
Microchip Technology - ATSAM4E16CB-CN Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity CANbus, Ethernet, IrDA, MMC/SD, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 79

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 100-TFBGA

Supplier Device Package 100-TFBGA (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4e16cb-cn

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4e16cb-cn-4413869
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

11.6.4.8 LDREX and STREX

Load and Store Register Exclusive.

Syntax
LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]
STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address.
The address used in any Store-Exclusive instruction must be the same as the address in the most recently
executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same
data size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a
Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see
“Synchronization Primitives” .

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is
guaranteed that no other process in the system has accessed the memory location between the Load-exclusive
and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding
Load-Exclusive instruction is unpredictable.

Restrictions

In these instructions:

 Do not use PC

 Do not use SP for Rd and Rt

 For STREX, Rd must be different from both Rt and Rn

 The value of offset must be a multiple of four in the range 0–1020.

Condition Flags

These instructions do not change the flags.

Examples
 MOV R1, #0x1 ; Initialize the ‘lock taken’ value try
LDREX R0, [LockAddr] ; Load the lock value
CMP R0, #0 ; Is the lock free?
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

100

11.6.11.17 VMOV Two ARM Core Registers to Two Single Precision

Transfers two consecutively numbered single-precision registers to and from two ARM core registers.

Syntax
VMOV{cond} Sm, Sm1, Rt, Rt2
VMOV{cond} Rt, Rt2, Sm, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sm is the first single-precision register.

Sm1 is the second single-precision register.
This is the next single-precision register after Sm.

Rt is the ARM core register that Sm is transferred to or from.

Rt2 is the The ARM core register that Sm1 is transferred to or from.

Operation

This instruction transfers:

 The contents of two consecutively numbered single-precision registers to two ARM core registers.

 The contents of two ARM core registers to a pair of single-precision registers.

Restrictions

 The restrictions are:

 The floating-point registers must be contiguous, one after the other.

 The ARM core registers do not have to be contiguous.

 Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.
193SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.4 DSB

Data Synchronization Barrier.

Syntax
DSB{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program
order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

Condition Flags

This instruction does not change the flags.

Examples
DSB ; Data Synchronisation Barrier
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

210

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless
the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged soft-
ware can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the
MPU is not implemented. The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with
priority –1 or –2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is
enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.
271SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The SAMPLE, EXTEST and BYPASS functions are implemented. In SWD/JTAG debug mode, the ARM processor
responds with a non-JTAG chip ID that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset
must be performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file to set up the test is provided on www.atmel.com.

12.6.9.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins and associated
control signals.

Each SAM4 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be
forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects
the direction of the pad.

For more information, please refer to BDSL files available for the SAM4 Series.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

306

http://www.atmel.com

Configuring the RTPRES field value to 0x8000 (default value) corresponds to feeding the real-time counter with a
1Hz signal (if the slow clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corresponding to
more than 136 years, then roll over to 0. Bit RTTINC in the “Real-time Timer Status Register” (RTT_SR) is set
each time there is a prescaler roll-over (see Figure 14-2)

The real-time 32-bit counter can also be supplied by the 1Hz RTC clock. This mode is interesting when the RTC
1Hz is calibrated (CORRECTION field ≠ 0 in RTC_MR) in order to guaranty the synchronism between RTC and
RTT counters.

Setting the RTC1HZ bit in the RTT_MR drives the 32-bit RTT counter from the 1Hz RTC clock. In this mode, the
RTPRES field has no effect on the 32-bit counter.

The prescaler roll-over generates an increment of the real-time timer counter if RTC1HZ = 0. Otherwise, if
RTC1HZ = 1, the real-time timer counter is incremented every second. The RTTINC bit is set independently from
the 32-bit counter increment.

The real-time timer can also be used as a free-running timer with a lower time-base. The best accuracy is achieved
by writing RTPRES to 3 in RTT_MR.

