
Microchip Technology - ATSAM4E8CB-ANR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity CANbus, Ethernet, IrDA, MMC/SD, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 79

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4e8cb-anr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4e8cb-anr-4412418
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

11.6.3 Instruction Descriptions

11.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand” .

11.6.3.2 Restrictions when Using PC or SP

Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands
or destination register can be used. See instruction descriptions for more information.

Note: Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct execution,
because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb instructions.

11.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand2 in the
descriptions of the syntax of each instruction.

Operand2 can be a:

 “Constant”

 “Register with Optional Shift”

Constant

Specify an Operand2 constant in the form:
#constant

where constant can be:

 Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word

 Any constant of the form 0x00XY00XY

 Any constant of the form 0xXY00XY00

 Any constant of the form 0xXYXYXYXY.

 Note: In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are described in
the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be
produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other
constant.

Instruction Substitution

The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant
that is not permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the
equivalent instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand2 register in the form:
Rm {, shift}

where:

Rm is the register holding the data for the second operand.

shift is an optional shift to be applied to Rm. It can be one of:
83SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.10 SMUL and SMULW

Signed Multiply (halfwords) and Signed Multiply (word by halfword)

Syntax
op{XY}{cond} Rd,Rn, Rm
op{Y}{cond} Rd. Rn, Rm

For SMULXY only:

op is one of:

SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as
the first and second multiply operand.
If X is B, then the bottom halfword, bits [15:0] of Rn is used.
If X is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bot
tom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y} Signed Multiply (word by halfword).

Y specifies which halfword of the source register Rm is used as the second mul
tiply operand.
If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed
16-bit integers. These instructions:

 Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

 Writes the 32-bit result of the multiplication in Rd.

The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

 Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

 Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:

 Do not use SP and do not use PC.

 RdHi and RdLo must be different registers.

Examples
SMULBT R0, R4, R5 ; Multiplies the bottom halfword of R4 with the

 ; top halfword of R5, multiplies results and
 ; writes to R0

SMULBB R0, R4, R5 ; Multiplies the bottom halfword of R4 with the
; bottom halfword of R5, multiplies results and

 ; writes to R0
SMULTT R0, R4, R5 ; Multiplies the top halfword of R4 with the top

 ; halfword of R5, multiplies results and writes
 ; to R0

SMULTB R0, R4, R5 ; Multiplies the top halfword of R4 with the
145SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.7 MSR

Move the contents of a general-purpose register into the specified special register.

Syntax
MSR{cond} spec_reg, Rn

where:

cond is an optional condition code, see “Conditional Execution” .

Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR. See “Application Program Status Register” . Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is 0
Rn is non-zero and less than the current BASEPRI value.

See “MRS” .

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.

Examples
MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register
213SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.10.1 System Timer (SysTick) User Interface

Table 11-35. System Timer (SYST) Register Mapping

Offset Register Name Access Reset

0xE000E010 SysTick Control and Status Register SYST_CSR Read/Write 0x00000000

0xE000E014 SysTick Reload Value Register SYST_RVR Read/Write Unknown

0xE000E018 SysTick Current Value Register SYST_CVR Read/Write Unknown

0xE000E01C SysTick Calibration Value Register SYST_CALIB Read-only 0x00003A98
257SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.7 DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Disable Register

Name: DMAC_EBCIDR

Address: 0x400C001C

Access: Write-only

• BTCx: Buffer Transfer Completed [3:0]

Buffer transfer completed Disable Interrupt Register. When set, a bit of the BTC field disables the interrupt from the rele-
vant DMAC channel.

• CBTCx: Chained Buffer Transfer Completed [3:0]

Chained Buffer transfer completed Disable Register. When set, a bit of the CBTC field disables the interrupt from the rele-
vant DMAC channel.

• ERRx: Access Error [3:0]

Access Error Interrupt Disable Register. When set, a bit of the ERR field disables the interrupt from the relevant DMAC
channel.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – ERR3 ERR2 ERR1 ERR0

15 14 13 12 11 10 9 8

– – – – CBTC3 CBTC2 CBTC1 CBTC0

7 6 5 4 3 2 1 0

– – – – BTC3 BTC2 BTC1 BTC0
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

492

30.5.3 AES Interrupt Enable Register

Name: AES_IER

Address: 0x40004010

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• DATRDY: Data Ready Interrupt Enable

• URAD: Unspecified Register Access Detection Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – URAD

7 6 5 4 3 2 1 0

– – – – – – – DATRDY
635SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.5 Functional Description

The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic associated to each I/O
is represented in Figure 33-2. In this description each signal shown represents one of up to 32 possible indexes.

