
Microchip Technology - ATSAM4E8CA-CUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity CANbus, Ethernet, IrDA, MMC/SD, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 79

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TFBGA

Supplier Device Package 100-TFBGA (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4e8ca-cur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4e8ca-cur-4392089
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

When Rt is PC in a word load instruction:

 Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples
LDR R0, LookUpTable ; Load R0 with a word of data from an address

; labelled as LookUpTable
LDRSB R7, localdata ; Load a byte value from an address labelled

; as localdata, sign extend it to a word
; value, and put it in R7

11.6.4.6 LDM and STM

Load and Store Multiple registers.

Syntax
op{addr_mode}{cond} Rn{!}, reglist

where:

op is one of:

LDM Load Multiple registers.

STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.

DB Decrement address Before each access.

cond is an optional condition code, see “Conditional Execution” .

Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If ! is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples” .

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending
stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending
stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in
order of increasing register numbers, with the lowest numbered register using the lowest memory address and the
97SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Condition Flags

These instructions do not change the flags.

Examples
B loopA ; Branch to loopA
BLE ng ; Conditionally branch to label ng
B.W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target
BEQ.W target ; Conditionally branch to target within 1MB
BL funC ; Branch with link (Call) to function funC, return address

; stored in LR
BX LR ; Return from function call
BXNE R0 ; Conditionally branch to address stored in R0
BLX R0 ; Branch with link and exchange (Call) to a address stored in R0.
169SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.5 VCVT between Floating-point and Fixed-point

Converts a value in a register from floating-point to and from fixed-point.

Syntax
VCVT{cond}.Td.F32 Sd, Sd, #fbits
VCVT{cond}.F32.Td Sd, Sd, #fbits

where:

cond is an optional condition code, see “Conditional Execution” .

Td is the data type for the fixed-point number. It must be one of:

S16 signed 16-bit value.
U16 unsigned 16-bit value.

S32 signed 32-bit value.
U32 unsigned 32-bit value.

Sd is the destination register and the operand register.

fbits is the number of fraction bits in the fixed-point number:

If Td is S16 or U16, fbits must be in the range 0–16.
If Td is S32 or U32, fbits must be in the range 1–32.

Operation

These instructions:

1. Either

̶ Converts a value in a register from floating-point to fixed-point.

̶ Converts a value in a register from fixed-point to floating-point.

2. Places the result in a second register.

The floating-point values are single-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-
order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.

Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-
point operation uses the Round to Nearest rounding mode.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.
181SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.12.2.1 Coprocessor Access Control Register

Name: CPACR

Access: Read/Write

The CPACR specifies the access privileges for coprocessors.

• CP10: Access Privileges for Coprocessor 10

The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.

1: Privileged access only. An unprivileged access generates a NOCP fault.

2: Reserved. The result of any access is unpredictable.

3: Full access.

• CP11: Access Privileges for Coprocessor 11

The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.

1: Privileged access only. An unprivileged access generates a NOCP fault.

2: Reserved. The result of any access is unpredictable.

3: Full access.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CP11 CP10 – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –
287SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

15.6.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1860

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

• UPDTIM: Update Request Time Register

0: No effect or, if UPDTIM has been previously written to 1, stops the update procedure.

1: Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the RTC_SR.

• UPDCAL: Update Request Calendar Register

0: No effect or, if UPDCAL has been previously written to 1, stops the update procedure.

1: Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set and acknowledged by the bit ACKUPD of the RTC_SR.

• TIMEVSEL: Time Event Selection

The event that generates the flag TIMEV in RTC_SR depends on the value of TIMEVSEL.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – CALEVSEL

15 14 13 12 11 10 9 8

– – – – – – TIMEVSEL

7 6 5 4 3 2 1 0

– – – – – – UPDCAL UPDTIM

Value Name Description

0 MINUTE Minute change

1 HOUR Hour change

2 MIDNIGHT Every day at midnight

3 NOON Every day at noon
337SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

21.3.5.1 Flash Read Command

This command is used to read the contents of the Flash memory. The read command can start at any valid
address in the memory plane and is optimized for consecutive reads. Read handshaking can be chained; an
internal address buffer is automatically increased.

