog Timer Reset ON						
	V	NDTCL	Clear WDT Counter						
			0 Free Run						
			1 Clear	WDT Counter	(auto clear aft	er 1 Cycle)			
	v	VDTIFR	When WDT In '0' to this bit or	terrupt occurs auto clear by	, this bit beco INT_ACK sign	mes '1'. For o al.	clearing bit, write		
			0 WDT	Interrupt no ge	eneration				
			1 WDT	Interrupt gener	ration				

Figure 11-16 Example of PWM at 4MHz

Update period & duty register value at once

The period and duty of PWM comes to move from temporary registers to PPR (PWM Period Register) and PDR (PWM Duty Register) when always period match occurs. If you want that the period and duty is immediately changed, the UPDT bit in the T1PCR register must set to '1'. It should be noted that it needs the 3 cycle of timer clock for data transfer in the internal clock synchronization circuit. So the update data is written before 3 cycle of timer clock to get the right output waveform.

Phase correction & Frequency correction

Figure 11-21 Example of PWM External Synchronization with BLNKB Input

FORCE Drive ALL ch with A-ch mode

If FORCA bit sets to '1', it is possible to enable or disable all PWM output pins through PWM outputs which occur from A-ch duty counter. It is noted that the inversion outputs of A, B, C channel have the same A-ch output waveform. According to POLA/B/C, it is able to control the inversion of outputs.

generates the Timer 2 interrupt (no timer 3 interrupt). The clock source is selected from T2CK[2:0] and T3CK[1:0] must set 11b and 16BIT bit must set to '1'. The timer 2 is LSB 8-bit, the timer 3 is MSB 8-bit. T2DR must not be 0x00(0x01~0xFF). The 16-bit mode setting is shown as Figure 11-29.

Figure 11-29 16 Bit Timer/Event Counter2, 3 Block Diagram

11.5.2.4 8-Bit Capture Mode

The timer 2, 3 capture mode is set by CAP2, CAP3 as '1'. The clock source can use the internal/external clock. Basically, it has the same function of the 8-bit timer/counter mode and the interrupt occurs at T 2, 3 and T2DR, T3DR matching time, respectively. The capture result is loaded into CDR2, CDR3. The T2, T3 value is automatically cleared by hardware and restarts counter.

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

As the EIEDGE and EIPOLA register setting, the external interrupt INT2, INT3 function is chosen.

The CDR2, T2 and T2DR are in same address. In the capture mode, reading operation is read the CDR2, not T2DR because path is opened to the CDR2. The CDR3 has the same function.

1 Clear Counter and start

T4L (Timer 4 Low Register: Read Case) : CFH

T4L[7:0] T4L Counter

T4LDR (Timer 4 Low Data Register: Write Case) : CFH

7	6	5	4	3	2	1	0
T4LD7	T4LD6	T4LD5	T4LD4	T4LD3	T4LD2	T4LD1	T4LD0
W	W	W	W	W	W	W	W
						l.	nitial value : FFI

T4LD[7:0] T4L Compare

LCDR4 (Low Capture 4 Data Register: Read Case) : CFH

7	6	5	4	3	2	1	0
LCDR47	LCDR46	LCDR45	LCDR44	LCDR43	LCDR42	LCDR41	LCDR40
R	R	R	R	R	R	R	R
						I	nitial value : 00

LCDR4[7:0] T4L Capture data

T4H (Timer 4 High Register: Read Case) : D5H

7	6	5	4	3	2	1	0
T4H7	T4H6	T4H5	T4H4	T4H3	T4H2	T4H1	T4H0
R	R	R	R	R	R	R	R
							nitial value : 00ł

T4H[7:0] T4H Counter Period

T4HDR (Timer 4 High Data Register: Write Case) : D5H

7	6	5	4	3	2	1	0
T4HD7	T4HD6	T4HD5	T4HD4	T4HD3	T4HD2	T4HD1	T4HD0
W	W	W	W	W	W	W	W
							nitial value : FF

