E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, IrDA, MMC/SD, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4e16cb-anr

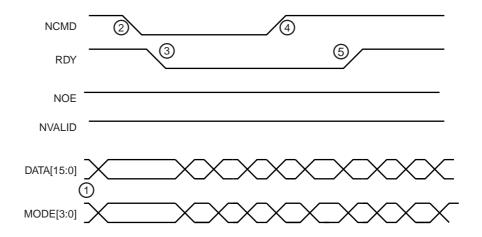
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

21.3.3 Entering Parallel Programming Mode

The following algorithm puts the device in Parallel Programming mode:

- 1. Apply the supplies as described in Table 21-1.
- 2. If an external clock is available, apply it to XIN within the VDDCORE POR reset time-out period, as defined in the section "Electrical Characteristics".
- 3. Wait for the end of this reset period.
- 4. Start a read or write handshaking.


21.3.4 Programmer Handshaking

A handshake is defined for read and write operations. When the device is ready to start a new operation (RDY signal set), the programmer starts the handshake by clearing the NCMD signal. The handshaking is completed once the NCMD signal is high and RDY is high.

21.3.4.1 Write Handshaking

For details on the write handshaking sequence, refer to Figure 21-2 and Table 21-4.

Figure 21-2. Parallel Programming Timing, Write Sequence

Table 21-4. Write Handshake

Step	Programmer Action	Device Action	Data I/O
1	Sets MODE and DATA signals	Waits for NCMD low	Input
2	Clears NCMD signal	Latches MODE and DATA	Input
3	Waits for RDY low	Clears RDY signal	Input
4	Releases MODE and DATA signals	Executes command and polls NCMD high	Input
5	Sets NCMD signal	Executes command and polls NCMD high	Input
6	Waits for RDY high	Sets RDY	Input

21.3.4.2 Read Handshaking

For details on the read handshaking sequence, refer to Figure 21-3 and Table 21-5.

24.12.4	Bus Matrix Master Remap Control Register									
Name:	MATRIX_MRCR									
Address:	0x400E0300	0x400E0300								
Access:	Read-write									
31	30	29	28	27	26	25	24			
_	-	-	-	-	-	-	-			
23	22	21	20	19	18	17	16			
-	-	-	-	-	-	-	-			
15	14	13	12	11	10	9	8			
-	-	-	-	-	-	-	-			
7	6	5	4	3	2	1	0			
-	RCB6	RCB5	RCB4	RCB3	RCB2	RCB1	RCB0			

This register can only be written if the WPEN bit is cleared in the "Write Protect Mode Register" .

RCBx: Remap Command Bit for Master x

0: Disable remapped address decoding for the selected Master

1: Enable remapped address decoding for the selected Master

25.8.8 DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Mask Register

Name:	DMAC_EBCIMR							
Address:	0x400C0020							
Access:	Read-only							
31	30	29	28	27	26	25	24	
_	-	-	_	-	-	-	-	
		-	-				-	
23	22	21	20	19	18	17	16	
_	-	-	-	ERR3	ERR2	ERR1	ERR0	
		-	-				-	
15	14	13	12	11	10	9	8	
-	-	—	-	CBTC3	CBTC2	CBTC1	CBTC0	
7	6	5	4	3	2	1	0	
-	—	_	_	BTC3	BTC2	BTC1	BTC0	

• BTCx: Buffer Transfer Completed [3:0]

0: Buffer Transfer Completed Interrupt is disabled for channel i.

1: Buffer Transfer Completed Interrupt is enabled for channel i.

• CBTCx: Chained Buffer Transfer Completed [3:0]

- 0: Chained Buffer Transfer interrupt is disabled for channel i.
- 1: Chained Buffer Transfer interrupt is enabled for channel i.

• ERRx: Access Error [3:0]

- 0: Transfer Error Interrupt is disabled for channel i.
- 1: Transfer Error Interrupt is enabled for channel i.

