
Microchip Technology - ATSAM4E16EA-CUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity CANbus, EBI/EMI, Ethernet, IrDA, SD, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 117

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 144-LFBGA

Supplier Device Package 144-LFBGA (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4e16ea-cur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4e16ea-cur-4388698
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

11.4.3.5 Exception Priorities

As Table 11-9 shows, all exceptions have an associated priority, with:

 A lower priority value indicating a higher priority

 Configurable priorities for all exceptions except Reset, Hard fault and NMI.

If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0.
For information about configuring exception priorities see “System Handler Priority Registers” , and “Interrupt
Priority Registers” .

 Note: Configurable priority values are in the range 0–15. This means that the Reset, Hard fault, and NMI exceptions, with
fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has
higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number
takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is
processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

11.4.3.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each
interrupt priority register entry into two fields:

 An upper field that defines the group priority

 A lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an
interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not
preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they
are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the
lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application
Interrupt and Reset Control Register” .

11.4.3.7 Exception Entry and Return

Descriptions of exception handling use the following terms:

Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its
priority is higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more
information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more
information.

Return

This occurs when the exception handler is completed, and:

 There is no pending exception with sufficient priority to be serviced

 The completed exception handler was not handling a late-arriving exception.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

68

 If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is
discarded. See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more
information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if
the condition code flags in the APSR meet the specified condition. Table 11-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.

Table 11-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. R0 =
ABS(R1).

MOVS R0, R1 ; R0 = R1, setting flags
IT MI ; IT instruction for the negative condition
RSBMI R0, R1, #0 ; If negative, R0 = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values R0 is
greater than R1 and R2 is greater than R3.

CMP R0, R1 ; Compare R0 and R1, setting flags
ITT GT ; IT instruction for the two GT conditions
CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting flags
MOVGT R4, R5 ; If still 'greater than', do R4 = R5

Table 11-16. Condition Code Suffixes

Suffix Flags Meaning

EQ Z = 1 Equal

NE Z = 0 Not equal

CS or HS C = 1 Higher or same, unsigned ≥

CC or LO C = 0 Lower, unsigned <

MI N = 1 Negative

PL N = 0 Positive or zero

VS V = 1 Overflow

VC V = 0 No overflow

HI C = 1 and Z = 0 Higher, unsigned >

LS C = 0 or Z = 1 Lower or same, unsigned ≤

GE N = V Greater than or equal, signed ≥

LT N != V Less than, signed <

GT Z = 0 and N = V Greater than, signed >

LE Z = 1 and N != V Less than or equal, signed ≤

AL Can have any value Always. This is the default when no suffix is specified.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

88

11.6.6.10 SMUL and SMULW

Signed Multiply (halfwords) and Signed Multiply (word by halfword)

Syntax
op{XY}{cond} Rd,Rn, Rm
op{Y}{cond} Rd. Rn, Rm

For SMULXY only:

op is one of:

SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as
the first and second multiply operand.
If X is B, then the bottom halfword, bits [15:0] of Rn is used.
If X is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bot
tom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y} Signed Multiply (word by halfword).

Y specifies which halfword of the source register Rm is used as the second mul
tiply operand.
If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed
16-bit integers. These instructions:

 Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

 Writes the 32-bit result of the multiplication in Rd.

The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

 Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

 Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:

 Do not use SP and do not use PC.

 RdHi and RdLo must be different registers.

Examples
SMULBT R0, R4, R5 ; Multiplies the bottom halfword of R4 with the

 ; top halfword of R5, multiplies results and
 ; writes to R0

SMULBB R0, R4, R5 ; Multiplies the bottom halfword of R4 with the
; bottom halfword of R5, multiplies results and

 ; writes to R0
SMULTT R0, R4, R5 ; Multiplies the top halfword of R4 with the top

 ; halfword of R5, multiplies results and writes
 ; to R0

SMULTB R0, R4, R5 ; Multiplies the top halfword of R4 with the
145SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.7 VDIV

Divides floating-point values.

Syntax
VDIV{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination register.

Sn, Sm are the operand registers.