21.3.5.2 Flash Write Command

This command is used to write the Flash contents.

The Flash memory plane is organized into several pages. Data to be written are stored in a load buffer that
corresponds to a Flash memory page. The load buffer is automatically flushed to the Flash:

 before access to any page other than the current one

 when a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be chained; an
internal address buffer is automatically increased.

Table 21-6. Read Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Read handshaking DATA *Memory Address++

5 Read handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Read handshaking DATA *Memory Address++

n+3 Read handshaking DATA *Memory Address++

...

Table 21-7. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WP or WPL or EWP or EWPL

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++

n+3 Write handshaking DATA *Memory Address++

...
425SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.10 DMAC Channel Handler Enable Register

Name: DMAC_CHER

Address: 0x400C0028

Access: Write-only

• ENAx: Enable [3:0]

When set, a bit of the ENA field enables the relevant channel.

• SUSPx: Suspend [3:0]

When set, a bit of the SUSP field freezes the relevant channel and its current context.

• KEEPx: Keep on [3:0]

When set, a bit of the KEEP field resumes the current channel from an automatic stall state.

31 30 29 28 27 26 25 24

– – – – KEEP3 KEEP2 KEEP1 KEEP0

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – SUSP3 SUSP2 SUSP1 SUSP0

7 6 5 4 3 2 1 0

– – – – ENA3 ENA2 ENA1 ENA0
495SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

28.6 Divider and PLL Block

The device features one divider block and one PLL block that permit a wide range of frequencies to be selected on
either the master clock, the processor clock or the programmable clock outputs. A 48 MHz clock signal is provided
to the embedded USB device port regardless of the frequency of the main clock.

Figure 28-4 shows the block diagram of the divider and PLL blocks.

Figure 28-4. Divider and PLL Block Diagram

28.6.1 Divider and Phase Lock Loop Programming

The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is cleared, the output of the
corresponding divider and the PLL output is a continuous signal at level 0. On reset, each DIV field is cleared, thus
the corresponding PLL input clock is stuck at 0.

The PLL (PLLA) allows multiplication of the divider’s outputs. The PLL clock signal has a frequency that depends
on the respective source signal frequency and on the parameters DIV (DIVA) and MUL (MULA). The factor applied
to the source signal frequency is (MUL + 1)/DIV. When MUL is written to 0 or DIV = 0, the PLL is disabled and its
power consumption is saved. Note that there is a delay of two SLCK clock cycles between the disable command
and the real disable of the PLL. Re-enabling the PLL can be performed by writing a value higher than 0 in the MUL
field and DIV higher than 0.

Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK (LOCKA) bit in PMC_SR is
automatically cleared. The values written in the PLLCOUNT field (PLLACOUNT) in CKGR_PLLR (CKGR_PLLAR)
are loaded in the PLL counter. The PLL counter then decrements at the speed of the slow clock until it reaches 0.
At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the processor. The user has to load the
number of slow clock cycles required to cover the PLL transient time into the PLLCOUNT field.

The PLL clock can be divided by 2 by writing the PLLDIV2 (PLLADIV2) bit in PMC_MCKR.

To avoid programming the PLL with a multiplication factor that is too high, the user can saturate the multiplication
factor value sent to the PLL by setting the PLLA_MMAX field in PMC_PMMR.

It is prohibited to change the frequency of the 4/8/12 MHz RC oscillator or to change the source of the main clock
in CKGR_MOR while the master clock source is the PLL and the PLL reference clock is the 4/8/12 MHz RC
oscillator.

The user must:

1. Switch on the 4/8/12 MHz RC oscillator by writing a 1 to the CSS field of PMC_MCKR.

2. Change the frequency (MOSCRCF) or oscillator selection (MOSCSEL) in CKGR_MOR.

3. Wait for MOSCRCS (if frequency changes) or MOSCSELS (if oscillator selection changes) in PMC_SR.

4. Disable and then enable the PLL.

5. Wait for the LOCK flag in PMC_SR.

Divider

DIVA

PLLA

MULA

PLLACOUNT

LOCKASLCK

MAINCK PLLACK

PLLA
Counter

CKGR_PLLAR CKGR_PLLAR

CKGR_PLLAR

PMC_SR
577SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

An error flag (XT32KERR in PMC_SR) is asserted when the 32768 Hz crystal oscillator frequency is out of the
±10% nominal frequency value (i.e., 32768 Hz). The error flag can be cleared only if the slow clock frequency
monitoring is disabled.