T4HD[7:0] T4H Compare

HDR4 (High Capture 4 Data Register: Read Case) : D5H

7	6	5	4	3	2	1	0
HCDR47	HCDR46	HCDR45	HCDR44	HCDR43	HCDR42	HCDR41	HCDR40
R	R	R	R	R	R	R	R

Initial value : 00H

11.7.3 Clock Generation

Figure 11-40 Clock Generation Block Diagram

The Clock generation logic generates the base clock for the Transmitter and Receiver. The USART supports four modes of clock operation and those are Normal Asynchronous, Double Speed Asynchronous, Master Synchronous and Slave Synchronous. The clock generation scheme for Master SPI and Slave SPI mode is the same as Master Synchronous and Slave Synchronous operation mode. The UMSELn bit in UCTRLx1 register selects between asynchronous and synchronous operation. Asynchronous Double Speed mode is controlled by the U2X bit in the UCTRLx2 register. The MASTER bit in UCTRLx2 register controls whether the clock source is internal (Master mode, output port) or external (Slave mode, input port). The XCK pin is only active when the USART operates in Synchronous or SPI mode.

Table below contains equations for calculating the baud rate (in bps).

Operating Mode	Equation for Calculating Baud Rate
Asynchronous Normal Mode (U2X=0)	Baud Rate = $\frac{\text{fSCLK}}{16(\text{UBAUDx} + 1)}$
Asynchronous Double Speed Mode (U2X=1)	Baud Rate = $\frac{\text{fSCLK}}{8(\text{UBAUDx} + 1)}$
Synchronous or SPI Master Mode	Baud Rate = $\frac{\text{fSCLK}}{2(\text{UBAUDx} + 1)}$

Toble 11 11 Equ	intions for Co	Joulating Poud	Doto D	odiator Satt	ina
1 abie 11-14 Eul	10110115 101 Ua	iculatillu Dauu	ו המופ הי	euisiei seii	il lu

When the Transmit Complete Interrupt Enable (TXCIE) bit in UCTRL2 register is set and the Global Interrupt is enabled, USART Transmit Complete Interrupt is generated while TXC flag is set.

11.7.8.3 Parity Generator

The Parity Generator calculates the parity bit for the sending serial frame data. When parity bit is enabled (UPM[1]=1), the transmitter control logic inserts the parity bit between the MSB and the first stop bit of the sending frame.

11.7.8.4 Disabling Transmitter

Disabling the Transmitter by clearing the TXE bit will not become effective until ongoing transmission is completed. When the Transmitter is disabled, the TXD pin is used as normal General Purpose I/O (GPIO) or primary function pin.

11.7.9 USART Receiver

The USART Receiver is enabled by setting the RXE bit in the UCTRLx1 register. When the Receiver is enabled, the normal pin operation of the RXD pin is overridden by the USART as the serial input pin of the Receiver. The baud-rate, mode of operation and frame format must be set before serial reception. If synchronous or spi operation is used, the clock on the XCK pin will be used as transfer clock. If USART operates in spi mode, SS pin is used as SS input pin in slave mode or can be configured as SS output pin in master mode. This can be done by setting SPISS bit in UCTRLx3 register.

11.7.9.1 Receiving Rx data

When USART is in synchronous or asynchronous operation mode, the Receiver starts data reception when it detects a valid start bit (LOW) on RXD pin. Each bit after start bit is sampled at predefined baud-rate (asynchronous) or sampling edge of XCK (synchronous), and shifted into the receive shift register until the first stop bit of a frame is received. Even if there's 2nd stop bit in the frame, the 2nd stop bit is ignored by the Receiver. That is, receiving the first stop bit means that a complete serial frame is present in the receiver shift register and contents of the shift register are to be moved into the receive buffer. The receive buffer is read by reading the UDATAx register.

If 9-bit characters are used (USIZE[2:0] = 7) the ninth bit is stored in the RX8 bit position in the UCTRLx3 register. The 9th bit must be read from the RX8 bit before reading the low 8 bits from the UDATAx register. Likewise, the error flags FE, DOR, PE must be read before reading the data from UDATAx register. This is because the error flags are stored in the same FIFO position of the receive buffer.