Operation

This instruction:

1. Divides one floating-point value by another floating-point value.

2. Writes the result to the floating-point destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.
183SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.7 Software Trigger Interrupt Register

Name: NVIC_STIR

Access: Write-only

Reset: 0x000000000

Write to this register to generate an interrupt from the software.

• INTID: Interrupt ID

Interrupt ID of the interrupt to trigger, in the range 0–239. For example, a value of 0x03 specifies interrupt IRQ3.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – INTID

7 6 5 4 3 2 1 0

INTID
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

228

15.4 Product Dependencies

15.4.1 Power Management

The Real-time Clock is continuously clocked at 32.768 kHz. The Power Management Controller has no effect on
RTC behavior.

15.4.2 Interrupt

RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC interrupt requires the
interrupt controller to be programmed first.

15.5 Functional Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year (with leap years),
month, date, day, hours, minutes and seconds reported in RTC Time Register (RTC_TIMR) and RTC Calendar
Register (RTC_CALR).

The valid year range is up to 2099 in Gregorian mode (or 1300 to 1499 in Persian mode).

The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years except 1900). This is correct up to
the year 2099.

The RTC can generate configurable waveforms on RTCOUT0/1 outputs.

15.5.1 Reference Clock

The reference clock is the Slow Clock (SLCK). It can be driven internally or by an external 32.768 kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical. The crystal
selection has to take into account the current consumption for power saving and the frequency drift due to
temperature effect on the circuit for time accuracy.

15.5.2 Timing

The RTC is updated in real time at one-second intervals in Normal mode for the counters of seconds, at one-
minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain that the value read
in the RTC registers (century, year, month, date, day, hours, minutes, seconds) are valid and stable, it is
necessary to read these registers twice. If the data is the same both times, then it is valid. Therefore, a minimum of
two and a maximum of three accesses are required.

15.5.3 Alarm

The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:

 If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted and an interrupt
generated if enabled) at a given month, date, hour/minute/second.

 If only the “seconds” field is enabled, then an alarm is generated every minute.

Table 15-1. Peripheral IDs

Instance ID

RTC 2
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

328

15.6.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1888

Access: Read-only

• ACK: Acknowledge Update Interrupt Mask

0: The acknowledge for update interrupt is disabled.

1: The acknowledge for update interrupt is enabled.

• ALR: Alarm Interrupt Mask

0: The alarm interrupt is disabled.

1: The alarm interrupt is enabled.

• SEC: Second Event Interrupt Mask

0: The second periodic interrupt is disabled.

1: The second periodic interrupt is enabled.

• TIM: Time Event Interrupt Mask

0: The selected time event interrupt is disabled.

1: The selected time event interrupt is enabled.

• CAL: Calendar Event Interrupt Mask

0: The selected calendar event interrupt is disabled.

1: The selected calendar event interrupt is enabled.

• TDERR: Time and/or Date Error Mask

0: The time and/or date error event is disabled.

1: The time and/or date error event is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TDERR CAL TIM SEC ALR ACK
351SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

17.3 Block Diagram

17.4 Functional Description

The RSWDT is supplied by VDDCORE. The RSWDT is initialized with default values on processor reset or on a
power-on sequence and is disabled (its default mode) under such conditions.

The RSWDT must not be enabled if the WDT is disabled.

The main RC oscillator divided clock is selected if the main RC oscillator is already enabled by the application
(CKGR_MOR.MOSCRCEN = 1) or if the WDT is driven by the slow RC oscillator.

The RSWDT is built around a 12-bit down counter, which is loaded with a slow clock value other than that of the
slow clock in the WDT, defined in the WDV (Watchdog Counter Value) field of the Mode Register (RSWDT_MR).
The RSWDT uses the slow clock divided by 128 to establish the maximum watchdog period to be 16 seconds (with
a typical slow clock of 32.768 kHz).

After a processor reset, the value of WDV is 0xFFF, corresponding to the maximum value of the counter with the
external reset generation enabled (RSWDT_MR.WDRSTEN = 1 after a backup reset). This means that a default
watchdog is running at reset, i.e., at power-up.

If the watchdog is restarted by writing into the Control Register (RSWDT_CR), the RSWDT_MR must not be
programmed during a period of time of three slow clock periods following the RSWDT_CR write access.
Programming a new value in the RSWDT_MR automatically initiates a restart instruction.