Programming RTPRES to 1 or 2 is forbidden.

If the RTT is configured to trigger an interrupt, the interrupt occurs two slow clock cycles after reading the RTT_SR.
To prevent several executions of the interrupt handler, the interrupt must be disabled in the interrupt handler and
re-enabled when the RTT_SR is cleared.

The CRTV field can be read at any time in the “Real-time Timer Value Register” (RTT_VR). As this value can be
updated asynchronously with the Master Clock, the CRTV field must be read twice at the same value to read a
correct value.

The current value of the counter is compared with the value written in the “Real-time Timer Alarm Register”
(RTT_AR). If the counter value matches the alarm, the ALMS bit in the RTT_SR is set. The RTT_AR is set to its
maximum value (0xFFFF_FFFF) after a reset.

The ALMS flag is always a source of the RTT alarm signal that may be used to exit the system from low power
modes (see Figure 14-1).

The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR) when writing a new ALMV value in
the RTT_AR.

The RTTINC bit can be used to start a periodic interrupt, the period being one second when the RTPRES field
value = 0x8000 and the slow clock = 32.768 kHz.

The RTTINCIEN bit must be cleared prior to writing a new RTPRES value in the RTT_MR.

Reading the RTT_SR automatically clears the RTTINC and ALMS bits.

Writing the RTTRST bit in the RTT_MR immediately reloads and restarts the clock divider with the new
programmed value. This also resets the 32-bit counter.

When not used, the Real-time Timer can be disabled in order to suppress dynamic power consumption in this
module. This can be achieved by setting the RTTDIS bit in the RTT_MR.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

320

14.5.1 Real-time Timer Mode Register

Name: RTT_MR

Address: 0x400E1830

Access: Read/Write

• RTPRES: Real-time Timer Prescaler Value

Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:

RTPRES = 0: The prescaler period is equal to 216 * SLCK periods.

RTPRES = 1 or 2: forbidden.

RTPRES ≠ 0,1 or 2: The prescaler period is equal to RTPRES * SLCK periods.

Note: The RTTINCIEN bit must be cleared prior to writing a new RTPRES value.

• ALMIEN: Alarm Interrupt Enable

0: The bit ALMS in RTT_SR has no effect on interrupt.

1: The bit ALMS in RTT_SR asserts interrupt.

• RTTINCIEN: Real-time Timer Increment Interrupt Enable

0: The bit RTTINC in RTT_SR has no effect on interrupt.

1: The bit RTTINC in RTT_SR asserts interrupt.

• RTTRST: Real-time Timer Restart

0: No effect.

1: Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

• RTTDIS: Real-time Timer Disable

0: The real-time timer is enabled.

1: The real-time timer is disabled (no dynamic power consumption).

Note: RTTDIS is write only.

• RTC1HZ: Real-Time Clock 1Hz Clock Selection

0: The RTT 32-bit counter is driven by the 16-bit prescaler roll-over events.

1: The RTT 32-bit counter is driven by the 1Hz RTC clock.

Note: RTC1HZ is write only.

31 30 29 28 27 26 25 24

– – – – – – – RTC1HZ

23 22 21 20 19 18 17 16

– – – RTTDIS – RTTRST RTTINCIEN ALMIEN

15 14 13 12 11 10 9 8

RTPRES

7 6 5 4 3 2 1 0

RTPRES
323SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Single-buffer DMAC transfer: Consists of a single buffer.

Multi-buffer DMAC transfer: A DMAC transfer may consist of multiple DMAC buffers. Multi-buffer DMAC
transfers are supported through buffer chaining (linked list pointers), auto-reloading of channel registers, and
contiguous buffers. The source and destination can independently select which method to use.

̶ Linked lists (buffer chaining) – A descriptor pointer (DSCR) points to the location in system memory
where the next linked list item (LLI) exists. The LLI is a set of registers that describe the next buffer
(buffer descriptor) and a descriptor pointer register. The DMAC fetches the LLI at the beginning of
every buffer when buffer chaining is enabled.