31.9.1 CAN Mode Register

Name: CAN_MR

Address: 0x40010000 (0), 0x40014000 (1)

Access: Read/Write

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	_	-	-	-	-	-
15	14	13	12	11	10	9	8
-	—	-	-	—	—	-	-
7	6	5	4	3	2	1	0
DRPT	TIMFRZ	TTM	TEOF	OVL	ABM	LPM	CANEN

This register can only be written if the WPEN bit is cleared in the CAN Write Protection Mode Register.

CANEN: CAN Controller Enable

0: The CAN Controller is disabled.

1: The CAN Controller is enabled.

• LPM: Disable/Enable Low-power Mode

0: Disable Low-power mode.

1: Enable Low-power mode.

CAN controller enters Low-power mode once all pending messages have been transmitted.

• ABM: Disable/Enable Autobaud/Listen mode

0: Disable Autobaud/listen mode.

1: Enable Autobaud/listen mode.

• OVL: Disable/Enable Overload Frame

0: No overload frame is generated.

1: An overload frame is generated after each successful reception for mailboxes configured in Receive with/without overwrite Mode, Producer and Consumer.

• TEOF: Timestamp messages at each end of Frame

0: The value of CAN_TIM is captured in the CAN_TIMESTP register at each Start Of Frame.

1: The value of CAN_TIM is captured in the CAN_TIMESTP register at each End Of Frame.

• TTM: Disable/Enable Time Triggered Mode

0: Time Triggered Mode is disabled.

1: Time Triggered Mode is enabled.

• TIMFRZ: Enable Timer Freeze

0: The internal timer continues to be incremented after it reached 0xFFFF.

1: The internal timer stops incrementing after reaching 0xFFFF. It is restarted after a timer reset. See "Freezing the Internal Timer Counter" on page 667.

33.6.36 PIO Additional Interrupt Modes Enable Register

Name: PIO_AIMER

 Address:
 0x400E0EB0 (PIOA), 0x400E10B0 (PIOB), 0x400E12B0 (PIOC), 0x400E14B0 (PIOD), 0x400E16B0 (PIOE)

 Access:
 Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0–P31: Additional Interrupt Modes Enable

0: No effect.

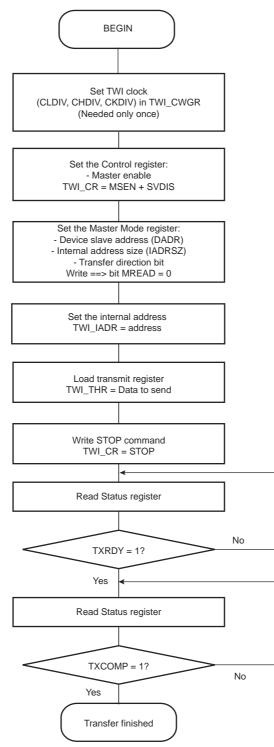
1: The interrupt source is the event described in PIO_ELSR and PIO_FRLHSR.

33.6.45 PIO Lock Status Register

Name: PIO_LOCKSR

 Address:
 0x400E0EE0 (PIOA), 0x400E10E0 (PIOB), 0x400E12E0 (PIOC), 0x400E14E0 (PIOD), 0x400E16E0 (PIOE)

 Access:
 Read-only


31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0–P31: Lock Status

0: The I/O line is not locked.

1: The I/O line is locked.

Figure 35-15. TWI Write Operation with Single Data Byte and Internal Address

Atmel

35.8.11	TWI Transmit Holding Register								
Name:	TWI_THR	TWI_THR							
Address:	0x400A8034 (0)	, 0x400AC034	(1)						
Access:	Write-only								
31	30	29	28	27	26	25	24		
-	-	-	-	-	-	-	-		
23	22	21	20	19	18	17	16		
_	-	_	_	_	_	_	-		
15	14	13	12	11	10	9	8		
-	-	-	—	_	-	_	-		
7	6	5	4	3	2	1	0		
			TXD	AIA					

• TXDATA: Master or Slave Transmit Holding Data

38.6.19 Register Write Protection

To prevent any single software error from corrupting TC behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the TC Write Protection Mode Register (TC_WPMR).