Figure 17-1. Reinforced Safety Watchdog Timer Block Diagram

= 0

1 0

set

resetread RSWDT_SR
or
reset

rswdt_fault
(to Reset Controller)
(ORed with wdt_fault)set

reset

WDFIEN

rswdt_int
(ORed with wdt_int)

RSWDT_MR

slow RC clock
1/128

12-bit Down
Counter

Current
Value

WDD

RSWDT_MR

<= WDD

WDV

WDRSTT

RSWDT_MR

RSWDT_CR

reload

WDUNF

WDERR

reload

write RSWDT_MR

RSWDT_MR

WDRSTEN

main RC clock

divider

main RC frequency

Automatic selection
[CKGR_MOR.MOSCRCEN = 0

and
(WDT_MR.WDDIS

or
SUPC_MR.XTALSEL = 1)]

1

0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

366

23.6.1 UART0 Serial Port

Communication is performed through the UART0 initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this
protocol can be used to send the application file to the target. The size of the binary file to send depends on the
SRAM size embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size
because the Xmodem protocol requires some SRAM memory to work. See Section 23.3 ”Hardware and Software
Constraints”.

23.6.2 Xmodem Protocol

The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-character CRC-16 to
guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful transmission. Each
block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

̶ <SOH> = 01 hex

̶ <blk #> = binary number, starts at 01, increments by 1, and wraps 0FFH to 00H (not to 01)

̶ <255-blk #> = 1’s complement of the blk#.

̶ <checksum> = 2 bytes CRC16

Figure 23-2 shows a transmission using this protocol.

Figure 23-2. Xmodem Transfer Example

23.6.3 USB Device Port

The device uses the USB communication device class (CDC) drivers to take advantage of the installed PC RS-232
software to talk over the USB. The CDC class is implemented in all releases of Windows®, beginning with
Windows 98SE. The CDC document, available at www.usb.org, describes a way to implement devices such as
ISDN modems and virtual COM ports.

The Vendor ID (VID) is Atmel’s vendor ID 0x03EB. The product ID (PID) is 0x6124. These references are used by
the host operating system to mount the correct driver. On Windows systems, the INF files contain the
correspondence between vendor ID and product ID.

Host Device

SOH 01 FE Data[128] CRC CRC

C

ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC

ACK

EOT

ACK
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

446

Note: If an offset is not listed in the table it must be considered as “reserved”.

0x0110 Oscillator Calibration Register PMC_OCR Read/Write 0x0040_4040

0x0114–0x0120 Reserved – – –

0x0130 PLL Maximum Multiplier Value Register PMC_PMMR Read/Write 0x07FF_07FF

0x0134–0x144 Reserved – – –

Table 29-2. Register Mapping (Continued)

Offset Register Name Access Reset
593SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.8.5 Register Write Protection

To prevent any single software error that may corrupt CAN behavior, the registers listed below can be write-
protected by setting the WPEN bit in the CAN Write Protection Mode Register (CAN_WPMR).

If a write access in a write-protected register is detected, then the WPVS flag in the CAN Write Protection Status
Register (CAN_WPSR) is set and the field WPVSRC indicates in which register the write access has been
attempted.

The WPVS flag is automatically reset after reading the CAN_WPSR.

The following registers can be write-protected:

 CAN Mode Register

 CAN Baudrate Register

 CAN Message Mode Register

 CAN Message Acceptance Mask Register

 CAN Message ID Register
669SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.21 CAN Message Control Register

Name: CAN_MCRx [x=0..7]

Address: 0x4001021C (0)[0], 0x4001023C (0)[1], 0x4001025C (0)[2], 0x4001027C (0)[3], 0x4001029C (0)[4],
0x400102BC (0)[5], 0x400102DC (0)[6], 0x400102FC (0)[7], 0x4001421C (1)[0], 0x4001423C (1)[1], 0x4001425C (1)[2],
0x4001427C (1)[3], 0x4001429C (1)[4], 0x400142BC (1)[5], 0x400142DC (1)[6], 0x400142FC (1)[7]

Access: Write-only

• MDLC: Mailbox Data Length Code

• MRTR: Mailbox Remote Transmission Request

Consumer situations can be handled automatically by setting the mailbox object type in Consumer. This requires only one
mailbox.