̶ Contiguous buffers – Where the address of the next buffer is selected to be a continuation from the
end of the previous buffer.

Channel locking: Software can program a channel to keep the AHB master interface by locking the arbitration for
the master bus interface for the duration of a DMAC transfer, buffer, or chunk.

Bus locking: Software can program a channel to maintain control of the AMBA bus by asserting hmastlock for the
duration of a DMAC transfer, buffer, or transaction (single or chunk). Channel locking is asserted for the duration of
bus locking at a minimum.

25.6.2 Memory Peripherals

Figure 25-3 on page 470 shows the DMAC transfer hierarchy of the DMAC for a memory peripheral. There is no
handshaking interface with the DMAC, and therefore the memory peripheral can never be a flow controller. Once
the channel is enabled, the transfer proceeds immediately without waiting for a transaction request. The alternative
to not having a transaction-level handshaking interface is to allow the DMAC to attempt AMBA transfers to the
peripheral once the channel is enabled. If the peripheral slave cannot accept these AMBA transfers, it inserts wait
states onto the bus until it is ready; it is not recommended that more than 16 wait states be inserted onto the bus.
By using the handshaking interface, the peripheral can signal to the DMAC that it is ready to transmit/receive data,
and then the DMAC can access the peripheral without the peripheral inserting wait states onto the bus.

25.6.3 Handshaking Interface

Handshaking interfaces are used at the transaction level to control the flow of single or chunk transfers. The
operation of the handshaking interface is different and depends on whether the peripheral or the DMAC is the flow
controller.

The peripheral uses the handshaking interface to indicate to the DMAC that it is ready to transfer/accept data over
the AMBA bus. A non-memory peripheral can request a DMAC transfer through the DMAC using one of two
handshaking interfaces:

 Hardware handshaking

 Software handshaking

Software selects between the hardware or software handshaking interface on a per-channel basis. Software
handshaking is accomplished through memory-mapped registers, while hardware handshaking is accomplished
using a dedicated handshaking interface.

25.6.3.1 Software Handshaking

When the slave peripheral requires the DMAC to perform a DMAC transaction, it communicates this request by
sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMAC transaction. These
software registers are used to implement the software handshaking interface.

The SRC_H2SEL/DST_H2SEL bit in the Channel Configuration Register (DMAC_CFGx) must be cleared to
enable software handshaking.
471SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

When the peripheral is not the flow controller, then the Software Last Transfer Flag Register (DMAC_LAST) is not
used, and the values in these registers are ignored.

Chunk Transactions

Writing a ‘1’ to the Software Chunk Transfer Request Register (DMAC_CREQ[2x]) starts a source chunk
transaction request, where x is the channel number. Writing a ‘1’ to the DMAC_CREQ[2x+1] register starts a
destination chunk transfer request, where x is the channel number.

Upon completion of the chunk transaction, the hardware clears the DMAC_CREQ[2x] or DMAC_CREQ[2x+1].

Single Transactions

Writing a ‘1’ to the Software Single Request Register (DMAC_SREQ[2x]) starts a source single transaction
request, where x is the channel number. Writing a ‘1’ to the DMAC_SREQ[2x+1] register starts a destination single
transfer request, where x is the channel number.

Upon completion of the chunk transaction, the hardware clears the DMAC_SREQ[x] or DMAC_SREQ[2x+1].

The software can poll the relevant channel bi t in the DMAC_CREQ[2x]/DMAC_CREQ[2x+1] and
DMAC_SREQ[x]/DMAC_SREQ[2x+1] registers. When both are 0, then either the requested chunk or single
transaction has completed.