The Timer Counter clock of the first channel must be enabled to access TC_WPMR. The following registers can be write-protected:

- TC Block Mode Register
- TC Channel Mode Register: Capture Mode
- TC Channel Mode Register: Waveform Mode
- TC Fault Mode Register
- TC Stepper Motor Mode Register
- TC Register A
- TC Register B
- TC Register C
- TC Extended Mode Register

38.7 Timer Counter (TC) User Interface

Offset⁽¹⁾ Register Name Access Reset 0x00 + channel * 0x40 + 0x00 **Channel Control Register** TC_CCR Write-only _ 0x00 + channel * 0x40 + 0x04 **Channel Mode Register** TC_CMR Read/Write 0 0 0x00 + channel * 0x40 + 0x08 Stepper Motor Mode Register TC_SMMR Read/Write 0x00 + channel * 0x40 + 0x0C Register AB TC_RAB Read-only 0 **Counter Value** 0 0x00 + channel * 0x40 + 0x10 TC_CV Read-only Read/Write⁽²⁾ 0 0x00 + channel * 0x40 + 0x14 Register A TC_RA Read/Write⁽²⁾ 0x00 + channel * 0x40 + 0x18 Register B TC_RB 0 Read/Write 0 0x00 + channel * 0x40 + 0x1C Register C TC_RC 0x00 + channel * 0x40 + 0x20 Status Register TC SR Read-only 0 0x00 + channel * 0x40 + 0x24 Interrupt Enable Register TC_IER Write-only _ 0x00 + channel * 0x40 + 0x28 Interrupt Disable Register TC_IDR Write-only _ 0x00 + channel * 0x40 + 0x2C Interrupt Mask Register TC_IMR Read-only 0 0x00 + channel * 0x40 + 0x30 TC_EMR Read/Write 0 Extended Mode Register 0xC0 **Block Control Register** TC_BCR Write-only _ 0xC4 TC_BMR Read/Write 0 Block Mode Register 0xC8 **QDEC Interrupt Enable Register** TC_QIER Write-only _ 0xCC **QDEC** Interrupt Disable Register TC_QIDR Write-only _ 0xD0 **QDEC Interrupt Mask Register** TC_QIMR Read-only 0 0xD4 TC_QISR 0 QDEC Interrupt Status Register Read-only 0xD8 Fault Mode Register TC_FMR Read/Write 0 0xE4 Write Protection Mode Register TC_WPMR Read/Write 0 0xE8-0xFC Reserved _

_

_

Reserved for PDC Registers

Table 38-6.Register Mapping

Notes: 1. Channel index ranges from 0 to 2.

0x100-0x1A4

2. Read-only if TC_CMRx.WAVE = 0

• ETRGS: External Trigger

0: The External Trigger Interrupt is disabled.

1: The External Trigger Interrupt is enabled.

• ENDRX: End of Receiver Transfer

0: The PDC Receive End of Transfer Interrupt is disabled.

1: The PDC Receive End of Transfer Interrupt is enabled.

• RXBUFF: Reception Buffer Full

0: The PDC Receive Buffer Full Interrupt is disabled.

1: The PDC Receive Buffer Full Interrupt is enabled.

	0	
FPZH/Lx	FPVH/Lx	Forcing Value of PWMH/Lx
0	0	0
0	1	1
1	_	High impedance state (Hi-Z)

Table 39-3. Forcing Values of PWM Outputs by Fault Protection

CAUTION:

- To prevent any unexpected activation of the status flag FSy in PWM_FSR, the FMODy bit can be set to '1' only if the FPOLy bit has been previously configured to its final value.
- To prevent any unexpected activation of the Fault Protection on the channel x, the bit FPEx[y] can be set to '1' only if the FPOLy bit has been previously configured to its final value.