It can also be handled using two mailboxes, one in reception, the other in transmission. The MRTR and the MTCR bits
must be set in the same time.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

MTCR MACR – MRTR MDLC

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

Mailbox Object Type Description

Receive No action.

Receive with overwrite No action.

Transmit Length of the mailbox message.

Consumer No action.

Producer Length of the mailbox message to be sent after the remote frame reception.

Mailbox Object Type Description

Receive No action

Receive with overwrite No action

Transmit Set the RTR bit in the sent frame

Consumer No action, the RTR bit in the sent frame is set automatically

Producer No action
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

698

Figure 35-17. TWI Read Operation with Single Data Byte without Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Transfer direction bit

Read ==> bit MREAD = 1

Start the transfer
TWI_CR = START | STOP

Read status register

RXRDY = 1?

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Yes

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Read Receive Holding Register

No

No
829SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 37-27. Receiver Behavior when Operating with Hardware Handshaking

Figure 37-28 shows how the transmitter operates if hardware handshaking is enabled. The CTS pin disables the
transmitter. If a character is being processed, the transmitter is disabled only after the completion of the current
character and transmission of the next character happens as soon as the pin CTS falls.

Figure 37-28. Transmitter Behavior when Operating with Hardware Handshaking

37.6.4 ISO7816 Mode

The USART features an ISO7816-compatible operating mode. This mode permits interfacing with smart cards and
Security Access Modules (SAM) communicating through an ISO7816 link. Both T = 0 and T = 1 protocols defined
by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in US_MR to the value 0x4
for protocol T = 0 and to the value 0x5 for protocol T = 1.

37.6.4.1 ISO7816 Mode Overview

The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is determined by a
division of the clock provided to the remote device (see Section 37-2 ”Baud Rate Generator”).

The USART connects to a smart card as shown in Figure 37-29. The TXD line becomes bidirectional and the baud
rate generator feeds the ISO7816 clock on the SCK pin. As the TXD pin becomes bidirectional, its output remains
driven by the output of the transmitter but only when the transmitter is active while its input is directed to the input
of the receiver. The USART is considered as the master of the communication as it generates the clock.

Figure 37-29. Connection of a Smart Card to the USART

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The configuration is 8
data bits, even parity and 1 or 2 stop bits, regardless of the values programmed in the CHRL, MODE9, PAR and
CHMODE fields. MSBF can be used to transmit LSB or MSB first. Parity Bit (PAR) can be used to transmit in
Normal or Inverse mode. Refer to Section 37.7.3 ”USART Mode Register” and “PAR: Parity Type” .

RTS

RXBUFF

Write
US_CR

RXEN = 1
RXD

RXDIS = 1

CTS

TXD

Smart
Card

SCK
CLK

TXD
I/O

USART
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

900

37.7.15 USART Baud Rate Generator Register

Name: US_BRGR

Address: 0x400A0020 (0), 0x400A4020 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

• CD: Clock Divider

• FP: Fractional Part

0: Fractional divider is disabled.

1–7: Baud rate resolution, defined by FP × 1/8.

Warning: When the value of field FP is greater than 0, the SCK (oversampling clock) generates non-constant duty cycles.
The SCK high duration is increased by “selected clock” period from time to time. The duty cycle depends on the value of
the CD field.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – FP

15 14 13 12 11 10 9 8

CD

7 6 5 4 3 2 1 0

CD

CD

USART_MODE ≠ ISO7816

USART_MODE = ISO7816

SYNC = 0 SYNC = 1
or

USART_MODE = SPI
(Master or Slave)OVER = 0 OVER = 1

0 Baud Rate Clock Disabled

1 to 65535
CD = Selected Clock /
(16 × Baud Rate)

CD = Selected Clock /
(8 × Baud Rate)

CD = Selected Clock /
Baud Rate

CD = Selected Clock /
(FI_DI_RATIO × Baud
Rate)
939SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.17 PWM Interrupt Status Register 2

Name: PWM_ISR2

Access: Read-only

• WRDY: Write Ready for Synchronous Channels Update

0: New duty-cycle and dead-time values for the synchronous channels cannot be written.