25.6.4 DMAC Transfer Types

A DMAC transfer may consist of single or multi-buffer transfers. On successive buffers of a multi-buffer transfer,
DMAC_SADDRx/DMAC_DADDRx in the DMAC are reprogrammed using either of the following methods:

 Buffer chaining using linked lists

 Contiguous address between buffers

On successive buffers of a multi-buffer transfer, the DMAC_CTRLAx and DMAC_CTRLBx registers in the DMAC
are reprogrammed using either of the following methods:

 Buffer chaining using linked lists

When buffer chaining using linked lists is the multi-buffer method of choice, and on successive buffers,
DMAC_DSCRx in the DMAC is reprogrammed using the following method:

 Buffer chaining using linked lists

A buffer descriptor (LLI) consists of the following registers: DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx,
DMAC_CTRLAx, and DMAC_CTRLBx. These registers, along with DMAC_CFGx, are used by the DMAC to set
up and describe the buffer transfer.

25.6.4.1 Multi-buffer Transfers

Buffer Chaining Using Linked Lists

In this case, the DMAC reprograms the channel registers prior to the start of each buffer by fetching the buffer
descriptor for that buffer from system memory. This is known as an LLI update.

DMAC buffer chaining is supported by using a descriptor pointer register (DMAC_DSCRx) that stores the address
in memory of the next buffer descriptor. Each buffer descriptor contains the corresponding buffer descriptor
(DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx, DMAC_CTRLAx DMAC_CTRLBx).

To set up buffer chaining, a sequence of linked lists must be programmed in memory.

DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx, DMAC_CTRLAx and DMAC_CTRLBx are fetched from
system memory on an LLI update. The updated content of DMAC_CTRLAx is written back to memory on buffer
completion. Figure 25-4 on page 473 shows how to use chained linked lists in memory to define multi-buffer
transfers using buffer chaining.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

472

25.8.1 DMAC Global Configuration Register

Name: DMAC_GCFG

Address: 0x400C0000

Access: Read/Write

Note: Bit fields 0, 1, 2, and 3 have a default value of 0. This should not be changed.

This register can only be written if the WPEN bit is cleared in “DMAC Write Protection Mode Register” .

• ARB_CFG: Arbiter Configuration

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – ARB_CFG – – – –

Value Name Description

0 FIXED Fixed priority arbiter (see “Basic Definitions”)

1 ROUND_ROBIN Modified round robin arbiter.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

486

26.5.2 Receive Counter Register

Name: PERIPH_RCR

Access: Read/Write

• RXCTR: Receive Counter Register

RXCTR must be set to receive buffer size.

When a half-duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0: Stops peripheral data transfer to the receiver.

1–65535: Starts peripheral data transfer if the corresponding channel is active.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
RXCTR

7 6 5 4 3 2 1 0

RXCTR
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

514

27.13.4 NWAIT Latency and Read/Write Timings

There may be a latency between the assertion of the read/write controlling signal and the assertion of the NWAIT
signal by the device. The programmed pulse length of the read/write controlling signal must be at least equal to
this latency plus the 2 cycles of resynchronization + one cycle. Otherwise, the SMC may enter the hold state of the
access without detecting the NWAIT signal assertion. This is true in Frozen mode as well as in Ready mode. This
is illustrated on Figure 27-27.

When SMC_MODE.EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the read
and write controlling signal of at least:

Minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle

Figure 27-27. NWAIT Latency

EXNW_MODE = 10 or 11
READ_MODE = 1 (NRD_controlled)

NRD_PULSE = 5

A[23:0]

MCK

NRD

4 3 2 1 0 00

Read cycle

minimal pulse length

NWAIT latency

NWAIT

intenally synchronized
NWAIT signal

WAIT STATE

2 cycle resynchronization
553SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• KEYSIZE: Key Size

Values which are not listed in the table must be considered as “reserved”.

• OPMOD: Operation Mode

Values which are not listed in the table must be considered as “reserved”.

For CBC-MAC operating mode, set OPMOD to CBC and LOD to 1.

• LOD: Last Output Data Mode

0: No effect.