If a comparison unit is enabled (see Section 39.6.3 "PWM Comparison Units") and if a fault is triggered in the channel 0, then the comparison cannot match.

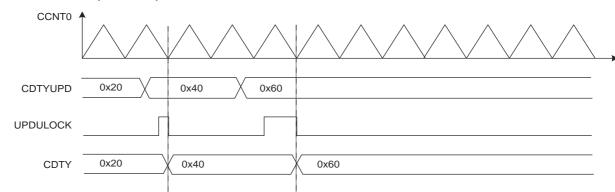
As soon as the fault protection is triggered on a channel, an interrupt (different from the interrupt generated at the end of the PWM period) can be generated but only if it is enabled and not masked. The interrupt is reset by reading the interrupt status register, even if the fault which has caused the trigger of the fault protection is kept active.

39.6.2.8 Spread Spectrum Counter

The PWM macrocell includes a spread spectrum counter allowing the generation of a constantly varying duty cycle on the output PWM waveform (only for the channel 0). This feature may be useful to minimize electromagnetic interference or to reduce the acoustic noise of a PWM driven motor.

This is achieved by varying the effective period in a range defined by a spread spectrum value which is programmed by the field SPRD in the PWM Spread Spectrum Register (PWM_SSPR). The effective period of the output waveform is the value of the spread spectrum counter added to the programmed waveform period CPRD in the PWM Channel Period Register (PWM_CPRD0).

It will cause the effective period to vary from CPRD-SPRD to CPRD+SPRD. This leads to a constantly varying duty cycle on the PWM output waveform because the duty cycle value programmed is unchanged.


The value of the spread spectrum counter can change in two ways depending on the bit SPRDM in PWM_SSPR.

If SPRDM = 0, the Triangular mode is selected. The spread spectrum counter starts to count from -SPRD when the channel 0 is enabled or after reset and counts upwards at each period of the channel counter. When it reaches SPRD, it restarts to count from -SPRD again.

If SPRDM = 1, the Random mode is selected. A new random value is assigned to the spread spectrum counter at each period of the channel counter. This random value is between -SPRD and +SPRD and is uniformly distributed.

- 3. Enable the synchronous channels by writing CHID0 in the PWM_ENA register.
- 4. If an update of the period value and/or the duty-cycle values and/or the dead-time values is required, write registers that need to be updated (PWM_CPRDUPDx, PWM_CDTYUPDx and PWM_DTUPDx).
- 5. Set UPDULOCK to '1' in PWM_SCUC.
- 6. The update of the registers will occur at the beginning of the next PWM period. When the UPDULOCK bit is reset, go to Step 4. for new values.

Figure 39-13. Method 1 (UPDM = 0)

Method 2: Manual write of duty-cycle values and automatic trigger of the update

In this mode, the update of the period value, the duty-cycle values, the dead-time values and the update period value must be done by writing in their respective update registers with the processor (respectively PWM_CPRDUPDx, PWM_CDTYUPDx, PWM_DTUPDx and PWM_SCUPUPD).

To trigger the update of the period value and the dead-time values, the user must use the bit UPDULOCK in the PWM_SCUC register, which updates synchronously (at the same PWM period) the synchronous channels:

- If the bit UPDULOCK is set to '1', the update is done at the next PWM period of the synchronous channels.
- If the UPDULOCK bit is not set to '1', the update is locked and cannot be performed.

After writing the UPDULOCK bit to '1', it is held at this value until the update occurs, then it is read 0.

The update of the duty-cycle values and the update period is triggered automatically after an update period.

To configure the automatic update, the user must define a value for the update period by the UPR field in the PWM_SCUP register. The PWM controller waits UPR+1 period of synchronous channels before updating automatically the duty values and the update period value.