1: New duty-cycle and dead-time values for the synchronous channels can be written.

• ENDTX: PDC End of TX Buffer

0: The Transmit Counter register has not reached 0 since the last write of the PDC.

1: The Transmit Counter register has reached 0 since the last write of the PDC.

• TXBUFE: PDC TX Buffer Empty

0: PWM_TCR or PWM_TCNR has a value other than 0.

1: Both PWM_TCR and PWM_TCNR have a value other than 0.

• UNRE: Synchronous Channels Update Underrun Error

0: No Synchronous Channels Update Underrun has occurred since the last read of the PWM_ISR2 register.

1: At least one Synchronous Channels Update Underrun has occurred since the last read of the PWM_ISR2 register.

• CMPMx: Comparison x Match

0: The comparison x has not matched since the last read of the PWM_ISR2 register.

1: The comparison x has matched at least one time since the last read of the PWM_ISR2 register.

• CMPUx: Comparison x Update

0: The comparison x has not been updated since the last read of the PWM_ISR2 register.

1: The comparison x has been updated at least one time since the last read of the PWM_ISR2 register.

Note: Reading PWM_ISR2 automatically clears flags WRDY, UNRE and CMPSx.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CMPU7 CMPU6 CMPU5 CMPU4 CMPU3 CMPU2 CMPU1 CMPU0

15 14 13 12 11 10 9 8

CMPM7 CMPM6 CMPM5 CMPM4 CMPM3 CMPM2 CMPM1 CMPM0

7 6 5 4 3 2 1 0

– – – – UNRE TXBUFE ENDTX WRDY
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1060

5. The number of bytes available in the FIFO is made available by reading RXBYTECNT in the endpoint’s
UDP_CSRx.

6. The microcontroller transfers out data received from the endpoint’s memory to the microcontroller’s memory.
Data received is made available by reading the endpoint’s UDP_FDRx.

7. The microcontroller notifies the USB peripheral device that it has finished the transfer by clearing
RX_DATA_BK0 in the endpoint’s UDP_CSRx.

8. A third Data OUT packet can be accepted by the USB peripheral device and copied in the FIFO Bank 0.

9. If a second Data OUT packet has been received, the microcontroller is notified by the flag RX_DATA_BK1
set in the endpoint’s UDP_CSRx. An interrupt is pending for this endpoint while RX_DATA_BK1 is set.

10. The microcontroller transfers out data received from the endpoint’s memory to the microcontroller’s memory.
Data received is available by reading the endpoint’s UDP_FDRx.

11. The microcontroller notifies the USB device it has finished the transfer by clearing RX_DATA_BK1 in the
endpoint’s UDP_CSRx.

12. A fourth Data OUT packet can be accepted by the USB device and copied in the FIFO Bank 1.

Figure 41-11. Data OUT Transfer for Ping-pong Endpoint

Note: An interrupt is pending while the RX_DATA_BK0 or RX_DATA_BK1 flag is set.

Warning: When RX_DATA_BK0 and RX_DATA_BK1 are both set, there is no way to determine which one to
clear first. Thus the software must keep an internal counter to be sure to clear alternatively RX_DATA_BK0 then
RX_DATA_BK1. This situation may occur when the software application is busy elsewhere and the two banks are
filled by the USB host. Once the application comes back to the USB driver, the two flags are set.

41.6.2.4 Stall Handshake

A stall handshake can be used in one of two distinct occasions. (For more information on the stall handshake, refer
to Chapter 8 of the Universal Serial Bus Specification, Rev 2.0.)

 A functional stall is used when the halt feature associated with the endpoint is set. (Refer to Chapter 9 of the
Universal Serial Bus Specification, Rev 2.0, for more information on the halt feature.)