The monitored clock frequency is declared invalid if at least four consecutive clock period measurement results are
over the nominal period ±10%.

Due to the possible frequency variation of the embedded 4/8/12 MHz RC oscillator acting as reference clock for
the monitor logic, any 32768 Hz crystal oscillator frequency deviation over ±10% of the nominal frequency is
systematically reported as an error by the XT32KERR bit in PMC_SR. Between -1% and -10% and +1% and
+10%, the error is not systematically reported.

Thus only a crystal running at 32768 Hz frequency ensures that the error flag will not be asserted. The permitted
drift of the crystal is 10000 ppm (1%), which allows any standard crystal to be used.

If the 4/8/12 MHz RC frequency needs to be changed while the slow clock frequency monitor is operating, the
monitoring must be stopped prior to changing the 4/8/12 MHz RC frequency. It can then be re-enabled as soon as
MOSCRCS is set in PMC_SR.

The error flag can be defined as an interrupt source of the PMC by setting the XT32KERR bit of PMC_IER.

29.15 Programming Sequence
1. If the 3 to 20 MHz crystal oscillator is not required, the PLL and divider can be directly configured (Step

6.) else this oscillator must be started (Step 2.).

2. Enable the 3 to 20 MHz crystal oscillator by setting the MOSCXTEN field in CKGR_MOR:

The user can define a start-up time. This is done by writing a value in the MOSCXTST field in CKGR_MOR.
Once this register has been correctly configured, the user must wait for MOSCXTS field in PMC_SR to be
set. This is done either by polling MOSCXTS in PMC_SR, or by waiting for the interrupt line to be raised if
the associated interrupt source (MOSCXTS) has been enabled in PMC_IER.

3. Switch the MAINCK to the 3 to 20 MHz crystal oscillator by setting MOSCSEL in CKGR_MOR.

4. Wait for the MOSCSELS to be set in PMC_SR to ensure the switch is complete.

5. Check the main clock frequency:

This main clock frequency can be measured via CKGR_MCFR.

Read CKGR_MCFR until the MAINFRDY field is set, after which the user can read the MAINF field in
CKGR_MCFR by performing an additional read. This provides the number of main clock cycles that have
been counted during a period of 16 slow clock cycles.

If MAINF = 0, switch the MAINCK to the 4/8/12 MHz RC Oscillator by clearing MOSCSEL in CKGR_MOR. If
MAINF ≠ 0, proceed to Step 6.

6. Set PLLx and Divider (if not required, proceed to Step 7.):

In the names PLLx, DIVx, MULx, LOCKx, PLLxCOUNT, and CKGR_PLLxR, ‘x’ represents A.

All parameters needed to configure PLLx and the divider are located in CKGR_PLLxR.

The DIVx field is used to control the divider itself. This parameter can be programmed between 0 and 127.
Divider output is divider input divided by DIVx parameter. By default, DIVx field is cleared which means that
the divider and PLLx are turned off.

The MULx field is the PLLx multiplier factor. This parameter can be programmed between 0 and 80. If MULx
is cleared, PLLx will be turned off, otherwise the PLLx output frequency is PLLx input frequency multiplied by
(MULx + 1).

When the 4/8/12 MHz RC oscillator frequency is 4 MHz, the accuracy of the measurement is
±40% as this frequency is not trimmed during production. Therefore, ±10% accuracy is
obtained only if the RC oscillator frequency is configured for 8 or 12 MHz.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

586

• MACR: Abort Request for Mailbox x

This flag clears the MRDY and MABT flags in the CAN_MSRx.

It is possible to set the MACR field for several mailboxes in the same time, setting several bits to the CAN_ACR.