After each end of encryption/decryption, the output data are available either on the output data registers (Manual and Auto
modes) or at the address specified in the Channel Buffer Transfer Descriptor for DMA mode.

In Manual and Auto modes, the DATRDY flag is cleared when at least one of the Output Data registers is read.

1: The DATRDY flag is cleared when at least one of the Input Data Registers is written.

No more Output Data Register reads is necessary between consecutive encryptions/decryptions (see Section 30.4.5 “Last
Output Data Mode”).

Warning: In DMA mode, reading to the Output Data registers before the last data encryption/decryption process may lead to
unpredictable results.

• CFBS: Cipher Feedback Data Size

Values which are not listed in table must be considered as “reserved”.

Value Name Description

0 AES128 AES Key Size is 128 bits

1 AES192 AES Key Size is 192 bits

2 AES256 AES Key Size is 256 bits

Value Name Description

0 ECB ECB: Electronic Code Book mode

1 CBC CBC: Cipher Block Chaining mode

2 OFB OFB: Output Feedback mode

3 CFB CFB: Cipher Feedback mode

4 CTR CTR: Counter mode (16-bit internal counter)

Value Name Description

0 SIZE_128BIT 128-bit

1 SIZE_64BIT 64-bit

2 SIZE_32BIT 32-bit

3 SIZE_16BIT 16-bit

4 SIZE_8BIT 8-bit
633SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.8.3.2 Transmission Handling

A mailbox is in Transmit Mode once the MOT field in the CAN_MMRx has been configured. Message ID and
Message Acceptance mask must be set before Receive Mode is enabled.

After Transmit Mode is enabled, the MRDY flag in the CAN_MSR is automatically set until the first command is
sent. When the MRDY flag is set, the software application can prepare a message to be sent by writing to the
CAN_MDx registers. The message is sent once the software asks for a transfer command setting the MTCR bit
and the message data length in the CAN_MCRx.

The MRDY flag remains at zero as long as the message has not been sent or aborted. It is important to note that
no access to the mailbox data register is allowed while the MRDY flag is cleared. An interrupt is pending for the
mailbox while the MRDY flag is set. This interrupt can be masked depending on the mailbox flag in the CAN_IMR
global register.

It is also possible to send a remote frame setting the MRTR bit instead of setting the MDLC field. The answer to
the remote frame is handled by another reception mailbox. In this case, the device acts as a consumer but with the
help of two mailboxes. It is possible to handle the remote frame emission and the answer reception using only one
mailbox configured in Consumer Mode. Refer to the section “Remote Frame Handling” on page 664.

Several messages can try to win the bus arbitration in the same time. The message with the highest priority is sent
first. Several transfer request commands can be generated at the same time by setting MBx bits in the CAN_TCR.
The priority is set in the PRIOR field of the CAN_MMRx. Priority 0 is the highest priority, priority 15 is the lowest
priority. Thus it is possible to use a part of the message ID to set the PRIOR field. If two mailboxes have the same
priority, the message of the mailbox with the lowest number is sent first. Thus if mailbox 0 and mailbox 5 have the
same priority and have a message to send at the same time, then the message of the mailbox 0 is sent first.

Setting the MACR bit in the CAN_MCRx aborts the transmission. Transmission for several mailboxes can be
aborted by writing MBx fields in the CAN_ACR. If the message is being sent when the abort command is set, then
the application is notified by the MRDY bit set and not the MABT in the CAN_MSRx. Otherwise, if the message
has not been sent, then the MRDY and the MABT are set in the CAN_MSR.

When the bus arbitration is lost by a mailbox message, the CAN controller tries to win the next bus arbitration with
the same message if this one still has the highest priority. Messages to be sent are re-tried automatically until they
win the bus arbitration. This feature can be disabled by setting the bit DRPT in the CAN_MR. In this case if the
message was not sent the first time it was transmitted to the CAN transceiver, it is automatically aborted. The
MABT flag is set in the CAN_MSRx until the next transfer command.