Figure 33-2. I/O Line Control Logic

33.5.1 Pull-up and Pull-down Resistor Control

Each I/O line is designed with an embedded pull-up resistor and an embedded pull-down resistor. The pull-up
resistor can be enabled or disabled by writing to the Pull-up Enable Register (PIO_PUER) or Pull-up Disable
Register (PIO_PUDR), respectively. Writing to these registers results in setting or clearing the corresponding bit in
the Pull-up Status Register (PIO_PUSR). Reading a one in PIO_PUSR means the pull-up is disabled and reading
a zero means the pull-up is enabled. The pull-down resistor can be enabled or disabled by writing the Pull-down
Enable Register (PIO_PPDER) or the Pull-down Disable Register (PIO_PPDDR), respectively. Writing in these

1

0

1

0

1

0

1

0
D Q D Q

DFF

1

0

1

0

11

00
01
10

Programmable
Glitch

or
Debouncing

Filter

PIO_PDSR[0]
PIO_ISR[0]

PIO_IDR[0]

PIO_IMR[0]

PIO_IER[0]

PIO Interrupt

(Up to 32 possible inputs)

PIO_ISR[31]

PIO_IDR[31]

PIO_IMR[31]

PIO_IER[31]

Pad

PIO_PUDR[0]

PIO_PUSR[0]

PIO_PUER[0]

PIO_MDDR[0]

PIO_MDSR[0]

PIO_MDER[0]

PIO_CODR[0]

PIO_ODSR[0]

PIO_SODR[0]

PIO_PDR[0]

PIO_PSR[0]

PIO_PER[0]
PIO_ABCDSR1[0]

PIO_ODR[0]

PIO_OSR[0]

PIO_OER[0]

Peripheral Clock
Resynchronization

Stage

Peripheral A Input

Peripheral D Output Enable

Peripheral A Output Enable

EVENT
DETECTORDFF

PIO_IFDR[0]

PIO_IFSR[0]

PIO_IFER[0]

Peripheral Clock

Clock
Divider

PIO_IFSCSR[0]

PIO_IFSCER[0]

PIO_IFSCDR[0]

PIO_SCDR

Slow Clock

Peripheral B Output Enable

Peripheral C Output Enable

11

00
01
10

Peripheral D Output

Peripheral A Output

Peripheral B Output

Peripheral C Output

PIO_ABCDSR2[0]

Peripheral B Input
Peripheral C Input
Peripheral D Input

PIO_PPDDR[0]

PIO_PPDSR[0]

PIO_PPDER[0]

VDD

GND

Integrated
Pull-Down
Resistor

Integrated
Pull-Up
Resistor

div_slck
709SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.7 PIO Input Filter Enable Register

Name: PIO_IFER

Address: 0x400E0E20 (PIOA), 0x400E1020 (PIOB), 0x400E1220 (PIOC), 0x400E1420 (PIOD), 0x400E1620 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Input Filter Enable

0: No effect.

1: Enables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
733SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.12 PIO Output Data Status Register

Name: PIO_ODSR

Address: 0x400E0E38 (PIOA), 0x400E1038 (PIOB), 0x400E1238 (PIOC), 0x400E1438 (PIOD), 0x400E1638 (PIOE)

Access: Read-only or Read/Write

• P0–P31: Output Data Status

0: The data to be driven on the I/O line is 0.

1: The data to be driven on the I/O line is 1.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

738

34.8.6 SPI Interrupt Enable Register

Name: SPI_IER

Address: 0x40088014

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• RDRF: Receive Data Register Full Interrupt Enable

• TDRE: SPI Transmit Data Register Empty Interrupt Enable

• MODF: Mode Fault Error Interrupt Enable

• OVRES: Overrun Error Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• NSSR: NSS Rising Interrupt Enable

• TXEMPTY: Transmission Registers Empty Enable

• UNDES: Underrun Error Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

808

• ONEBIT: Start Frame Delimiter Selector

0: Start frame delimiter is COMMAND or DATA SYNC.