• MTCR: Mailbox Transfer Command

This flag clears the MRDY and MABT flags in the CAN_MSRx.

When several mailboxes are requested to be transmitted simultaneously, they are transmitted in turn. The mailbox with the
highest priority is serviced first. If several mailboxes have the same priority, the mailbox with the lowest number is serviced
first (i.e., MBx0 will be serviced before MBx 15 if they have the same priority).

It is possible to set MTCR for several mailboxes at the same time by writing to the CAN_TCR.

Mailbox Object Type Description

Receive No action

Receive with overwrite No action

Transmit Cancels transfer request if the message has not been transmitted to the CAN transceiver.

Consumer Cancels the current transfer before the remote frame has been sent.

Producer Cancels the current transfer. The next remote frame will not be serviced.

Mailbox Object Type Description

Receive Allows the reception of the next message.

Receive with overwrite Triggers a new reception.

Transmit Sends data prepared in the mailbox as soon as possible.

Consumer Sends a remote transmission frame.

Producer Sends data prepared in the mailbox after receiving a remote frame from a Consumer.
699SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• NVPSIZ2: Second Nonvolatile Program Memory Size

• SRAMSIZ: Internal SRAM Size

11 – Reserved

12 1024K 1024 Kbytes

13 – Reserved

14 2048K 2048 Kbytes

15 – Reserved

Value Name Description

0 NONE None

1 8K 8 Kbytes

2 16K 16 Kbytes

3 32K 32 Kbytes

4 – Reserved

5 64K 64 Kbytes

6 – Reserved

7 128K 128 Kbytes

8 – Reserved

9 256K 256 Kbytes

10 512K 512 Kbytes

11 – Reserved

12 1024K 1024 Kbytes

13 – Reserved

14 2048K 2048 Kbytes

15 – Reserved

Value Name Description

0 48K 48 Kbytes

1 192K 192 Kbytes

2 384K 384 Kbytes

3 6K 6 Kbytes

4 24K 24 Kbytes

5 4K 4 Kbytes

6 80K 80 Kbytes

7 160K 160 Kbytes

8 8K 8 Kbytes

9 16K 16 Kbytes

10 32K 32 Kbytes

11 64K 64 Kbytes

Value Name Description
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

702

34.5 Signal Description

34.6 Product Dependencies

34.6.1 I/O Lines

The pins used for interfacing the compliant external devices can be multiplexed with PIO lines. The programmer
must first program the PIO controllers to assign the SPI pins to their peripheral functions.

34.6.2 Power Management

The SPI can be clocked through the Power Management Controller (PMC), thus the programmer must first
configure the PMC to enable the SPI clock.

Table 34-1. Signal Description

Pin Name Pin Description

Type

Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1–NPCS3 Peripheral Chip Selects Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

Table 34-2. I/O Lines

Instance Signal I/O Line Peripheral

SPI MISO PA12 A

SPI MOSI PA13 A

SPI NPCS0 PA11 A

SPI NPCS1 PA9 B

SPI NPCS1 PA31 A

SPI NPCS1 PB14 A

SPI NPCS1 PC4 B

SPI NPCS2 PA10 B

SPI NPCS2 PA30 B

SPI NPCS2 PB2 B

SPI NPCS3 PA3 B

SPI NPCS3 PA5 B

SPI NPCS3 PA22 B

SPI SPCK PA14 A
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

784

36.6.4 UART Interrupt Disable Register

Name: UART_IDR

Address: 0x400E060C (0), 0x4006060C (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• RXRDY: Disable RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Disable End of Receive Transfer Interrupt

• ENDTX: Disable End of Transmit Interrupt

• OVRE: Disable Overrun Error Interrupt

• FRAME: Disable Framing Error Interrupt

• PARE: Disable Parity Error Interrupt

• TXEMPTY: Disable TXEMPTY Interrupt

• TXBUFE: Disable Buffer Empty Interrupt

• RXBUFF: Disable Buffer Full Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
871SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

̶ register PWM_CDTYUPDx holds the new duty-cycle value until the end of the update period of
synchronous channels (when UPRCNT is equal to UPR in PWM Sync Channels Update Period
Register (PWM_SCUP)) and the end of the current PWM period, then updates the value for the next
period.