Figure 31-15 shows three MBx message attempts being made (MRDY of MBx set to 0).

The first MBx message is sent, the second is aborted and the last one is trying to be aborted but too late because
it has already been transmitted to the CAN transceiver.
663SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

34.8 Serial Peripheral Interface (SPI) User Interface

In the “Offset” column of Table 34-5, ‘CS_number’ denotes the chip select number.

Table 34-5. Register Mapping

Offset Register Name Access Reset

0x00 Control Register SPI_CR Write-only –

0x04 Mode Register SPI_MR Read/Write 0x0

0x08 Receive Data Register SPI_RDR Read-only 0x0

0x0C Transmit Data Register SPI_TDR Write-only –

0x10 Status Register SPI_SR Read-only 0x000000F0

0x14 Interrupt Enable Register SPI_IER Write-only –

0x18 Interrupt Disable Register SPI_IDR Write-only –

0x1C Interrupt Mask Register SPI_IMR Read-only 0x0

0x20–0x2C Reserved – – –

0x30 + (CS_number * 0x04) Chip Select Register SPI_CSR Read/Write 0x0

0x40–0x48 Reserved – – –

0x4C–0xE0 Reserved – – –

0xE4 Write Protection Mode Register SPI_WPMR Read/Write 0x0

0xE8 Write Protection Status Register SPI_WPSR Read-only 0x0

0xEC–0xF8 Reserved – – –

0xFC Reserved – – –

0x100–0x124 Reserved for PDC Registers – – –
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

800

37.7.5 USART Interrupt Enable Register

Name: US_IER

Address: 0x400A0008 (0), 0x400A4008 (1)

Access: Write-only

For SPI specific configuration, see Section 37.7.6 ”USART Interrupt Enable Register (SPI_MODE)”.

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Enables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• RXBRK: Receiver Break Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable (available in all USART modes of operation)

• ENDTX: End of Transmit Buffer Interrupt Enable (available in all USART modes of operation)

• OVRE: Overrun Error Interrupt Enable

• FRAME: Framing Error Interrupt Enable

• PARE: Parity Error Interrupt Enable

• TIMEOUT: Time-out Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• ITER: Max number of Repetitions Reached Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable (available in all USART modes of operation)

• RXBUFF: Receive Buffer Full Interrupt Enable (available in all USART modes of operation)

• NACK: Non Acknowledge Interrupt Enable

• RIIC: Ring Indicator Input Change Enable

31 30 29 28 27 26 25 24

– – – – – – – MANE

23 22 21 20 19 18 17 16

– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITER TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
923SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.4 UDP Interrupt Enable Register

Name: UDP_IER

Address: 0x40084010

Access: Write-only

• EP0INT: Enable Endpoint 0 Interrupt

• EP1INT: Enable Endpoint 1 Interrupt

• EP2INT: Enable Endpoint 2Interrupt

• EP3INT: Enable Endpoint 3 Interrupt

• EP4INT: Enable Endpoint 4 Interrupt

• EP5INT: Enable Endpoint 5 Interrupt

• EP6INT: Enable Endpoint 6 Interrupt

• EP7INT: Enable Endpoint 7 Interrupt

0: No effect

1: Enables corresponding Endpoint Interrupt

• RXSUSP: Enable UDP Suspend Interrupt

0: No effect

1: Enables UDP Suspend Interrupt

• RXRSM: Enable UDP Resume Interrupt

0: No effect

1: Enables UDP Resume Interrupt

• SOFINT: Enable Start Of Frame Interrupt

0: No effect

1: Enables Start Of Frame Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT
1161SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.5 GMAC DMA Configuration Register

Name: GMAC_DCFGR

Address: 0x40034010

Access: Read/Write

• FBLDO: Fixed Burst Length for DMA Data Operations:

Selects the burst length to attempt to use on the AHB when transferring frame data. Not used for DMA management oper-
ations and only used where space and data size allow. Otherwise SINGLE type AHB transfers are used.