A
P

Data OUT
PID

ACK Data OUT 3Data OUTData OUT 2Data OUTData OUT 1PID

Data OUT 3Data OUT 1Data OUT1

Data OUT 2 Data OUT 2

PID PID PID
ACK

 Cleared by Firmware

USB Bus
Packets

RX_DATA_BK0 Flag

RX_DATA_BK1 Flag

Set by USB Device,
Data Payload Written
in FIFO Endpoint Bank 1

FIFO (DPR)
Bank 0

Bank 1

Write by USB Device Write In Progress

Read By Microcontroller

Read By Microcontroller

Set by USB Device,
Data Payload Written
in FIFO Endpoint Bank 0

Host Sends First Data Payload
 Microcontroller Reads Data 1 in Bank 0,
 Host Sends Second Data Payload

 Microcontroller Reads Data2 in Bank 1,
 Host Sends Third Data Payload

Cleared by Firmware

Write by USB Device

FIFO (DPR)

(UDP_CSRx)

(UDP_CSRx)

Interrupt Pending

Interrupt Pending
1151SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

45.7.9 ACC Write Protection Status Register

Name: ACC_WPSR

Address: 0x400BC0E8

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of ACC_WPSR.

1: A write protection violation (WPEN = 1) has occurred since the last read of ACC_WPSR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – WPVS
1353SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Note: 1. The product is guaranteed to be functional at VT-

Figure 46-1. Core Brownout Output Waveform

Table 46-4. Core Power Supply Brownout Detector Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VT- Supply Falling Threshold(1) — 0.98 1.0 1.04 V

Vhys Hysteresis Voltage — — — 110 mV

VT+ Supply Rising Threshold — 0.8 1.0 1.08 V

tRST Reset Period VDDIO rising from 0 to 1.2V ± 10% 90 — 320 µs

IDDON
Current Consumption on VDDCORE

Brownout Detector enabled — — 24 µA

IDDOFF Brownout Detector disabled — — 2 µA

IDD33ON
Current Consumption on VDDIO

Brownout Detector enabled — — 24 µA

IDD33OFF Brownout Detector disabled — — 2 µA

td- VT- Detection Propagation Time VDDCORE = VT+ to (VT- - 100mV) — 200 300 ns

tSTART Startup Time From disabled state to enabled state — — 300 µs

t

VDDCORE

VT-

VT+

BOD OUTPUT

t

td+td-
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1358

Single-ended Mode

Figure 46-17 illustrates the ADC output code relative to an input voltage VI between 0V (Ground) and VADVREF. The
ADC is configured in Single-ended mode by connecting internally the negative differential input to VADVREF/2. As
the ADC continues to work internally in Differential mode, the offset is measured at VADVREF/2.

Figure 46-17. Gain and Offset Errors in Single-ended Mode

where:

 FSe = (FSe+) - (FSe-) is for full-scale error, unit is LSB code

 Offset error EO is the offset error measured for VI = 0V

 Gain error EG = 100 × FSe / 4096, unit in %

The error values in Table 46-37 and Table 46-38 include the sample and hold error as well as the PGA gain error.

VI Single-ended

4095

ADVREF/2 ADVREF0
0

ADC codes

FSe-

EO = Offset error2047

FSe+

Table 46-37. Single-ended Gain Error

Offset Mode OFFx = 0 OFFx = 0 OFFx = 1 OFFx = 0 OFFx = 1

Gain Mode 1 2 2 4 4

AutoCorrection No Yes No Yes No Yes No Yes No Yes

Average Gain Error (%) 0.449 0.078 0.771 -0.010 0.781 0.117 1.069 -0.029 1.064 0.151

Standard Deviation (%) 0.420 0.200 0.430 0.313 0.425 0.327 0.420 0.415 0.415 0.371

Min Value (%) -0.811 -0.522 -0.518 -0.947 -0.493 -0.864 -0.190 -1.274 -0.181 -0.962

Max Value (%) 1.709 0.679 2.061 0.928 2.056 1.099 2.329 1.216 2.310 1.265

Table 46-38. Single-ended Output Offset Error

Offset Mode OFFx = 0 OFFx = 0 OFFx = 1 OFFx = 0 OFFx = 1

Gain 1 2 2 4 4

Average Offset Error (LSB) -5.7 -7.7 -10.3 -7.3 -18.7

Standard Deviation (LSB) 1.8 3.9 3.4 6 7

Min Value (LSB) -11.1 -19.4 -20.5 -25.3 -39.7

Max Value (LSB) -0.3 4 -0.1 10.7 2.3
1381SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