Note: If the update registers PWM_CDTYUPDx, PWM_CPRDUPDx and PWM_DTUPDx are written several times between
two updates, only the last written value is taken into account.

Figure 39-21. Synchronized Period, Duty-Cycle and Dead-Time Update

39.6.5.4 Changing the Update Period of Synchronous Channels

It is possible to change the update period of synchronous channels while they are enabled. See “Method 2:
Manual write of duty-cycle values and automatic trigger of the update” and “Method 3: Automatic write of duty-
cycle values and automatic trigger of the update” .

To prevent an unexpected update of the synchronous channels registers, the user must use the PWM Sync
Channels Update Period Update Register (PWM_SCUPUPD) to change the update period of synchronous
channels while they are still enabled. This register holds the new value until the end of the update period of
synchronous channels (when UPRCNT is equal to UPR in PWM_SCUP) and the end of the current PWM period,
then updates the value for the next period.

Note: If the update register PWM_SCUPUPD is written several times between two updates, only the last written value is
taken into account.

Note: Changing the update period does make sense only if there is one or more synchronous channels and if the update
method 1 or 2 is selected (UPDM = 1 or 2 in PWM Sync Channels Mode Register).

PWM_CPRDUPDx Value

PWM_CPRDx PWM_CDTYx

- If Asynchronous Channel
 -> End of PWM period
- If Synchronous Channel
 -> End of PWM period and UPDULOCK = 1

User's Writing

PWM_DTUPDx Value

User's Writing

PWM_DTx

- If Asynchronous Channel
 -> End of PWM period
- If Synchronous Channel
 - If UPDM = 0
 -> End of PWM period and UPDULOCK = 1
 - If UPDM = 1 or 2
 -> End of PWM period and end of Update Period

PWM_CDTYUPDx Value

User's Writing
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1036

39.7.1 PWM Clock Register

Name: PWM_CLK

Access: Read/Write

This register can only be written if bits WPSWS0 and WPHWS0 are cleared in the PWM Write Protection Status Register.

• DIVA: CLKA Divide Factor

• DIVB: CLKB Divide Factor

• PREA: CLKA Source Clock Selection

31 30 29 28 27 26 25 24

– – – – PREB

23 22 21 20 19 18 17 16

DIVB

15 14 13 12 11 10 9 8

– – – – PREA

7 6 5 4 3 2 1 0

DIVA

Value Name Description

0 CLKA_POFF CLKA clock is turned off

1 PREA CLKA clock is clock selected by PREA

2–255 PREA_DIV CLKA clock is clock selected by PREA divided by DIVA factor

Value Name Description

0 CLKB_POFF CLKB clock is turned off

1 PREB CLKB clock is clock selected by PREB

2–255 PREB_DIV CLKB clock is clock selected by PREB divided by DIVB factor

Value Name Description

0 CLK Peripheral clock

1 CLK_DIV2 Peripheral clock/2

2 CLK_DIV4 Peripheral clock/4

3 CLK_DIV8 Peripheral clock/8

4 CLK_DIV16 Peripheral clock/16

5 CLK_DIV32 Peripheral clock/32

6 CLK_DIV64 Peripheral clock/64

7 CLK_DIV128 Peripheral clock/128

8 CLK_DIV256 Peripheral clock/256

9 CLK_DIV512 Peripheral clock/512

10 CLK_DIV1024 Peripheral clock/1024

Other – Reserved
1043SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.14.4 HSMCI SDCard/SDIO Register

Name: HSMCI_SDCR

Address: 0x4008000C

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the HSMCI Write Protection Mode Register.

• SDCSEL: SDCard/SDIO Slot

• SDCBUS: SDCard/SDIO Bus Width

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SDCBUS – – – – SDCSEL

Value Name Description

0 SLOTA Slot A is selected.

1 SLOTB –

2 SLOTC –

3 SLOTD –

Value Name Description

0 1 1 bit

1 – Reserved

2 4 4 bits

3 8 8 bits
1117SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The GMAC can be configured to reject all frames except VLAN tagged frames by setting the discard non-VLAN
frames bit in the Network Configuration register.