The status of the duty-cycle value write is reported in the PWM Interrupt Status Register 2 (PWM_ISR2) by the following flags:

• WRDY: this flag is set to '1' when the PWM Controller is ready to receive new duty-cycle values and a new update period value. It is reset to '0' when the PWM_ISR2 register is read.

Depending on the interrupt mask in the PWM Interrupt Mask Register 2 (PWM_IMR2), an interrupt can be generated by these flags.

Sequence for Method 2:

- 1. Select the manual write of duty-cycle values and the automatic update by setting the field UPDM to '1' in the PWM_SCM register
- 2. Define the synchronous channels by the bits SYNCx in the PWM_SCM register.
- 3. Define the update period by the field UPR in the PWM_SCUP register.
- 4. Enable the synchronous channels by writing CHID0 in the PWM_ENA register.
- 5. If an update of the period value and/or of the dead-time values is required, write registers that need to be updated (PWM_CPRDUPDx, PWM_DTUPDx), else go to Step 8.

39.7.18	PWM Output Override Value Register							
Name:	PWM_OOV							
Access:	Read/Write							
31	30	29	28	27	26	25	24	
-	-	-	-	-	-	-	-	
23	22	21	20	19	18	17	16	
-	-	_	_	OOVL3	OOVL2	OOVL1	OOVL0	
15	14	13	12	11	10	9	8	
-	-	—	—	—	-	-	-	
7	6	5	4	3	2	1	0	
-	-	-	-	OOVH3	OOVH2	OOVH1	OOVH0	

• OOVHx: Output Override Value for PWMH output of the channel x

0: Override value is 0 for PWMH output of channel x.

1: Override value is 1 for PWMH output of channel x.

• OOVLx: Output Override Value for PWML output of the channel x

0: Override value is 0 for PWML output of channel x.

1: Override value is 1 for PWML output of channel x.

40.14.9	HSMCI Response Register							
Name:	HSMCI_RSPR							
Address:	0x40080020							
Access:	Read-only							
31	30	29	28	27	26	25	24	
			R	SP				
23	22	21	20	19	18	17	16	
			R	SP				
15	14	13	12	11	10	9	8	
			R	SP				
7	7 6 5 4 3 2 1 0					0		
	RSP							

• RSP: Response

Note: 1. The response register can be read by N accesses at the same HSMCI_RSPR or at consecutive addresses (0x20 to 0x2C). N depends on the size of the response.

through the UDP_FDRx. Once a transfer is done, the device firmware must release Bank 0 to the USB peripheral device by clearing RX_DATA_BK0.

After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before accessing DPR.

RXSETUP: Received Setup

This flag generates an interrupt while it is set to one.

Read:

0: No setup packet available.

1: A setup data packet has been sent by the host and is available in the FIFO.

Write:

0: Device firmware notifies the USB peripheral device that it has read the setup data in the FIFO.

1: No effect.

This flag is used to notify the USB device firmware that a valid Setup data packet has been sent by the host and successfully received by the USB device. The USB device firmware may transfer Setup data from the FIFO by reading the UDP_FDRx to the microcontroller memory. Once a transfer has been done, RXSETUP must be cleared by the device firmware.

Ensuing Data OUT transaction is not accepted while RXSETUP is set.

• STALLSENT: Stall Sent

This flag generates an interrupt while it is set to one.

This ends a STALL handshake.

Read:

- 0: Host has not acknowledged a stall
- 1: Host has acknowledged the stall

Write:

0: Resets the STALLSENT flag, clears the interrupt

1: No effect

This is mandatory for the device firmware to clear this flag. Otherwise the interrupt remains.

Refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the STALL handshake.