11.7.9.2 Receiver flag and interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXC) flag indicates whether there are unread data present in the receive buffer. This flag is set when there are unread data in the receive buffer and cleared when the receive

When UCPHA=1, the slave begins to drive its MISO output when SS goes active low, but the data is not defined until the first XCK edge. The first XCK edge shifts the first bit of data from the shifter onto the MOSI output of the master and the MISO output of the slave. The next XCK edge causes both the master and slave to sample the data bit value on their MISO and MOSI inputs, respectively. At the third XCK edge, the USART shifts the second data bit value out to the MOSI and MISO output of the master and slave respectively. When UCPHA=1, the slave's SS input is not required to go to its inactive high level between transfers.

Because the SPI logic reuses the USART resources, SPI mode of operation is similar to that of synchronous or asynchronous operation. An SPI transfer is initiated by checking for the USART Data Register Empty flag (UDRE=1) and then writing a byte of data to the UDATA Register. In master mode of operation, even if transmission is not enabled (TXE=0), writing data to the UDATA register is necessary because the clock XCK is generated from transmitter block.

11.7.11 Register Map

Table 11-16 Register Map

Name	Address	Dir	Default	Description
UCTRL01	E2H	R/W	00H	USART Control 1 Register 0
UCTRL02	E3H	R/W	00H	USART Control 2 Register 0
UCTRL03	E4H	R/W	00H	USART Control 3 Register 0
USTAT0	E5H	R	80H	USART Status Register 0
UBAUD0	E6H	R/W	FFH	USART Baud Rate Generation Register 0
UDATA0	E7H	R/W	FFH	USART Data Register 0
UCTRL11	FAH	R/W	00H	USART Control 1 Register 1
UCTRL12	FBH	R/W	00H	USART Control 2 Register 1
UCTRL13	FCH	R/W	00H	USART Control 3 Register 1
USTAT1	FDH	R	80H	USART Status Register 1
UBAUD1	FEH	R/W	FFH	USART Baud Rate Generation Register 1
UDATA1	FFH	R/W	FFH	USART Data Register 2

11.7.12 USART Register description

USART module consists of USART Control 1 Register (UCTRLx1), USART Control 2 Register (UCTRLx2), USART Control 3 Register (UCTRLx3), USART Status Register (USTATx), USART Data Register (UDATAx), and USART Baud Rate Generation Register (UBAUDx).

11.7.13 Register description for USART

7	6	5	4		3	2	1	0		
UMSEL1	UMSEL0	UPM1	UPM	/0	USIZE2	USIZE1 UDORD	USIZEO UCPHA	UCPOL		
RW	RW	RW	RW	V	RW	RW	RW	RW		
								Initial value : 00 _H		
	U	/ISEL[1:0]	Selects operation mode of USART							
			UMSEL1 UMSEL0 Operating Mode							
			0 0 Asynchronous Mode (Normal Uart)							
			0	1	Syı	nchronous Mo	de (Synchron	ous Uart)		
			1	0	Re	served				
			1	1	SP	I Mode				
	ı	JPM[1:0]	Selects	Parity	Generation a	and Check me	thods			
			UPM1	UP	M0 Parit	y mode				
			0	0	No P	arity				
			0	1	Rese	erved				
			1	0	Ever	Parity				
			1	1	Odd	Parity				
	U	SIZE[2:0]	When in length of	async data bi	hronous or s its in frame.	ynchronous m	node of opera	ition, selects the		
			USIZE2	USI	ZE1 USIZE	0 Data ler	ngth			
			0	0	0	5 bit				
			0	0	1	6 bit				
			0	1	0	7 bit				
			0	1	1	8 bit				
			1	0	0	Reserve	ed			
			1	0	1	Reserve	ed			
			1	1	0	Reserve	ed			
			1	1	1	9 bit				
	ι	JDORD	This bit is one the M LSB of the	s in the MSB of e data	same bit pos f the data by byte is transr	sition with USI te is transmitt mitted first.	ZE1. In SPI m ed first. Whei	ode, when set to n set to zero the		
			0 L	_SB Fir	st					
			1 N	MSB Fi	rst					
	I	JCPOL	Selects p	olarity	of XCK in syr	nchronous or s	spi mode			
			О Т	FXD ch	ange @Risin	g Edge, RXD	change @Fal	ling Edge		
			1 T	FXD ch	ange @ Falli	ng Edge, RXD	change @ R	ising Edge		
	L	JCPHA	This bit is with UCPC synchrono and trailin pulse. And means pre	in the DL bit, bus ser g edge d Sam eparing	e same bit po selects one c ial peripheral e means 2 nd ple means d g transmit data	sition with US of two clock fo s. Leading ed or last clock etecting of in- a.	IZE0. In SPI rmats for diffe lge means firs edge of XCK coming receiv	mode, along prent kinds of st XCK edge in one XCK ve bit, Setup		
			UCPOL	UC	CPHA Lea	ading Edge	Trailing E	dge		
			0	0	Sa	mple (Rising)	Setup (Fa	alling)		
			0	1	Se	tup (Rising)	Sample (Falling)		
			1	0	Sa	mple (Falling)	Setup (R	ising)		
			1	1	Se	tup (Falling)	Sample (Rising)		