42.6.13 IEEE 1588 Support

IEEE 1588 is a standard for precision time synchronization in local area networks. It works with the exchange of
special Precision Time Protocol (PTP) frames. The PTP messages can be transported over IEEE 802.3/Ethernet,
over Internet Protocol Version 4 or over Internet Protocol Version 6 as described in the annex of IEEE P1588.D2.1.

The GMAC indicates the message time-stamp point (asserted on the start packet delimiter and de-asserted at end
of frame) for all frames and the passage of PTP event frames (asserted when a PTP event frame is detected and
de-asserted at end of frame).

IEEE 802.1AS is a subset of IEEE 1588. One difference is that IEEE 802.1AS uses the Ethernet multicast address
0180C200000E for sync frame recognition whereas IEEE 1588 does not. GMAC is designed to recognize sync
frames with both IEEE 802.1AS and IEEE 1588 addresses and so can support both 1588 and 802.1AS frame
recognition simultaneously.

Synchronization between master and slave clocks is a two stage process.

First, the offset between the master and slave clocks is corrected by the master sending a sync frame to the slave
with a follow up frame containing the exact time the sync frame was sent. Hardware assist modules at the master
and slave side detect exactly when the sync frame was sent by the master and received by the slave. The slave
then corrects its clock to match the master clock.

Second, the transmission delay between the master and slave is corrected. The slave sends a delay request frame
to the master which sends a delay response frame in reply. Hardware assist modules at the master and slave side
detect exactly when the delay request frame was sent by the slave and received by the master. The slave will now
have enough information to adjust its clock to account for delay. For example, if the slave was assuming zero
delay, the actual delay will be half the difference between the transmit and receive time of the delay request frame
(assuming equal transmit and receive times) because the slave clock will be lagging the master clock by the delay
time already.

The time-stamp is taken when the message time-stamp point passes the clock time-stamp point. This can
generate an interrupt if enabled (GMAC_IER). However, MAC Filtering configuration is needed to actually ‘copy’
the message to memory. For Ethernet, the message time-stamp point is the SFD and the clock time-stamp point is
the MII interface. (The IEEE 1588 specification refers to sync and delay_req messages as event messages as
these require time-stamping. These events are captured in the registers GMAC_EFTx and GMAC_EFRx,
respectively. Follow up, delay response and management messages do not require time-stamping and are
referred to as general messages.)

1588 version 2 defines two additional PTP event messages. These are the peer delay request (Pdelay_Req) and
peer delay response (Pdelay_Resp) messages. These events are captured in the registers GMAC_PEFTx and
GMAC_PEFRx, respectively. These messages are used to calculate the delay on a link. Nodes at both ends of a
link send both types of frames (regardless of whether they contain a master or slave clock). The Pdelay_Resp
message contains the time at which a Pdelay_Req was received and is itself an event message. The time at which
a Pdelay_Resp message is received is returned in a Pdelay_Resp_Follow_Up message.

1588 version 2 introduces transparent clocks of which there are two kinds, peer-to-peer (P2P) and end-to-end
(E2E). Transparent clocks measure the transit time of event messages through a bridge and amend a correction
field within the message to allow for the transit time. P2P transparent clocks additionally correct for the delay in the
receive path of the link using the information gathered from the peer delay frames. With P2P transparent clocks
delay_req messages are not used to measure link delay. This simplifies the protocol and makes larger systems
more stable.
1195SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• REGA: Register Address

Specifies the register in the PHY to access.

• PHYA: PHY Address

• OP: Operation

01: Write

10: Read

• CLTTO: Clause 22 Operation

0: Clause 45 operation

1: Clause 22 operation

• WZO: Write ZERO

Must be written with 0.
1231SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.4.3 32.768 kHz Crystal Oscillator Characteristics

Note: 1. RS is the series resistor.