1: Start frame delimiter is one bit.
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

920

38. Timer Counter (TC)

38.1 Description

A Timer Counter (TC) module includes three identical TC channels. The number of implemented TC modules is
device-specific.

Each TC channel can be independently programmed to perform a wide range of functions including frequency
measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation.

Each channel has three external clock inputs, five internal clock inputs and two multi-purpose input/output signals
which can be configured by the user. Each channel drives an internal interrupt signal which can be programmed to
generate processor interrupts.

The TC embeds a quadrature decoder (QDEC) connected in front of the timers and driven by TIOA0, TIOB0 and
TIOB1 inputs. When enabled, the QDEC performs the input lines filtering, decoding of quadrature signals and
connects to the timers/counters in order to read the position and speed of the motor through the user interface.

The TC block has two global registers which act upon all TC channels:

 Block Control Register (TC_BCR)—allows channels to be started simultaneously with the same instruction

 Block Mode Register (TC_BMR)—defines the external clock inputs for each channel, allowing them to be
chained

38.2 Embedded Characteristics
 Total number of TC channels implemented on this device: nine

 TC channel size: 32-bit

 Wide range of functions including:

̶ Frequency measurement

̶ Event counting

̶ Interval measurement

̶ Pulse generation

̶ Delay timing

̶ Pulse Width Modulation

̶ Up/down capabilities

̶ Quadrature decoder

̶ 2-bit Gray up/down count for stepper motor

 Each channel is user-configurable and contains:

̶ Three external clock inputs

̶ Five Internal clock inputs

̶ Two multi-purpose input/output signals acting as trigger event

̶ Trigger/capture events can be directly synchronized by PWM signals

 Internal interrupt signal

 Read of the Capture registers by the PDC

 Compare event fault generation for PWM

 Register Write Protection
949SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 38-3. Clock Selection

38.6.4 Clock Control

The clock of each counter can be controlled in two different ways: it can be enabled/disabled and started/stopped.
See Figure 38-4.

 The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS commands in the TC
Channel Control Register (TC_CCR). In Capture mode it can be disabled by an RB load event if LDBDIS is
set to 1 in the TC_CMR. In Waveform mode, it can be disabled by an RC Compare event if CPCDIS is set to
1 in TC_CMR. When disabled, the start or the stop actions have no effect: only a CLKEN command in the
TC_CCR can re-enable the clock. When the clock is enabled, the CLKSTA bit is set in the TC_SR.

 The clock can also be started or stopped: a trigger (software, synchro, external or compare) always starts
the clock. The clock can be stopped by an RB load event in Capture mode (LDBSTOP = 1 in TC_CMR) or
an RC compare event in Waveform mode (CPCSTOP = 1 in TC_CMR). The start and the stop commands
are effective only if the clock is enabled.

TIMER_CLOCK1

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC0

XC1

XC2

TCCLKS

CLKI
Synchronous

Edge Detection

BURST

Peripheral Clock

1

Selected
Clock
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

954

95
8

F
ig

u
re 38-6.