UCTRLx1 (USART Control 1 Register) E2H, FAH

- **SPISS** Controls the functionality of SS pin in master SPI mode.
 - 0 SS pin is normal GPIO or other primary function
 - 1 SS output to other slave device
- **USBS** Selects the length of stop bit in Asynchronous or Synchronous mode of operation.
 - 0 1 Stop Bit
 - 1 2 Stop Bit
- **TX8** The ninth bit of data frame in Asynchronous or Synchronous mode of operation. Write this bit first before loading the UDATA register.
 - 0 MSB (9th bit) to be transmitted is '0'
 - 1 MSB (9th bit) to be transmitted is '1'
- **RX8** The ninth bit of data frame in Asynchronous or Synchronous mode of operation. Read this bit first before reading the receive buffer.
 - 0 MSB (9th bit) received is '0'
 - 1 MSB (9th bit) received is '1'

USTAT (USART Status Register) E5H

7	6	5		4	3	2	1	0
UDRE	TXC	RXC	V	VAKE	SOFTRST	DOR	FE	PE
RW	RW	RW	I	RW	RW	R	R	R
								Initial value : 8
		UDRE	The UI loaded empty UDRE	DRE flag with ne and car interrupt	g indicates if aw data. If UI hold one or Writing '0' to	the transmit b DRE is '1', it two new dat this bit positio	ouffer (UDATA means the tr a. This flag o on will clear UI	 is ready to ansmit buffer an generate DRE flag.
			0	Transr	nit buffer is no	t empty.		
			1	Transr	nit buffer is en	npty.		
		ТХС	This fla been s transmi service '0' to th	ag is se shifted o it buffer routine is bit po	t when the er out and there . This flag is of a TXC inter sition. This fla	tire frame in is no new automaticall rrupt is execut g can generat	the transmit s data currently y cleared wh ed. It is also c e a TXC interr	shift register h present in t en the interru leared by writ upt.
			0	Transr	nission is ong	oing.		
			1	Transr are shi	nit buffer is e fted out comp	mpty and the letely.	data in trans	mit shift regis
		RXC	This fla cleared can be	ag is se I when a used to	t when there all the data in generate a RX	are unread of the receive b XC interrupt.	lata in the recouffer are read	ceive buffer a d. The RXC f
			0	There	is no data unr	ead in the rec	eive buffer	
			1	There	are more than	1 data in the	receive buffer	
		WAKE	This fla mode. only wh	ag is set This flag nen in as	when the RX can be used synchronous n	pin is detecte to generate a node of operat	d low while th WAKE interru ion.	e CPU is in si pt. This bit is
			0	No WA	KE interrupt i	s generated.		
			1	WAKE	interrupt is ge	enerated.		
	S	OFTRST	This is bit initia	an inter alizes the	nal reset and e internal logic	only has effec of USART ar	t on USART. d is auto clea	Writing '1' to t red.
			0	No ope	eration			
			1	Reset	USART			
		DOR	This bi	it is se ng data	t if a Data C frame is ignor	overRun occu ed. This flag	rs. While this is valid until th	s bit is set, the receive but