Figure 46-11. 32.768 kHz Crystal Oscillator Schematics

CLEXT = 2 × (Ccrystal - Cpara - CPCB)

where:

CPCB is the capacitance of the printed circuit board (PCB) track layout from the crystal to the SAM4 pin.

46.4.4 32.768 kHz Crystal Characteristics

Table 46-18. 32.768 kHz Crystal Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fOSC Operating Frequency Normal mode with crystal — — 32.768 kHz

Vrip(VDDIO) Supply Ripple Voltage (on VDDIO) RMS value, 10 kHz to 10 MHz — — 30 mV

— Duty Cycle — 40 50 60 %

tSTART Startup Time

RS < 50 kΩ (1)
Ccrystal = 12.5 pF

Ccrystal = 6 pF

—

—

—

—

900

300
ms

RS < 100 kΩ (1)
Ccrystal = 12.5 pF

Ccrystal = 6 pF

—

—

—

—

1200

500

IDDON Current Consumption

RS < 50 kΩ (1)
Ccrystal = 12.5 pF

Ccrystal = 6 pF

—

—

550

380

1150

980
nA

RS < 100 kΩ (1)
Ccrystal = 12.5 pF

Ccrystal = 6 pF

—

—

820

530

1600

1350

PON Drive Level — — — 0.1 µW

Rf Internal Resistor Between XIN32 and XOUT32 — 10 — MΩ

Ccrystal Allowed Crystal Capacitance Load From crystal specification 6 — 12.5 pF

Cpara Internal Parasitic Capacitance — 0.6 0.7 0.8 pF

XIN32 XOUT32

CLEXT
Ccrystal CLEXT

SAM4

Table 46-19. Crystal Characteristics

Symbol Parameter Conditions Min Typ Max Unit

ESR Equivalent Series Resistor (RS) Crystal @ 32.768 kHz — 50 100 kΩ

Cm Motional Capacitance Crystal @ 32.768 kHz 0.6 — 3 fF

CSHUNT Shunt Capacitance Crystal @ 32.768 kHz 0.6 — 2 pF
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1370

50. Errata on SAM4E Devices

50.1 Errata SAM4E Rev. A Parts

The errata are applicable to the devices listed in the table below:

50.1.1 Watchdog

50.1.1.1 Watchdog Not Stopped in Wait Mode

When the Watchdog is enabled and the bit WAITMODE = 1 is used to enter Wait mode, the watchdog is not
halted. If the time spent in Wait mode is longer than the Watchdog time-out, the device will be reset if Watchdog
reset is enabled.

Problem Fix/Workaround

When entering Wait mode, the Wait For Event (WFE) instruction of the processor Cortex-M4 must be used with
the SLEEPDEEP bit of the System Control Register (SCB_SCR) of the Cortex-M = 0.

50.1.2 Brownout Detector

50.1.2.1 Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and VDDIO is Connected

In Active mode or in Wait mode, if the Brownout Detector is disabled (SUPC_MR.BODDIS = 1) and power is lost
on VDDCORE while VDDIO is powered, the device might not be properly reset and may behave unpredictably.

Problem Fix/Workaround

When the Brownout Detector is disabled in Active or in Wait mode, VDDCORE always needs to be powered.

50.1.3 Flash

50.1.3.1 Flash: Incorrect Flash Read May Occur Depending on VDDIO Voltage and Flash Wait State

Flash read issues leading to wrong instruction fetch or incorrect data read may occur under the following operating
conditions:

VDDIO < 2.4V and Flash wait state(1) ≥ 1

If the core clock frequency does not require the use of the Flash wait state (2) (FWS = 0 in EEFC_FMR), or if only
data reads are performed on the Flash (e.g., if the code is running out of SRAM), there are no constraints on

Table 50-1. Revision A parts

Chip Name Revision CHIPID_CIDR CHIPID_EXID

SAM4E16E A 0xA3CC_0CE0 0x0012_0200

SAM4E8E A 0xA3CC_0CE0 0x0012_0208

SAM4E16C A 0xA3CC_0CE0 0x0012_0201

SAM4E8C A 0xA3CC_0CE0 0x0012_0209
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1416