C
ap

tu
re M

o
d

e

S

Register C

apture
egister B Compare RC =

TC
1_IM

R

LD
R

B
S

LD
R

A
S

E
TR

G
S

TC
1_S

R

LO
V

R
S

C
O

V
FS

LDBDIS

C
P

C
S

INT

Timer/Counter Channel
S
A

M
4E

 S
eries [D

A
T

A
S

H
E

E
T

]
A

tm
e

l-1
1

15
7H

-A
T

A
R

M
-S

A
M

4
E

16
-S

A
M

4E
8

-D
a

ta
she

e
t_

3
1-M

ar-16

TIMER_CLOCK1
TIMER_CLOCK2
TIMER_CLOCK3
TIMER_CLOCK4
TIMER_CLOCK5

XC0
XC1
XC2

TCCLKS

CLKI

Q S
R

S

R

Q

CLKSTA CLKEN CLKDI

BURST

TIOB

Capture
Register A

C
R

Counter

ABETRG

SWTRG

ETRGEDG CPCTRG

Trig
SYNC

1

MTIOB

TIOA

MTIOA

LDRA

LDBSTOP

If RA is not loaded
or RB is loaded If RA is loaded

Edge
Detector

Edge
Detector

LDRB

Edge
Detector

CLK OVF

RESET

Peripheral Clock

Synchronous
Edge Detection

Edge Subsampler

SBSMPLR

39.7.14 PWM Interrupt Enable Register 2

Name: PWM_IER2

Access: Write-only

• WRDY: Write Ready for Synchronous Channels Update Interrupt Enable

• ENDTX: PDC End of TX Buffer Interrupt Enable

• TXBUFE: PDC TX Buffer Empty Interrupt Enable

• UNRE: Synchronous Channels Update Underrun Error Interrupt Enable

• CMPMx: Comparison x Match Interrupt Enable

• CMPUx: Comparison x Update Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CMPU7 CMPU6 CMPU5 CMPU4 CMPU3 CMPU2 CMPU1 CMPU0

15 14 13 12 11 10 9 8

CMPM7 CMPM6 CMPM5 CMPM4 CMPM3 CMPM2 CMPM1 CMPM0

7 6 5 4 3 2 1 0

– – – – UNRE TXBUFE ENDTX WRDY
1057SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

For the multicast address 011B19000000 sync and delay request frames are recognized depending on the
message type field, 00 for sync and 01 for delay request.

Pdelay request frames need a special multicast address so they can pass through ports blocked by the spanning
tree protocol. For the multicast address 0180C200000E sync, Pdelay_Req and Pdelay_Resp frames are
recognized depending on the message type field, 00 for sync, 02 for pdelay request and 03 for pdelay response.

42.6.14 Time Stamp Unit

The TSU consists of a timer and registers to capture the time at which PTP event frames cross the message
timestamp point. An interrupt is issued when a capture register is updated.

The timer is implemented as a 62-bit register with the upper 32 bits counting seconds and the lower 30 bits
counting nanoseconds. The lower 30 bits roll over when they have counted to one second. An interrupt is
generated when the seconds increment. The timer value can be read, written and adjusted through the APB
interface.

The amount by which the timer increments each clock cycle is controlled by the timer increment registers
(GMAC_TI). Bits 7:0 are the default increment value in nanoseconds and an additional 16 bits of sub-nanosecond
resolution are available using the Timer Increment Sub-nanoseconds register (GMAC_TISUBN). If the rest of the

Dest IP port (Octets 56–57) 013F

Other stuff (Octets 58–61) —

Message type (Octet 62) 03

Other stuff (Octets 63–93) —

Version PTP (Octet 94) 02

Table 42-13. Example of Sync Frame in 1588 Version 2 (Ethernet Multicast) Format

Frame Segment Value

Preamble/SFD 55555555555555D5

DA (Octets 0–5) 011B19000000

SA (Octets 6–11) —

Type (Octets 12–13) 88F7

Message type (Octet 14) 00

Version PTP (Octet 15) 02

Table 42-14. Example of Pdelay_Req Frame in 1588 Version 2 (Ethernet Multicast) Format

Frame Segment Value

Preamble/SFD 55555555555555D5

DA (Octets 0–5) 0180C200000E

SA (Octets 6–11) —

Type (Octets 12–13) 88F7

Message type (Octet 14) 00

Version PTP (Octet 15) 02

Table 42-12. Example of Pdelay_Resp Frame in 1588 Version 2 (UDP/IPv6) Format (Continued)

Frame Segment Value
1199SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Changing the AFE reference voltage (ADVREF pin) requires a new calibration sequence.

For calibration time, offset and gain error after calibration, refer to the AFE Characteristics in the section “Electrical
Characteristics”.

43.6.14 Buffer Structure

The PDC read channel is triggered each time a new data is stored in AFEC_LCDR. The same structure of data is
repeatedly stored in AFEC_LCDR each time a trigger event occurs. Depending on the user mode of operation
(AFEC_MR, AFEC_CHSR, AFEC_SEQ1R, AFEC_SEQ2R) the structure differs. When TAG is cleared, each data
transferred to PDC buffer is carried on a half-word (16-bit) and consists of the last converted data right-aligned.
When TAG is set, this data is carried on a word buffer (32-bit) and CHNB carries the channel number, thus
simplifying post-processing in the PDC buffer and ensuring the integrity of the PDC buffer.