I2CSR (I²C Status Register) : DBH

7	6	5		4	3	2	1	0
GCALL	TEND	STOP		SSEL	MLOST	BUSY	TMODE	RXACK
R	R	R		R	R	R	R	R
							I	nitial value : 0
	(GCALL	This slave.	bit has di . Note 1)	fferent meani	ng depending	on whether	I ² C is master
			Wher (Addr	n I ² C is a ess ACK)	a master, this from slave.	bit represen	ts whether it	received AA
			vvner		slave, this bit is	s used to indic	ate general ca	àll.
			0		CK is received	a (Master mod	e)	
			1	AACK	is received (IV	laster mode)		N
			0	Receiv	ed address is	not general c	all address (S	lave mode)
		TEND	1	Genera	al call address	is detected (S	Slave mode)	
		IEND	Inist	oit is set w	nen 1-Byte of	data is transf	errea complet	ely. Note 1)
			0	1 byte	of data is not	completely tra	nsterred	
			1	1 byte	of data is com	pletely transfe	erred	
		STOP	Ihist	oit is set w	hen STOP co	ndition is dete	cted. Note 1)	
			0	NOSI	OP condition i	s detected		
			1	STOP		etected		
		SSEL	Ihist	Dit is set w	hen IC is add	dressed by oth	ier master. No	te 1)
			0	IFC is r	not selected as	s slave		
	_		1	I ^c C is a	addressed by	other master a	ind acts as a s	slave
	I	MLOST	I his t	oit represe	ents the result	of bus arbitrat	ion in master	mode. Note 1
			0	I ² C ma	intains bus m	astership		
			1	I ⁻ C has	s lost bus mas	tership during	arbitration pro	Cess
		BUSY	I his t	oit reflects	bus status.			
			0	I ² C bus	s is idle, so an	y master can	issue a STAR	T condition
			1	I ² C bus	s is busy			
	T	ſMODE	This b	oit is used	to indicate wh	nether I ² C is tr	ansmitter or re	eceiver.
			0	I ² C is a	a receiver			
			1	I ² C is a	a transmitter			
	F	RXACK	This	bit shows	the state of A	CK signal.		
			0	No AC	K is received			
			1	ACK is	generated at	ninth SCL per	riod	

Note 1) These bits can be source of interrupt.

When an I²C interrupt occurs except for STOP interrupt, the SCL line is hold LOW. To release SCL, write arbitrary value to I2CSR. When I2CSR is written, the TEND, STOP, SSEL, LOST, RXACK bits are cleared.

	0	No detection	
	1	Detection	
EXTRF	Externa ON res	al Reset flag bit. ⁻ et.	The bit is reset by writing '0' to this bit or by Power
	0	No detection	
	1	Detection	
WDTRF	Watch Power	Dog Reset flag l ON reset.	bit. The bit is reset by writing '0' to this bit or by
	0	No detection	
	1	Detection	
OCDRF	On-Chi Power	p Debug Reset fl ON reset.	ag bit. The bit is reset by writing '0' to this bit or by
	0	No detection	
	1	Detection	
BODRF	Brown- Power	Out Reset flag b ON reset.	it. The bit is reset by writing '0' to this bit or by
	0	No detection	
	1	Detection	
BODLS[1:0]	BOD le	evel Voltage	
	BODL	S1 BODLS0	Description
	0	0	1.6V
	0	1	2.5V
	1	0	3.6V
	1	1	4.2V
BODEN	BOD op	peration	
	0	BOD disable	
	1	BOD enable	

FESR (Flash and EEPROM Status Register) : ECH

7	6	5	4	3	2	1	0		
PEVBSY	VFYGOOD	-	-	ROMINT	WMODE	EMODE	VMODE		
R	RW	R	R	RW	R	R	R		
						I	nitial value : 80	0H	
	PEVBSY Operation status flag. It is cleared automatically when operatio Operations are program, erase or verification								
			0 Busy (Operation pro	cessing)				
			1 Comp	lete Operation	I				
	VF	YGOOD	Auto-verification result flag.						
			0 Auto-v	verification fails	S				
			1 Auto-v	verification suc	cesses				
	R		Flash and Da	ata EEPROM /verify starts. /	interrupt rec Active in progr	quest flag. A am/erase/veri	uto-cleared w fy completion	hen	
			0 No interrupt request.						
	1 Interrupt request.								
	v	MODE	Write mode fla	g					
	E	MODE	Erase mode fla	ag					
	١	MODE	Verify mode fla	ig					