42.8 Ethernet MAC (GMAC) User Interface

Offset ^{(1) (2)}	Register	Name	Access	Reset
0x000	Network Control Register	GMAC_NCR	Read/Write	0x0000_0000
0x004	Network Configuration Register	GMAC_NCFGR	Read/Write	0x0008_0000
0x008	Network Status Register	GMAC_NSR	Read-only	0b01x0
0x00C	User Register	GMAC_UR	Read/Write	0x0000_0000
0x010	DMA Configuration Register	GMAC_DCFGR	Read/Write	0x0002_0004
0x014	Transmit Status Register	GMAC_TSR	Read/Write	0x0000_0000
0x018	Receive Buffer Queue Base Address Register	GMAC_RBQB	Read/Write	0x0000_0000
0x01C	Transmit Buffer Queue Base Address Register	GMAC_TBQB	Read/Write	0x0000_0000
0x020	Receive Status Register	GMAC_RSR	Read/Write	0x0000_0000
0x024	Interrupt Status Register	GMAC_ISR	Read-only	0x0000_0000
0x028	Interrupt Enable Register	GMAC_IER	Write-only	_
0x02C	Interrupt Disable Register	GMAC_IDR	Write-only	_
0x030	Interrupt Mask Register	GMAC_IMR	Read/Write	0x07FF_FFFF
0x034	PHY Maintenance Register	GMAC_MAN	Read/Write	0x0000_0000
0x038	Received Pause Quantum Register	GMAC_RPQ	Read-only	0x0000_0000
0x03C	Transmit Pause Quantum Register	GMAC_TPQ	Read/Write	0x0000_FFFF
0x040-0x07C	Reserved	-	_	_
0x080	Hash Register Bottom	GMAC_HRB	Read/Write	0x0000_0000
0x084	Hash Register Top	GMAC_HRT	Read/Write	0x0000_0000
0x088	Specific Address 1 Bottom Register	GMAC_SAB1	Read/Write	0x0000_0000
0x08C	Specific Address 1 Top Register	GMAC_SAT1	Read/Write	0x0000_0000
0x090	Specific Address 2 Bottom Register	GMAC_SAB2	Read/Write	0x0000_0000
0x094	Specific Address 2 Top Register	GMAC_SAT2	Read/Write	0x0000_0000
0x098	Specific Address 3 Bottom Register	GMAC_SAB3	Read/Write	0x0000_0000
0x09C	Specific Address 3 Top Register	GMAC_SAT3	Read/Write	0x0000_0000
0x0A0	Specific Address 4 Bottom Register	GMAC_SAB4	Read/Write	0x0000_0000
0x0A4	Specific Address 4 Top Register	GMAC_SAT4	Read/Write	0x0000_0000
0x0A8	Type ID Match 1 Register	GMAC_TIDM1	Read/Write	0x0000_0000
0x0AC	Type ID Match 2 Register	GMAC_TIDM2	Read/Write	0x0000_0000
0x0B0	Type ID Match 3 Register	GMAC_TIDM3	Read/Write	0x0000_0000
0x0B4	Type ID Match 4 Register	GMAC_TIDM4	Read/Write	0x0000_0000
0x0B8	Reserved	_	_	_
0x0BC	IPG Stretch Register	GMAC_IPGS	Read/Write	0x0000_0000
0x0C0	Stacked VLAN Register	GMAC_SVLAN	Read/Write	0x0000_0000
0x0C4	Transmit PFC Pause Register	GMAC_TPFCP	Read/Write	0x0000_0000

Table 42-17.Register Mapping

42.8.18	GMAC Hash Regis	ster Top						
Name:	GMAC_HRT							
Address:	0x40034084							
Access:	Read-only							
31	30	29	28	27	26	25	24	
	ADDR							
23	22	21	20	19	18	17	16	
			AD	DR				
15	14	13	12	11	10	9	8	
	ADDR							
7	6	5	4	3	2	1	0	
			AD	DR				

The unicast hash enable (UNIHEN) and the multicast hash enable (MITIHEN) bits in the GMAC Network Configuration Register enable the reception of hash matched frames. See Section 42.6.9 "Hash Addressing".

• ADDR: Hash Address

Bits 63 to 32 of the Hash Address Register.