43.6.15 Fault Output

The AFEC internal fault output is directly connected to PWM fault input. Fault output may be asserted depending
on the configuration of AFEC_EMR and AFEC_CWR and converted values. When the compare occurs, the AFEC
fault output generates a pulse of one peripheral clock cycle to the PWM fault input. This fault line can be enabled
or disabled within the PWM. If it is activated and asserted by the AFEC, the PWM outputs are immediately placed
in a safe state (pure combinational path). Note that the AFEC fault output connected to the PWM is not the
COMPE bit. Thus the Fault Mode (FMOD) within the PWM configuration must be FMOD = 1.
1285SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• EDGETYP: Edge Type

• INV: Invert Comparator Output

0 (DIS): Analog comparator output is directly processed.

1 (EN): Analog comparator output is inverted prior to being processed.

• SELFS: Selection Of Fault Source

0 (CE): The CE flag is used to drive the FAULT output.

1 (OUTPUT): The output of the analog comparator flag is used to drive the FAULT output.

• FE: Fault Enable

0 (DIS): The FAULT output is tied to 0.

1 (EN): The FAULT output is driven by the signal defined by SELFS.

Value Name Description

0 RISING Only rising edge of comparator output

1 FALLING Falling edge of comparator output

2 ANY Any edge of comparator output
SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1346

Figure 46-8. Active Mode Measurement Setup

Table 46-13 on page 1365 and Figure 46-14 on page 1366 give the Active Mode Current Consumption in typical
conditions.

 VDDCORE at 1.2V

 TA = 25°C

46.3.3.1 SAM4E Active Power Consumption

Note: 1. Flash Wait State (FWS) in EEFC_FMR is adjusted depending on core frequency.

VDDIO

VDDOUT

VDDCORE

VDDIN

Voltage
Regulator

VDDPLL

3.3V

AMP1

AMP2

Table 46-13. Active Power Consumption with VDDCORE @ 1.2V running from Embedded Memory (IDDCORE - AMP1)

Core Clock (MHz)

Core Mark

Unit

Cache Enable (CE) Cache Disable (CD)

SRAM
128-bit Flash

access(1)
64-bit Flash

access(1)
128-bit Flash

access(1)
64-bit Flash

access(1)

120 21.1 21.0 25.5 19.0 17.9

mA

100 18.1 18.1 22.5 17.2 15.0

84 15.5 15.5 20.0 16.1 12.86

64 11.9 11.9 16.4 13.6 9.9

48 9.0 9.0 12.7 11.7 7.5

32 6.2 6.2 9.1 8.9 5.2

24 4.6 4.6 7 6.8 3.9

12 2.5 2.4 4.1 3.8 2.2

8 1.9 1.8 2.9 2.8 1.6

4 1.2 1.1 1.7 1.7 1.0

2 0.81 0.79 1 1 0.75

1 0.46 0.46 0.6 0.6 0.44

0.5 0.38 0.38 0.47 0.44 0.36
1365SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Low Voltage Supply

The ADC operates in 10-bit mode or 12-bit mode. Working at low voltage (VDDIN or/and VADVREF) between 2 and
2.4V is subject to the following restrictions:

 The field IBCTL must be 00 to reduce the biasing of the ADC under low voltage. See Section 46.7.1.1 “ADC
Bias Current”.

 In 10-bit mode, the ADC clock should not exceed 5 MHz (max signal bandwidth is 250 kHz).

 In 12-bit mode, the ADC clock should not exceed 2 MHz (max signal bandwidth is 100 kHz).

46.7.5.3 ADC Channel Input Impedance

Figure 46-18. Input Channel Model

where:

 Zi is input impedance in single-ended or differential mode

 Ci = 1 to 8 pF ±20% depending on the gain value and mode (SE or DIFF); temperature dependency is
negligible

 RON is typical 2 kΩ and 8 kΩ max (worst case process and high temperature)

 RON is negligible regarding the value of Zi

The following formula is used to calculate input impedance:

where:

 fS is the sampling frequency of the ADC channel

 Typ values are used to compute ADC input impedance Zi

Table 46-43. Input Capacitance (CIN) Values

Gain Selection Single-ended Differential

0.5 – 2 pF

1 2 pF 4 pF

2 2 pF 8 pF

4 4 pF –

Ci

Zi

RON

GND

Single-ended model

Ci

RON

Differential model

Zi

RON

Zi
1

fS Ci×
----------------=
1383SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