Upper bits become non-writable if the configured DMA TX and RX FIFO sizes are smaller than required to support the
selected burst size.

One-hot priority encoding enforced automatically on register writes as follows, where ‘x’ represents don’t care:

• ESMA: Endian Swap Mode Enable for Management Descriptor Accesses

When set, selects swapped endianism for AHB transfers. When clear, selects little endian mode.

• ESPA: Endian Swap Mode Enable for Packet Data Accesses

When set, selects swapped endianism for AHB transfers. When clear, selects little endian mode.

• DRBS: DMA Receive Buffer Size

DMA receive buffer size in AHB system memory. The value defined by these bits determines the size of buffer to use in
main AHB system memory when writing received data.

The value is defined in multiples of 64 bytes, thus a value of 0x01 corresponds to buffers of 64 bytes, 0x02 corresponds to
128 bytes etc. For example:

– 0x02: 128 bytes

– 0x18: 1536 bytes (1 × max length frame/buffer)

– 0xA0: 10240 bytes (1 × 10K jumbo frame/buffer)

Note that this value should never be written as zero.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

DRBS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ESPA ESMA – FBLDO

Value Name Description

0 – Reserved

1 SINGLE 00001: Always use SINGLE AHB bursts

2 – Reserved

4 INCR4 001xx: Attempt to use INCR4 AHB bursts (Default)

8 INCR8 01xxx: Attempt to use INCR8 AHB bursts

16 INCR16 1xxxx: Attempt to use INCR16 AHB bursts
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1216

42.8.44 GMAC PTP Peer Event Frame Transmitted Seconds Low Register

Name: GMAC_PEFTSL

Address: 0x400341F0

Access: Read-only

• RUD: Register Update

The register is updated with the value that the 1588 Timer Seconds Register holds when the SFD of a PTP transmit peer
event crosses the MII interface. An interrupt is issued when the register is updated.

31 30 29 28 27 26 25 24

RUD

23 22 21 20 19 18 17 16

RUD

15 14 13 12 11 10 9 8

RUD

7 6 5 4 3 2 1 0

RUD
1261SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.2 AFEC Mode Register

Name: AFEC_MR

Address: 0x400B0004 (0), 0x400B4004 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• TRGEN: Trigger Enable

• TRGSEL: Trigger Selection

• SLEEP: Sleep Mode

• FWUP: Fast Wake-up

31 30 29 28 27 26 25 24

USEQ – TRANSFER TRACKTIM

23 22 21 20 19 18 17 16

ANACH – SETTLING STARTUP

15 14 13 12 11 10 9 8

PRESCAL

7 6 5 4 3 2 1 0

FREERUN FWUP SLEEP – TRGSEL TRGEN

Value Name Description

0 DIS Hardware triggers are disabled. Starting a conversion is only possible by software.

1 EN Hardware trigger selected by TRGSEL field is enabled.

Value Name Description

0 AFEC_TRIG0 ADTRG pin

1 AFEC_TRIG1 TIO Output of the Timer Counter Channel 0

2 AFEC_TRIG2 TIO Output of the Timer Counter Channel 1

3 AFEC_TRIG3 TIO Output of the Timer Counter Channel 2

4 AFEC_TRIG4 PWM Event Line 0

5 AFEC_TRIG5 PWM Event Line 1

6 AFEC_TRIG6 Reserved

7 – Reserved

Value Name Description

0 NORMAL Normal mode: The AFE and reference voltage circuitry are kept ON between conversions.

1 SLEEP Sleep mode: The AFE and reference voltage circuitry are OFF between conversions.

Value Name Description

0 OFF Normal Sleep mode: The sleep mode is defined by the SLEEP bit.

1 ON Fast wake-up Sleep mode: The voltage reference is ON between conversions and AFE is OFF.
1289SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