45.7.2	ACC Mode Regist	ter					
Name:	ACC_MR						
Address:	0x400BC004						
Access:	Read/Write						
31	30	29	28	27	26	25	24
_	-	_	_	_	_	_	—
23	22	21	20	19	18	17	16
_	-	_	_	_	_	_	—
15	14	13	12	11	10	9	8
_	FE	SELFS	INV	_	EDG	ETYP	ACEN
7	6	5	4	3	2	1	0
—		SELPLUS		—	SELMINUS		

This register can only be written if the WPEN bit is cleared in the ACC Write Protection Mode Register.

• SELMINUS: Selection for Minus Comparator Input

Value	Name	Description
0	TS	Select TS
1	ADVREF	Select ADVREF
2	DAC0	Select DAC0
3	DAC1	Select DAC1
4	AFE0_AD0	Select AFE0_AD0
5	AFE0_AD1	Select AFE0_AD1
6	AFE0_AD2	Select AFE0_AD2
7	AFE0_AD3	Select AFE0_AD3

• SELPLUS: Selection For Plus Comparator Input

0..7: Selects the input to apply on analog comparator SELPLUS comparison input.

Value	Name	Description
0	AFE0_AD0	Select AFE0_AD0
1	AFE0_AD1	Select AFE0_AD1
2	AFE0_AD2	Select AFE0_AD2
3	AFE0_AD3	Select AFE0_AD3
4	AFE0_AD4	Select AFE0_AD4
5	AFE0_AD5	Select AFE0_AD5
6	AFE1_AD0	Select AFE1_AD0
7	AFE1_AD1	Select AFE1_AD1

• ACEN: Analog Comparator Enable

0 (DIS): Analog comparator disabled.

1 (EN): Analog comparator enabled.

46.7.5.2 ADC Electrical Performances

Single-ended Static Performances

Table 46-39. Single-ended Static Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
INL	ADC Integral Non-linearity	—	-2	±1	2	LSB
DNL	ADC Differential Non-linearity	_	-1	±0.5	1	LSB

Single-ended Dynamic Performances

Table 46-40. Single-ended Dynamic Electrical Characteristics ⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
SNR	Signal to Noise Ratio	(1)	56	64	72	dB
THD	Total Harmonic Distortion	(1)	66	74		dB
SINAD	Signal to Noise and Distortion	(1)	55	62	_	dB
ENOB	Effective Number of Bits	(1)	9	10.5	_	bits

Note: 1. ADC Clock (f_{ADC}) = 20 MHz, f_{S} = 1 MHz, f_{IN} = 127 kHz, Frequency band = [1 kHz, 500 kHz] - Nyquist conditions fulfilled.

Differential Static Performances

Table 46-41. Differential Static Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
INL	Integral Non-linearity		-2	±1	2	LSB
DNL	Differential Non-linearity		-1	±0.5	1	LSB

Differential Dynamic Performances

Table 46-42. Differential Dynamic Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
SNR	Signal to Noise Ratio	(1)	60	64	74	dB
THD	Total Harmonic Distortion	(1)	76	80		dB
SINAD	Signal to Noise and Distortion	(1)	60	64	73	dB
ENOB	Effective Number of Bits	(1)	9.5	10.5	12	bits

Note: 1. ADC Clock $(f_{ADC}) = 20$ MHz,

f_S = 1 MHz,

 $f_{IN} = 127 \text{ kHz},$

Frequency band = [1 kHz, 500 kHz]

Nyquist conditions fulfilled.

10-bit ADC Mode

In 10-bit mode, the ADC produces 12-bit output but the output data in AFEC_CDR is shifted two bits to the right, removing the two LSBs of the 12-bit ADC.

The gain and offset have the same values as for 12-bit mode, with digital full-scale output code range reduced to 1024 (vs 4096).

The INL and DNL have the same values as for 12-bit mode.

The dynamic performances are the 12-bit mode values, reduced by 12 dB.