FEARL (Flash and EEPROM address low Register) : F2H

7	6	5	4	3	2	1	0
ARL7	ARL6	ARL5	ARL4	ARL3	ARL2	ARL1	ARL0
W	W	W	W	W	W	W	W
							nitial value : 00

FEARM (Flash and EEPROM address middle Register) : F3H

7	6	5	4	3	2	1	0
ARM7	ARM6	ARM5	ARM4	ARM3	ARM2	ARM1	ARMO
W	W	W	W	W	W	W	W
						I	nitial value : 00

ARM[7:0] Flash and EEPROM address middle

FEARH (Flash and EEPROM address high Register) : F4H

7	6	5	4	3	2	1	0
ARH7	ARH6	ARH5	ARH4	ARH3	ARH2	ARH1	ARH0
W	W	W	W	W	W	W	W
						I	nitial value : 00H

ARH[7:0] Flash and EEPROM address high

FEAR registers are used for program, erase and auto-verify. In program and erase mode, it is page address and ignored the same least significant bits as the number of bits of page address. In auto-verify mode, address increases automatically by one.

FEARs are write-only register. Reading these registers returns 24-bit checksum result

15.3.2 Data EEPROM Memory Map

Data EEPROM memory uses 512-byte of EEPROM. It is read by byte and written by byte or page. One page is 16-byte. It is mapped to external data memory of 8051

Figure 15-3 Data EEPROM memory map

Figure 15-4 Address configuration of data EEPROM

Z51F0811 Product Specification

zilog

ANL C,/bit	AND direct bit inverse to carry	2	2	B0
ORL C,bit	OR direct bit to carry	2	2	72
ORL C,/bit	OR direct bit inverse to carry	2	2	A0
MOV C,bit	Move direct bit to carry	2	1	A2
MOV bit,C	Move carry to direct bit	2	2	92

BRANCHING						
Mnemonic	Description	Bytes	Cycles	Hex code		
ACALL addr 11	Absolute jump to subroutine	2	2	11→F1		
LCALL addr 16	Long jump to subroutine	3	2	12		
RET	Return from subroutine	1	2	22		
RETI	Return from interrupt	1	2	32		
AJMP addr 11	Absolute jump unconditional	2	2	01→E1		
LJMP addr 16	Long jump unconditional	3	2	02		
SJMP rel	Short jump (relative address)	2	2	80		
JC rel	Jump on carry = 1	2	2	40		
JNC rel	Jump on carry = 0	2	2	50		
JB bit,rel	Jump on direct bit = 1	3	2	20		
JNB bit,rel	Jump on direct bit = 0	3	2	30		
JBC bit,rel	Jump on direct bit = 1 and clear	3	2	10		
JMP @A+DPTR	Jump indirect relative DPTR	1	2	73		
JZ rel	Jump on accumulator = 0	2	2	60		
JNZ rel	Jump on accumulator ≠ 0	2	2	70		
CJNE A,dir,rel	Compare A, direct jne relative	3	2	B5		
CJNE A,#d,rel	Compare A, immediate jne relative	3	2	B4		
CJNE Rn,#d,rel	Compare register, immediate jne relative	3	2	B8-BF		
CJNE @Ri,#d,rel	Compare indirect, immediate jne relative	3	2	B6-B7		
DJNZ Rn,rel	Decrement register, jnz relative	3	2	D8-DF		
DJNZ dir,rel	Decrement direct byte, jnz relative	3	2	D5		

MISCELLANEOUS						
Mnemonic	Description	Bytes	Cycles	Hex code		
NOP	No operation	1	1	00		

ADDITIONAL INSTRUCTIONS (selected through EO[7:4])						
Mnemonic	Description	Bytes	Cycles	Hex code		
MOVC @(DPTR++),A	M8051W/M8051EW-specific instruction supporting software download into program memory	1	2	A5		
TRAP	Software break command	1	1	A5		

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as $11 \rightarrow F1$ (for example), are used for absolute jumps and calls, with the top 3 bits of the code being used to store the top three bits of the destination address.

The CJNE instructions use the abbreviation #d for immediate data; other instructions use #data.s

B. Instructions on how to use the input port.

Error occur status